首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advances in porcine assisted reproductive technology (ART) make it possible to use cryopreserved sperm, embryos and somatic cells in the maintenance, relocation and regeneration of swine genetics. In this review, development of key application-limiting technology is discussed in each cell type, focusing on the efficiencies, ease of storage and transportation, and minimization of pathogen transmission. Methods to regenerate swine genetics and/or models using frozen sperm, embryos and somatic cells in combination with other porcine ARTs, such as in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), and somatic cell nuclear transplantation (SCNT), are also discussed. The applications of these ARTs utilizing cryopreserved cells will greatly increase the efficiency as well as biosecurity for maintenance, relocation and rederivation of swine genetics/models.  相似文献   

2.
Lin JY  Pollack JR  Chou FL  Rees CA  Christian AT  Bedford JS  Brown PO  Ginsberg MH 《Genome biology》2002,3(6):research0026.1-research00267

Background  

Somatic cell mutants can be informative in the analysis of a wide variety of cellular processes. The use of map-based positional cloning strategies in somatic cell hybrids to analyze genes responsible for recessive mutant phenotypes is often tedious, however, and remains a major obstacle in somatic cell genetics. To fulfill the need for more efficient gene mapping in somatic cell mutants, we have developed a new DNA microarray comparative genomic hybridization (array-CGH) method that can rapidly and efficiently map the physical location of genes complementing somatic cell mutants to a small candidate genomic region. Here we report experiments that establish the validity and efficacy of the methodology.  相似文献   

3.
治疗性克隆     
治疗性克隆是利用核移植技术将病人的体细胞核移植到去核的卵母细胞中 ,使其重编程并发育成囊胚 ,然后再用胚胎干细胞分离技术从克隆囊胚的ICM分离出多能胚胎干细胞 (ES)。这种干细胞在遗传学上和病人完全一致 ,再定向诱导其分化成病人所需要的体细胞进行移植 ,以取代和修复患者已丧失功能的细胞、组织或器官 ,而达到完全治愈。治疗性克隆不仅解决移植物与受者间的免疫排斥反应问题 ,而且可以解决移植物的来源问题。  相似文献   

4.
The yeastSaccharomyces cerevisiae possesses a finite life span similar in many attributes and implications to that of higher eukaryotes. Here, the measure of the life span is the number of generations or divisions the yeast cell has undergone. The yeast cell is the organism, simplifying many aspects of aging research. Most importantly, the genetics of yeast is highly-developed and readily applicable to the dissection of longevity. Two candidate longevity genes have already been identified and are being characterized. Others will follow through the utilization of both the primary phenotype and the secondary phenotypes associated with aging in yeast. An ontogenetic theory of longevity that follows from the evolutionary biology of aging is put forward in this article. This theory has at its foundation the asymmetric reproduction of cells and organisms, and it makes specific predictions regarding the genetics, molecular mechanisms, and phenotypic features of longevity and senescence, including these: GTP-binding proteins will frequently be involved in determining longevity, asymmetric cell division will be often encountered during embryogenesis while binary fission will be more characteristic of somatic cell division, tumor cells of somatic origin will not be totipotent, and organisms that reproduce symmetrically will not have intrinsic limits to their longevity.  相似文献   

5.
Chinese hamster X mouse somatic cell hybrids segregating mouse chromosomes were examined for their mouse chromosome content using trypsin-Giemsa (GTG) banding and Hoechst 33258 staining techniques. Simultaneously, they were scored for the presence of 24 mouse enzymes. The results confirm the assignments of 11 genes previously mapped by sexual genetics: Dip-1 and Id-1 to chromosome 1; Pgm-2 and Pgd to 4; Pgm-1 to 5; Gpi-1 to 7; Gr-1 to 8; Mpi-1 and Mod-1 to 9; Np-1 and Es-10 to 14. They also confirm chromosomally the assignments of 3 genes that were made by other somatic cell genetic studies: Aprt to 8; Hprt and alpha-gal to the X chromosome. But most importantly, four enzyme loci are assigned to four chromosomes that until now were not known to carry a biochemical marker which is expressed in cultured cells: Trip-1 to 10; Dip-2 to 18; Acp-1 to 12; and Ak-1 to 2. Cytogenetic examination of clones showing discordant segregation of HPRT and A-GAL, suggested the assignment of alpha-gal to region XE leads to XF of the mouse X chromosome. The cytologic studies provide a comparison between data from sexual genetics and somatic cell hybrids and validate hybrid cell techniques. They provide evidence of the reliability of scoring chromosomes by GTG and Hoechst staining and stress the importance of identifying clones with multiple chromosome rearrangements. Striking examples of norandom segregation of mouse chromosomes were observed in these hybrids with preferential retention of 15 and segregation of 11 and the Y chromosome.  相似文献   

6.
体细胞核移植技术是指将一个分化的体细胞核置入去核的卵母细胞中,并发育产生与供体细胞遗传背景一致的克隆后代的技术。目前,世界上通过体细胞核移植技术已经产生了许多的克隆动物。但克隆过程中还存在着很多问题,比如,克隆效率太低、克隆个体常伴有表型异常和早亡等,从而使该技术应有的应用潜力不能得到充分的发挥。体细胞表观遗传学重编程的不完全或紊乱是造成核移植诸多问题的主要原因。近十多年来,人们对体细胞核移植后的重编程进行了广泛的研究,其核心内容包括核及核外结构的重塑、DNA甲基化模式的重建、基因印迹和x染色体失活、组蛋白乙酰化模式的重建、端粒长度恢复等,以期能够对其重编程加以人为干预,从而提高动物克隆效率。本文拟对体细胞核移植诱导的重编程研究进展加以综述,希望对体细胞重编程机制的阐明有所启发。  相似文献   

7.
Transfection experiments with HSV 1 in which one uses herpes simplex virus (HSV) thymidine kinase (TK) as a selectable prototrophic marker yield two classes of transformed cells: stable and unstable. In this report, we test the hypothesis that the stability phenotype can be explained by virus genome integration into a recipient cell chromosome. The method of analysis is by means of somatic cell genetics. We have isolated a series of microcell hybrids between a TK- Chinese hamster cell line and a transformed mouse cell line expressing the TK encoded by HSV 1. Several of the hybrid lines contain a single murine chromosome and express only the viral TK. Karyotypic analysis of these hybrids and of TK- derivatives generated by BrdUrd counterselection reveals that the TK+ phenotype is correlated with the presence of the terminal portion of the long arm of a specific murine chromosome. Results of extensive isozyme analyses of the hybrids and their TK- segregants fully corroborate the karyologic data. The results are consistent with the hypothesis that the viral tk gene is covalently integrated into this chromosomal region which itself does not appear to carry the endogenous murine tk locus. Other more complicated models are discussed. Our findings also show that somatic cell genetics can be used to localize viral integration sites in host chromosomes with high resolution.  相似文献   

8.
C A Kozak  F H Ruddle 《In vitro》1976,12(11):720-725
The mouse genetic map has been characterized largely through breeding studies based on the principles of Mendelian genetics. More recently, specific genetic information has been obtained from somatic cell studies using the techniques of in situ hybridization and somatic cell hybridization. The genetic analysis possible through these sexual and parasexual approaches is described, and specific linkage information from recent somatic cell studies is reviewed.  相似文献   

9.
Somatic mosaicism occurs throughout normal development and contributes to numerous disease etiologies, including tumorigenesis and neurological disorders. Intratumor genetic heterogeneity is inherent to many cancers, creating challenges for effective treatments. Unfortunately, analysis of bulk DNA masks subclonal phylogenetic architectures created by the acquisition and distribution of somatic mutations amongst cells. As a result, single-cell genetic analysis is becoming recognized as vital for accurately characterizing cancers. Despite this, methods for single-cell genetics are lacking. Here we present an automated microfluidic workflow enabling efficient cell capture, lysis, and whole genome amplification (WGA). We find that ~90% of the genome is accessible in single cells with improved uniformity relative to current single-cell WGA methods. Allelic dropout (ADO) rates were limited to 13.75% and variant false discovery rates (SNV FDR) were 4.11x10-6, on average. Application to ER-/PR-/HER2+ breast cancer cells and matched normal controls identified novel mutations that arose in a subpopulation of cells and effectively resolved the segregation of known cancer-related mutations with single-cell resolution. Finally, we demonstrate effective cell classification using mutation profiles with 10X average exome coverage depth per cell. Our data demonstrate an efficient automated microfluidic platform for single-cell WGA that enables the resolution of somatic mutation patterns in single cells.  相似文献   

10.
Ciliates are unicellular eukaryotes with separate germline and somatic genomes and diverse life cycles, which make them a unique model to improve our understanding of population genetics through the detection of genetic variations. However, traditional sequencing methods cannot be directly applied to ciliates because the majority are uncultivated. Single‐cell whole‐genome sequencing (WGS) is a powerful tool for studying genetic variation in microbes, but no studies have been performed in ciliates. We compared the use of single‐cell WGS and bulk DNA WGS to detect genetic variation, specifically single nucleotide polymorphisms (SNPs), in the model ciliate Tetrahymena thermophila. Our analyses showed that (i) single‐cell WGS has excellent performance regarding mapping rate and genome coverage but lower sequencing uniformity compared with bulk DNA WGS due to amplification bias (which was reproducible); (ii) false‐positive SNP sites detected by single‐cell WGS tend to occur in genomic regions with particularly high sequencing depth and high rate of C:G to T:A base changes; (iii) SNPs detected in three or more cells should be reliable (an detection efficiency of 83.4–97.4% was obtained for combined data from three cells). This analytical method could be adapted to measure genetic variation in other ciliates and broaden research into ciliate population genetics.  相似文献   

11.
Summary We have analyzed cell cycle parameters for theAedes albopictus C7-10 mosquito cell line, which has been systematically developed for somatic cell genetics, expression of transfected genes, and synthesis of hormone-inducible proteins. In rapidly cycling cells, we measured a generation time of 10–12 h. The duration of mitosis (M) was ≤1 h, and the DNA synthesis phase (S) required 6 h. UnlikeDrosophila melanogaster Kc cells, in which the G2 gap is substantially longer than G1, in C7-10 cells G1 and G2 each lasted approximately 2h. In these cells, the duration of both S and G2 was independent of the population doubling time, and the increase in population doubling time as cells approached confluency was due to prolongation of G1. When treated with the insect steroid hormone, 20-hydroxyecdysone, C7-10 mosquito cells complete the cycle in progress before undergoing a reversible arrest.  相似文献   

12.
13.
14.
Varshaver  N. B. 《Molecular Biology》2002,36(2):251-258
The history of somatic cell genetics from the late 1950s to the present day is considered. Studies in this field provided for the elucidation of numerous basic and applied problems, including spontaneous mutagenesis, gene mapping with somatic cell hybrids, and genetic mechanisms of carcinogenesis (e.g., cell protooncogenes, oncogenes, and tumor suppressor genes were revealed). The knocking-out technique allowed the effects of various genes to be analyzed.  相似文献   

15.
The history of somatic cell genetics from the late 1950s to the present day is considered. Studies in this field provided for the elucidation of numerous fundamental and applied problems, including spontaneous mutagenesis, gene mapping with somatic cell hybrids, and genetic mechanisms of carcinogenesis (e.g., cell protooncogenes, oncogenes, and tumor suppressor genes were revealed). The knocking-out technique allowed the effects of various genes to be analyzed.  相似文献   

16.
Tissue culture lines of mouse myeloma cells have been used to study the somatic cell genetics of immunoglobulin production. Assays have been developed to identify and quantify mutants that have undergone changes in either the synthesis or structure of the immunoglobulin molecule. All of the classical types of mutants have been identified. What is unusual is that these mutants arise at a very high frequency. This genetic instability seems to be restricted to immunoglobulin genes. The fusion of mutant and wild-type cells allows the study of interaction of genes and gene products.  相似文献   

17.
Turning germ cells into stem cells   总被引:5,自引:0,他引:5  
Primordial germ cells (PGCs), the embryonic precursors of the gametes of the adult animal, can give rise to two types of pluripotent stem cells. In vivo, PGCs can give rise to embryonal carcinoma cells, the pluripotent stem cells of testicular tumors. Cultured PGCs exposed to a specific cocktail of growth factors give rise to embryonic germ cells, pluripotent stem cells that can contribute to all the lineages of chimeric embryos including the germline. The conversion of PGCs into pluripotent stem cells is a remarkably similar process to nuclear reprogramming in which a somatic nucleus is reprogrammed in the egg cytoplasm. Understanding the genetics of embryonal carcinoma cell formation and the growth factor signaling pathways controlling embryonic germ cell derivation could tell us much about the molecular controls on developmental potency in mammals.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号