首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-stage solid cultivation method was used to determine the precise requirements of carbon concentration (1–16 g/L) and C: N ratio (0.625: 1 to 80: 1) for the sporulation of six biocontrol fungi. The C concentration and C: N ratio producing the highest conidia yield were 1 g/L and 5: 1 for Paecilomyces lilacinus IPC-P; 2 g/L and 10: 1 for P. lilacinus M-14; 16 g/L and 80: 1 for Metarhizium anisopliae SQZ-1-21; 4 g/L and 5: 1 for M. anisopliae RS-4-1 and Lecanicillium lecanii CA-1-G; and 2 g/L and 10: 1 for Trichoderma viride TV-1. Sporulation was more affected by C: N ratio than by C and N concentration per se. More spores per colony were produced by the two-stage method than by a conventional, single-stage cultivation method. These results should be useful for improving the mass production of these biocontrol agents.  相似文献   

2.
Microsclerotia (MS), overwintering structures produced by many plant pathogenic fungi, have not been described for Metarhizium anisopliae. Three strains of M. anisopliae – F52, TM109, and MA1200 – formed MS in shake flask cultures using media with varying carbon concentrations and carbon-to-nitrogen (C:N) ratios. Under the conditions of this study, all strains produced MS, compact hyphal aggregates that become pigmented with culture age, in addition to more typical blastospores and mycelia. While all strains formed desiccation tolerant MS, highest concentrations (2.7–2.9 × 108 L−1 liquid medium) were produced in rich media with C:N ratios of 30:1 and 50:1 by strain F52. All three strains of M. anisopliae produced similar biomass concentrations when media and growth time were compared. Strain MA1200 produced higher concentrations of blastospores than the other two strains of M. anisopliae with highest blastospore concentrations (1.6 and 4.2 × 108 blastospores ml−1 on days 4 and 8, respectively) in media with the highest carbon and nitrogen concentrations. Microsclerotial preparations of M. anisopliae containing diatomaceous earth survived air-drying (to <5 % moisture) with no significant loss in viability. Rehydration and incubation of air-dried MS granules on water agar plates resulted in hyphal germination and sporogenic germination to produce high concentrations of conidia. Bioassays using soil-incorporated, air-dried MS preparations resulted in significant infection and mortality in larvae of the sugar beet root maggot, Tetanops myopaeformis. This is the first report of the production of sclerotial bodies by M. anisopliae and provides a novel approach for the control of soil-dwelling insects with this entomopathogenic fungus.  相似文献   

3.
Medium-chain-length polyhydroxyalkanoates (MCL-PHAs) were produced in carbon-limited, single-stage, fed-batch fermentations of Pseudomonas putida KT2440 by co-feeding nonanoic acid (NA) and glucose (G) to enhance the yield of PHA from NA. An exponential (μ = 0.25 h−1) followed by a linear feeding strategy at a NA:G ratio of 1:1 (w/w) achieved 71 g l−1 biomass containing 56% PHA. Although the same overall PHA productivity (1.44 g l−1 h−1) was obtained when NA alone was fed at the same specific growth rate, the overall yield of PHA from NA increased by 25% (0.66 g PHA g NA−1 versus 0.53 g g−1) with glucose co-feeding. Further increasing glucose in the feed (NA:G = 1:1.5) resulted in a slightly higher yield (0.69 g PHA g NA−1) but lower PHA content (48%) and productivity (1.16 g l−1 h−1). There was very little change in the PHA composition.  相似文献   

4.
The nematophagous fungus Pochonia chlamydosporia (Clavicipitaceae) and entomopathogenic fungus Beauveria bassiana (Cordycipitaceae) have great potential for biological control. However, a significant barrier to their commercial development as mycopesticides is the high costs associated with production. Carbon (C) concentration and C to nitrogen ratio (C:N ratio) greatly affect fungal growth and sporulation. Effects of C concentration and C:N ratio differed when the fungi were cultivated using two different methods: the conventional (continuous cultivation) method and a novel “two-stage” method. Sporulation of P. chlamydosporia (HSY-12-14) was the highest when the media contained 6 g l−1 C and a C:N ratio of 40:1 or 8 g l−1 C and C:N ratios of 20:1 or 40:1 for the conventional method but 8 g l−1 C and a C:N ratio of only 10:1 with the novel “two-stage” method. Sporulation of B. bassiana (IBC1201) was the highest when the media contained 12 g l−1 C and a C:N ratio of 40:1 with the conventional method but only 4 g l−1 C and a C:N ratio of 5:1 with the novel “two-stage” method. In addition, the nutritional requirements as determined by the conventional method differed for mycelial growth and sporulation. Understanding the effects of nutrition on sporulation can help programs seeking to use these organisms as biological control agents and is essential for their mass production and commercialization.  相似文献   

5.
The dimorphic fungus Mucor indicus was grown in different forms classified as purely filamentous, mostly filamentous, mostly yeast-like and purely yeast-like, and the relationship between morphology and metabolite production, inhibitor tolerance and the cell wall composition was investigated. Low concentrations of spores in the inoculum with subsequent aeration promoted filamentous growth, whereas higher spore concentrations and anaerobic conditions promoted yeast-like growth. Ethanol was the main metabolite with glycerol next under all conditions tested. The yields of ethanol from glucose were between 0.39 and 0.42 g g−1 with productivities of 3.2–5.0 g l−1 h−1. The ethanol productivity of mostly filamentous cells was increased from 3.9 to 5.0 g l−1 h−1 by the presence of oxygen, whereas aeration of purely yeast-like cells showed no such effect. All growth forms were able to tolerate 4.6 g l−1 furfural and 10 g l−1 acetic acid and assimilate the sugars, although with different consumption rates. The cell wall content of the fungus measured as alkali insoluble materials (AIM) of the purely yeast-like cells was 26% of the biomass, compared to 8% of the pure filaments. However, the chitosan concentration of the filaments was 29% of the AIM, compared to 6% of the yeast-like cells.  相似文献   

6.
Can soil Chytridiomycota survive and grow in different osmotic potentials?   总被引:1,自引:1,他引:0  
Twenty isolates from soil in the orders Spizellomycetales, Blastocladiales and Chytridiales (Chytridiomycota) grew on complex solid media supplemented with 10 g l−1 sodium chloride. In a synthetic liquid medium, 4.4 g l−1 sodium chloride strongly inhibited growth in three of the five isolates, possibly because of the effect of the ions or osmolarity of the solution. The maximum concentration for growth in synthetic liquid medium with different osmotic potentials using polyethylene glycol (PEG) varied considerably amongst the isolates. Three patterns of growth with increasing concentrations of PEG were evident among isolates within the genus Rhizophydium. Up to the concentration where growth ceased, the dry weight of each isolate either decreased, remained constant, or in one case, increased. Most of the fungi survived when incubated at room temperature for 7 d in complex liquid media supplemented with 35 g l−1 sodium chloride or 300 g l−1 PEG. These data indicate that soil Chytridiomycota can survive various osmotic potentials that may occur during the wetting and drying phases in soils.  相似文献   

7.
Spore yields were measured for various fungal entomopathogens grown in six nutritionally different liquid media with low and high carbon concentrations (8 and 36 g l–1, respectively) at carbon-to-nitrogen (C:N) ratios of 10:1, 30:1 and 50:1. Six fungi were tested: two Beauveria bassiana strains, three Paecilomyces fumosoroseus strains and one Metarhizium anisopliae strain. Spore yields were examined after 2, 4 or 7 days growth. In general, highest spore yields were obtained in media containing 36 g/l and a C:N ratio of 10:1. After 4 days growth, highest spore yields were measured in the three Paecilomyces isolates (6.9–9.7 × 108 spores ml–1). Spore production by the B. bassiana isolates was variable with one isolate producing high spore yields (12.2 × 108 spores ml–1) after 7 days growth. The M. anisopliae isolate produced low spore concentrations under all conditions tested. Using a commercial production protocol, a comparison of spore yields for the coffee berry borer P. fumosoroseus and a commercial B. bassiana isolate showed that highest spore concentrations (7.2 × 108 spores ml–1) were obtained with the P. fumosoroseus isolate 2-days post-inoculation. The ability of the P. fumosoroseus strain isolated from the coffee berry borer to rapidly produce high concentrations of spores prompted further testing to determine the desiccation tolerance of these spores. Desiccation studies showed that ca. 80% of the liquid culture produced P. fumosoroseus spores survived the air-drying process. The virulence of freshly produced, air-dried and freeze-dried coffee berry borer P. fumosoroseus blastospores preparations were tested against silverleaf whiteflies (Bemisia argentifolii). While all preparations infected and killed B. argentifolii, fresh and air-dried preparations were significantly more effective. These results suggest that screening potential fungal biopesticides for amenability to liquid culture spore production can aid in the identification of commercially viable isolates. In this study, P. fumosoroseus was shown to possess the production and stabilization attributes required for commercial development.  相似文献   

8.
The present study tested the ability of Bacillus amyloliquefaciens and Microbacterium oleovorans to reduce Fusarium verticillioides populations and fumonisin accumulation in the maize agroecosystem. The impact of releasing these biocontrol agents on rhizospheric bacterial and fungal groups was also evaluated through isolation and identification of culturable microorganisms. When applied as seed coatings at a concentration of 107 CFU ml−1 both agents were effective in reducing F. verticillioides counts and fumonisin B1 and B2 content from maize grains. Rhizospheric counts of the pathogen were also decreased by use of B. amyloliquefaciens at 107 CFU ml−1. Richness and diversity indexes calculated for bacteria and fungi inhabiting the rhizosphere of maize remained unchanged following the addition of both biocontrol agents to seeds. Our research is being continued to further characterize the bacterial and fungal isolates with additional field assays.  相似文献   

9.
Susceptibility of the white grub Cyclocephala signaticollis Burmeister (Coleoptera: Scarabaeidae: Dynastinae) larvae to seven isolates of Beauveria bassiana (Balsamo) Vuillemin, five of Metarhizium anisopliae (Metschnikoff) Sorokin and two of Paecilomyces lilacinus (Thom) Samson (Deuteromycotina: Hyphomycetes) was investigated. Among 14 fungal isolates screened the most virulent was a B. bassiana isolate (Bb 53) that caused 70% mortality of third instar larvae in 40 days after inoculation at 1 × 108 conida/ml. Strains of M. anisopliae and P. lilacinus showed low efficacy or no virulence to the target host.  相似文献   

10.
The phytoplankton communities and the production of cyanobacterial toxins were investigated in two alkaline Kenyan crater lakes, Lake Sonachi and Lake Simbi. Lake Sonachi was mainly dominated by the cyanobacterium Arthrospira fusiformis, Lake Simbi by A. fusiformis and Anabaenopsis abijatae. The phytoplankton biomasses measured were high, reaching up to 3159 mg l−1 in L. Sonachi and up to 348 mg l−1 in L. Simbi. Using HPLC techniques, one structural variant of the hepatotoxin microcystin (microcystin-RR) was found in L. Sonachi and four variants (microcystin-LR, -RR, -LA and -YR) were identified in L. Simbi. The neurotoxin anatoxin-a was found in both lakes. To our knowledge this is the first evidence of cyanobacterial toxins in L. Sonachi and L. Simbi. Total microcystin concentrations varied from 1.6 to 12.0 μg microcystin-LR equivalents g−1 DW in L. Sonachi and from 19.7 to 39.0 μg microcystin-LR equivalents g−1 DW in L. Simbi. Anatoxin-a concentrations ranged from 0.5 to 2.0 μg g−1 DW in L. Sonachi and from 0 to 1.4 μg g−1 DW in L. Simbi. In a monocyanobacterial strain of A. fusiformis, isolated from L. Sonachi, microcystin-YR and anatoxin-a were produced. The concentrations found were 2.2 μg microcystin g−1 DW and 0.3 μg anatoxin-a g−1 DW. This is the first study showing A. fusiformis as producer of microcystins and anatoxin-a. Since A. fusiformis occurs in mass developments in both lakes, a health risk for wildlife can be expected.  相似文献   

11.
Field and laboratory experiments were designed to determine the differential growth and toxin response to inorganic and organic nitrogen additions in Pseudo-nitzschia spp. Nitrogen enrichments of 50 μM nitrate (KNO3), 10 μM ammonium (NH4Cl), 20 μM urea and a control (no addition) were carried out in separate carboys with seawater collected from the mouth of the San Francisco Bay (Bolinas Bay), an area characterized by high concentrations of macronutrients and iron. All treatments showed significant increases in biomass, with chlorophyll a peaking on days 4–5 for all treatments except urea, which maintained exponential growth through the termination of the experiment. Pseudo-nitzschia australis Frenguelli abundance was 103 cells l−1 at the start of the experiment and increased by an order of magnitude by day 2. Particulate domoic acid (pDA) was initially low but detectable (0.15 μg l−1), and increased throughout exponential and stationary phases across all treatments. At the termination of the experiment, the urea treatment produced more than double the amount of pDA (9.39 μg l−1) than that produced by the nitrate treatment (4.26 μg l−1) and triple that of the control and ammonium treatments (1.36 μg l−1 and 2.64 μg l−1, respectively). The mean specific growth rates, calculated from increases in chlorophyll a and from cellular abundance of P. australis, were statistically similar across all treatments.These field results confirmed laboratory experiments conducted with a P. australis strain isolated from Monterey Bay, CA (isolate AU221-a) grown in artificial seawater enriched with 50 μM nitrate, 50 μM ammonium or 25 μM of urea as the sole nitrogen source. The exponential growth rate of P. australis was significantly slower for cells grown on urea (ca. 0.5 day−1) compared to the cells grown on either nitrate or ammonium (ca. 0.9 day−1). However the urea-grown cells produced more particulate and dissolved domoic acid (DA) than the ammonium- or nitrate-grown cells. The field and laboratory experiments demonstrate that P. australis is able to grow effectively on urea as the primary source of nitrogen and produced more pDA when grown on urea in both natural assemblages and unialgal cultures. These results suggest that the influence of urea from coastal runoff may prove to be more important in the development or maintenance of toxic blooms than previously thought, and that the source of nitrogen may be a determining factor in the relative toxicity of west coast blooms of P. australis.  相似文献   

12.
Species identification of the common filamentous green alga Spirogyra is mainly based on the conjugation process and zygospores. However, this genus is mostly found in its vegetative stage, which complicates studies on the ecological demands for individual species. We therefore used a different approach by assessing the relationship between vegetative Spirogyra filament type groups (morphotypes) and environmental conditions (mainly ions, nutrients, light supply and water temperature). Sampling was done at 133 sites in Central Europe and in total 333 different filament types were classified. Spirogyra was found at pH values between 6.2 and 9.1, while total alkalinity ranged from 0.6 to 7.9 mequiv l−1. The genus is colonizing habitats with a specific conductivity between 75 and 1500 μS cm−1. Total phosphorus amounts varied between 1 and 2240 μg l−1 with a median value of 34 μg l−1, indicating meso- to eutrophic conditions as optimal growth range. Filament type grouping by means of cluster analysis was based on cell cross walls (plane or replicate), average cell widths and average chloroplast numbers and resulted in 10 groups with plane cross walls and three with replicate cross walls. Canonical correspondence analysis revealed nutrients to be the key factor for morphotype occurrence: filaments with increased cell widths preferred elevated nutrient conditions. Other environmental variables (ions, buffer capacity, light supply and water temperature) had no significant effects on morphotype occurrence.  相似文献   

13.
Forty species of fungi, representing a range of ecological and taxonomic groups, were tested for their ability to grow on agar media amended with lithium chloride (LiCl) at 1.5, 3 and 6 g l−1. Species of Trichoderma varied considerably in their sensitivity to LiCl; at one week on 6 g l−1 LiCl medium, the growth of seven species of Trichoderma was considerably inhibited; however, by three weeks at this level, four of the species tested were able to attain ≥30 % of control growth. Of the seven species tested, an isolate of T. viride was the most sensitive to LiCl in agar. Eleven other imperfect fungi also showed a range of ability to grow on agar amended with LiCl, from total inhibition to complete lack of inhibition. Six ascomycete fungi were greatly inhibited by LiCl at all levels; however, an isolate of Chaetomium globosum was highly tolerant of LiCl. Seven basidiomycete wood-decay fungi were quite sensitive to LiCl in agar, showing total to nearly total inhibition even at the lowest level; however, after three weeks, an isolate of Postia placenta was nearly uninhibited except at 6 g l−1. Five ectomycorrhizal basidiomycete fungi were totally inhibited by all levels of LiCl; however, one ectomycorrhizal imperfect fungus (Cenococcum graniforme) was able to grow at 3 g l−1 and was uninhibited at 1.5 g l−1. Four zygomycete fungus isolates were nearly unaffected in their growth by all levels of LiCl.  相似文献   

14.
Historically, the Florida Everglades was characterized by a corrugated landscape of shorter hydroperiod, elevated sawgrass (Cladium jamaicense) ridges and longer hydroperiod, deep water slough communities. Drainage and compartmentalization of the Everglades have fundamentally altered this pattern, and sawgrass ridge communities have expanded at the expense of deep water slough communities throughout much of the landscape. In this study we provide a simple isotopic and nutrient characterization of major components of the slough ecosystem to elucidate physiological and nutrient differences among species and to suggest pathways for organic matter decomposition that contribute to peat development in deep water sloughs. We examined carbon (C) and nitrogen (N) isotopes and C, N and phosphorus (P) concentrations of the floating-leaved macrophytes Nymphaea odorata and Nymphoides aquatica, the emergent macrophyte Eleocharis elongata, and the submerged species Utricularia foliosa and Utricularia purpurea, as well as soil and flocculent material from the southern Water Conservation Area 3-A. Flocculent material and soils had the highest N content (4.5 ± 0.2%) and U. foliosa and N. odorata had the highest P content (0.13 ± 0.01% to 0.12 ± 0.01%). The range for δ15N average ± SE values was 5.81 ± 0.29‰ (U. foliosa) to −1.84 ± 0.63‰ (N. odorata), while the range for δ13C values was −23.83 ± 0.12‰ (N. odorata) to −29.28 ± 0.34‰ (U. purpurea). Differences of up to 10‰ in C isotopic values of U. foliosa and N. odorata suggest fundamental physiological differences between these species. Along a degradation continuum, enrichment of 13C and 15N and extent of decomposition was negatively related to phosphorus concentrations. A two end-member 13C mixing model suggested that Utricularia species were the primary organic source for flocculent materials, whereas organic matter derived from root decomposition of N. odorata contributed to the progressively enriched δ13C values found with depth in soils. These results illustrate the fundamentally important roles of Nymphaea and Utricularia species in ecosystem dynamics of deep water sloughs.  相似文献   

15.
The aim of this study in the field was to investigate whether there are differences between the outer archipelago (Gullmar Fjord) and a semi-enclosed fjord system (Koljö Fjord) in occurrences of D. acuta and D. acuminata as well as in their content of diarrheic shellfish toxin (DST) per cell. When all data pairs of cell toxicity of D. acuminata and the corresponding number of cells l−1 from the two sites were tested in a regression analysis, a statistically significant negative correlation became evident and was apparent as a straight line on a log–log plot (p < 0.0001). Obviously, there was an overall inverse relationship between the population density of D. acuminata and the toxin content per cell. Plotted on a linear scale, all data-pairs of cell toxicity and cell number made up a parabolic curve. On this curve the data-pairs could be separated into three groups: (i) D. acuminata occurring in numbers of fewer than approximately 100 cells l−1, and with a toxin content per cell above 5 ρg cell−1; (ii) cell numbers between 100 and approximately 250 cells l−1 with a cell toxin content from 5 to 2 ρg cell−1; (iii) when the population became greater than 250 cells l−1, the toxicity, with few exceptions, was less than 2 ρg cell−1. By applying this subdivision, some clear patterns of the distribution of the differently toxic D. acuminata became evident. When comparing the cell toxicity of the two sites, it was obvious that the D. acuminata cells from all depths from the Gullmar Fjord as a mean were significantly more toxic compared to the Koljö Fjord samples. The results have demonstrated that approximately 100 high-toxicity cells in a low-density population at surface may lead to the same accumulation of DST in a mussel as the ingestion of 1500 low-toxicity cells from a high-density pycnocline population.  相似文献   

16.
Observations of near-bottom populations of Karenia brevis suggest that these cells may derive nutrients from the sediment–water interface. Cells undergoing a metabolic-mediated migration may be in close proximity to enhanced concentrations of nutrients associated with the sediment during at least a fraction of their diel cycle. In this study, the growth, uptake and assimilation rates of ammonium, nitrate, and urea by K. brevis were examined on a diel basis to better understand the potential role of these nutrients in the near-bottom ecology of this species. Three strains of K. brevis, C6, C3, and CCMP 2229, were grown under 12:12 light dark cycle under 30 μmol photons m−2 s−1 delivered to the surface plain of batch cultures. Nitrogen uptake was evaluated using 15N tracer techniques and trichloroacetic acid extraction was used to evaluate the quantity of nitrogen (N) assimilated into cell protein. Growth rates ranged from a low of 0.12 divisions day−1 for C6 and C3 grown on nitrate to a high of 0.18 divisions day−1 for C3 grown on urea. Diurnal maximum uptake rates, ρmax, varied from 0.41 pmol-N cell−1 h−1 for CCMP 2229 grown on nitrate, to 1.29 pmol-N cell−1 h−1 for CCMP 2229 grown on urea. Average nocturnal uptake rates were 29% of diurnal rates for nitrate, 103% of diurnal uptake rates for ammonium and 56% of diurnal uptake rates for urea. Uptake kinetic parameters varied between substrates, between strains and between day and night measurements. Highest maximum uptake rates were found for urea for strains CCMP2229 and C3 and for ammonium for strain C6. Rates of asmilation into protein also varied day and night, but overall were highest for urea. The comparison of maximal uptake rates as well as assimilation efficiencies indicate that ammonium and urea are utilized (taken up and assimilated) more than twice was fast as nitrate on a diel basis.  相似文献   

17.
Removal of phosphorus (P) by Ceratophyllum demersum L. and associated epiphytic periphyton was quantified by measuring the disappearance of soluble reactive P (SRP) from microcosms during 1-h in situ incubations conducted over a 1-year period. Initial P concentrations in these incubations ranged from 30 to >10,000 μg P L−1. Phosphorus removal was proportional to initial P concentrations and was weakly correlated with solar irradiance and water temperature. Removal rates (0.6–32.8 mg P m−2 d−1) and kv coefficients (0.68–1.93 h−1) from experiments run at low initial P concentrations (up to 200 μg P L−1) were comparable to results reported for other macrophytes. Removal rates from experiments run at the highest (>10,000 μg P L−1) initial P concentrations (5300 and 11,100 mg P m−2 d−1) most likely represented luxury nutrient consumption and were not thought to be sustainable long term. We were unable to determine a Vmax for P removal, suggesting that the nutrient-storage capability of the C. demersum/periphyton complex was not saturated during our short-term incubations. Based on N:P molar ratios, the marsh was P limited, while the C. demersum/periphyton complex was either N limited or in balance for N and P throughout this study. However, despite its tissue stoichiometry, the C. demersum/periphyton complex always exhibited an affinity for P. It appeared that the biochemical mechanisms, which mediate P removal, at least on a short-term basis, were more influenced by increases in ambient P levels than by tissue nutrient stoichiometry.  相似文献   

18.
Biomass, primary production and nutrient budgets associated to Sarcocornia perennis subspecies (ssp.) alpini were studied in the Palmones River estuary salt marsh (Southern Spain) to evaluate the nutrient sequestration capacity of the low marsh. Above- and belowground living and dead biomass, as well as carbon, nitrogen and phosphorus content were monitored during 1 year. Additionally, the fate of aboveground detritus was evaluated in an experiment on litter decomposition. The detritus production of S. perennis ssp. alpini was almost equivalent to its annual primary production indicating a rapid turnover of biomass. We calculated that only 12% of the aboveground detritus was exported out of the low marsh while the rest was decomposed in the sediment with a rate of 0.8 year−1. Changes in concentrations of total carbon, nitrogen and phosphorus in the sediment showed patterns related to S. perennis ssp. alpini belowground biomass. Our results suggested that the sediment functions as a net sink for nutrients accumulating 550 g C m−2 year−1, 55 g N m−2 year−1, and 13 g P m−2 year−1.  相似文献   

19.
The trophic ecology of marine vertebrates has been increasingly studied via stable isotope analysis of body tissues. However, the theoretical basis for using stable isotopes to elucidate consumer–prey relationships remains poorly validated for most taxa despite numerous studies using this technique in natural systems. In this study, we measured stable carbon and stable nitrogen diet-tissue discrimination (Δdt) in whole blood, red blood cells, blood plasma solutes, and skin of leatherback sea turtles (Dermochelys coriacea; N = 7) maintained in captivity for up to 424 days and fed an isotopically consistent control diet with a mean C:N ratio of 2.94:1.00 and an energetic content of 20.16 ± 0.39 kJ g− 1 Dry Mass. We used a random-effect repeated measure model to evaluate isotopic consistency among tissue samples collected on days 276, 348, and 424. Both δ13C and δ15N remained consistent among sampling events in all tissues (all 95% posterior intervals for the slopes of a linear model included zero), indicating that all tissues had fully integrated diet-derived stable isotope compositions. Mean tissue-specific δ13C ranged from − 18.30 ± 0.16‰ (plasma solutes) to − 15.54 ± 0.14‰ (skin), whereas mean δ15N was from 10.06 ± 0.22‰ (whole blood) to 11.46 ± 0.10‰ (plasma solutes). The computed Δdt factors for carbon ranged from − 0.58‰ (plasma solutes) to + 2.25‰ (skin), whereas Δdt for nitrogen was from + 1.49 (red blood cells) to + 2.85 (plasma solutes). As the only discrimination factors available for leatherback turtles, our data will be useful for future interpretations of field-derived stable isotope data for this species. The inherent variability in Δdt values among individuals was low, which supports the value of these data for dietary reconstructions. However, it is important to note that tissue-specific discrimination factors for leatherbacks contrast with the widely accepted values for endothermic species (0–1‰ for C, 3–5‰ for N), and are also different from values established for hard-shelled turtles. This underscores the need for species- and tissue-specific discrimination factors before interpreting trophic studies of wild animals, including marine turtles.  相似文献   

20.
Decomposition rates of Phragmites australis, Carex riparia, Nuphar luteum and Salvinia natans and benthic processes were measured from December 2003 to December 2004 in a shallow wetland (Paludi di Ostiglia, Northern Italy) by means of litter bags and intact cores incubations. Decay rate was highest for N. luteum (k = 0.0152 d−1), intermediate for S. natans (k = 0.0041 d−1) and similar for P. australis (k = 0.0027 d−1) and C. riparia (k = 0.0028 d−1).Benthic metabolism followed a seasonal pattern with summer peaks of O2 demand and TCO2, CH4 and NH4+ efflux whilst soluble reactive phosphorus (SRP) fluxes were negligible also under hypoxic conditions, indicating that P was mainly retained by sediment. The initial C:P ratio was similar in N. luteum and S. natans (170) and significantly lower than that of P. australis and C. riparia (360). During the detritus decay P was progressively lost by N. luteum and S. natans tissues, whereas, after an initial leaching, it was probably re-used during the microbial decomposition of the more refractory P. australis and C. riparia detritus. Nuphar luteum, P. australis and S. natans had comparable initial C:N mass ratio (15), significantly lower than that of C. riparia (26). The C:N ratio was rather constant for N. luteum (12.9 ± 1.5) and S. natans (14.6 ± 0.9), decreased slightly to below 20 for C. riparia and increased up to 30 for P. australis. Overall, differences among species were likely due to the recalcitrance of decomposing detritus, whilst process rates were controlled by limitation of microbial processes by nutrients and electron acceptor availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号