首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fresh water microalga Neochloris oleoabundans was investigated for its ability to accumulate lipids and especially triacylglycerols (TAG). A systematic study was conducted, from the determination of the growth medium to its characterization in an airlift photobioreactor. Without nutrient limitation, a maximal biomass areal productivity of 16.5 g m−2 day−1 was found. Effects of nitrogen starvation to induce lipids accumulation was next investigated. Due to initial N. oleoabundans total lipids high content (23% of dry weight), highest productivity was obtained without mineral limitation with a maximal total lipids productivity of 3.8 g m−2 day−1. Regarding TAG, an almost similar productivity was found whatever the protocol was: continuous production without mineral limitation (0.5 g m−2 day−1) or batch production with either sudden or progressive nitrogen deprivation (0.7 g m−2 day−1). The decrease in growth rate reduces the benefit of the important lipids and TAG accumulation as obtained in nitrogen starvation (37% and 18% of dry weight, respectively).  相似文献   

2.
Removal of phosphorus (P) by Ceratophyllum demersum L. and associated epiphytic periphyton was quantified by measuring the disappearance of soluble reactive P (SRP) from microcosms during 1-h in situ incubations conducted over a 1-year period. Initial P concentrations in these incubations ranged from 30 to >10,000 μg P L−1. Phosphorus removal was proportional to initial P concentrations and was weakly correlated with solar irradiance and water temperature. Removal rates (0.6–32.8 mg P m−2 d−1) and kv coefficients (0.68–1.93 h−1) from experiments run at low initial P concentrations (up to 200 μg P L−1) were comparable to results reported for other macrophytes. Removal rates from experiments run at the highest (>10,000 μg P L−1) initial P concentrations (5300 and 11,100 mg P m−2 d−1) most likely represented luxury nutrient consumption and were not thought to be sustainable long term. We were unable to determine a Vmax for P removal, suggesting that the nutrient-storage capability of the C. demersum/periphyton complex was not saturated during our short-term incubations. Based on N:P molar ratios, the marsh was P limited, while the C. demersum/periphyton complex was either N limited or in balance for N and P throughout this study. However, despite its tissue stoichiometry, the C. demersum/periphyton complex always exhibited an affinity for P. It appeared that the biochemical mechanisms, which mediate P removal, at least on a short-term basis, were more influenced by increases in ambient P levels than by tissue nutrient stoichiometry.  相似文献   

3.
The interactive effects of three levels of N (mM) (low 0.36, medium 2.1 and high 6.4) and two levels of P (mM) (low 0.10 and high 0.48) on growth and resource allocation of Canna indica Linn. were studied in wetland microcosms. After 91 days of plant growth, there was a significant interactive effect of N and P on plant growth, but not on resource allocation (except for allocation of N to leaves and allocation of P to the stems). The plant growth positively responded to the relatively higher nutrient availability (taller plants with more stems, leaves and flowers), but the growth performance was not significantly different between the medium N-low P and high N-low P treatments. At high P, the total biomass in the high N was about 51% higher than that in the medium N and about 348% higher than that in the low N. The growth performance was related to the physiological responses. The photochemical efficiency (Fv/Fm) increased from 0.843 to 0.855 with an increase in N additions. The photosynthetic rate increased from 13 to 16 μmol m−2 s−1 in the low P levels and from 14 to 20 μmol m−2 s−1 in the high P levels with an increase in N applications, but significant difference was only between the low and medium N levels, regardless of the P levels. The tissue concentrations of N increased with an increase in N applications and decreased with an increase in P additions, whereas reverse was true for tissue concentrations of P. The highest concentrations of N and P in leaves were 30.8 g N kg−1 in the high N-low P treatment and 4.9 g P kg−1 in the low N-high P treatment. The percent biomass allocation to aboveground tissues in the high N was nearly twice that in the low N treatments. The N allocation to aboveground tissues was slightly larger in high N than in low N treatments, whereas the P allocation to aboveground tissues increased with an increase in the N addition. Although some patterns of biomass allocation were similar to those of nutrient allocation, they did not totally reflect the nutrient allocation. These results imply that in order to enhance the treatment performance, appropriately high nutrient availability of N and P are required to stimulate the growth of C. indica in constructed wetlands.  相似文献   

4.
In an old growth coniferous forest located in the central Cascade Mountains, Oregon, we added or removed aboveground litter and terminated live root activity by trenching to determine sources of soil respiration. Annual soil efflux from control plots ranged from 727 g C m−2 year−1 in 2002 to 841 g C m−2 year−1 in 2003. We used aboveground litter inputs (149.6 g C m−2 year−1) and differences in soil CO2 effluxes among treatment plots to calculate contributions to total soil efflux by roots and associated rhizosphere organisms and by heterotrophic decomposition of organic matter derived from aboveground and belowground litter. On average, root and rhizospheric respiration (Rr) contributed 23%, aboveground litter decomposition contributed 19%, and belowground litter decomposition contributed 58% to total soil CO2 efflux, respectively. These values fall within the range of values reported elsewhere, although our estimate of belowground litter contribution is higher than many published estimates, which we argue is a reflection of the high degree of mycorrhizal association and low nutrient status of this ecosystem. Additionally, we found that measured fluxes from plots with doubled needle litter led to an additional 186 g C m−2 year−1 beyond that expected based on the amount of additional carbon added; this represents a priming effect of 187%, or a 34% increase in the total carbon flux from the plots. This finding has strong implications for soil C storage, showing that it is inaccurate to assume that increases in net primary productivity will translate simply and directly into additional belowground storage.  相似文献   

5.
Net ecosystem exchange of CO2 (NEE) was measured during 2005 using the eddy covariance (EC) technique over a reed (Phragmites australis (Cav.) Trin. ex Steud.) wetland in Northeast China (121°54′E, 41°08′N). Diurnal NEE patterns varied markedly among months. Outside the growing season, NEE lacked a diurnal pattern and it fluctuated above zero with an average value of 0.07 mg CO2 m−2 s−1 resulting from soil microbial activity. During the growing season, NEE showed a distinct V-like diel course, and the mean daily NEE was −7.48 ± 2.74 g CO2 m−2 day−1, ranging from −13.58 g CO2 m−2 day−1 (July) to −0.10 g CO2 m−2 day−1 (October). An annual cycle was also apparent, with CO2 uptake increasing rapidly in May, peaking in July, and decreasing from August. Monthly cumulative NEE ranged from −115 ± 24 g C m−2 month−1 (the reed wetland was a CO2 sink) in July to 75 ± 16 g C m−2 month−1 (CO2 source) in November. The annual CO2 balance suggests a net uptake of −65 ± 14 g C m−2 year−1, mainly due to the gains in June and July. Cumulative CO2 emission during the non-growing season was 327 g C m−2, much greater than the absolute value of the annual CO2 balance, which proves the importance of the wintertime CO2 efflux at the study site. The ratio of ecosystem respiration (Reco) to gross primary productivity (GPP) for this reed ecosystem was 0.95, indicating that 95% of plant assimilation was consumed by the reed plant or supported the activities of heterotrophs in the soil. Daytime NEE values during the growing season were closely related to photosynthetically active radiation (PAR) (r2 > 0.63, p < 0.01). Both maximum ecosystem photosynthesis rate (Amax) and apparent quantum yield (α) were season-dependent, and reached their peak values in July (1.28 ± 0.11 mg CO2 m−2 s−1, 0.098 ± 0.027 μmol CO2 μmol−1 photon, respectively), corresponding to the observed maximum NEE in July. Ecosystem respiration (Reco) relied on temperature and soil water content, and the mean value of Q10 was about 2.4 with monthly variation ranging from 1.8 to 4.1 during 2005. Annual methane emission from this reed ecosystem was estimated to be about 3 g C m−2 year−1, and about 5% of the net carbon fixed by the reed wetland was released to the atmosphere as CH4.  相似文献   

6.
Salt marshes show a characteristic zonation of species distribution, which is correlated with marsh elevation. Radiation intensity and photoperiod change throughout the tidal frame. Photosynthetic response to light regime, 90–2450 μmol/(m2 s), was determined in the laboratory for four closely related halophytic taxa of the genus Sarcocornia (Chenopodiaceae), which inhabit different positions in the tidal frame. Sarcocornia fruticosa, which germinates below vegetation cover and is found at high levels in the tidal frame, had the lowest maximum net photosynthetic rate and stomata conductance values. The two S. perennis subspecies demonstrated intermediate maximum net photosynthetic rates but S. perennis ssp. alpini reached light saturation point at higher light intensities. S. perennis ssp. perennis, found in the lowest elevations of the marshes, spends a significant proportion of its time submerged and therefore needs to take full advantage of available light. S. perennis ssp. alpini is exposed to very high light intensities in open salt pans at high elevations. The hybrid, S. perennis x fruticosa, which is currently found at intermediate elevations with less frequent inundation, had the highest net photosynthetic rate and chlorophyll a content. The ability to cope with high light levels may help to explain one of the environmental parameters, which affects distribution of four taxa throughout the tidal frame and also raise intriguing questions about the future role of the hybrid in the successive development of these marsh systems.  相似文献   

7.
Feng Li  Yonghong Xie   《Aquatic Botany》2009,91(3):219-223
The aim of this study is to identify how submerged macrophyte Vallisneria spiralis acclimate to sedimentation by investigating the growth, biomass allocation and clonal characteristics in a greenhouse experiment of 30 days. Experimental treatments combined two sediment types (mud and sand) with four sedimentation depths (0, 2, 4 and 8 cm) in a factorial design. Biomass accumulation (0.98–1.33 versus 0.36 g per plant) and relative growth rate (RGR, 0.082–0.093 versus 0.046 g g−1 day−1) decreased only in the 8 cm sand treatment. Neither sedimentation depth nor sediment type influenced biomass allocation. The ratio of spacer length to biomass was significantly higher in the 8 cm sand (20.4 cm g−1) than in other treatments (6.0–8.5 cm g−1). Branching angles and the depths between ramet basal and sediment surface were only affected by sedimentation depth. Clonal ramets developed nearly vertical branching angles (ranged from 78° to 101°) in the 0 cm sedimentation treatment, but the angles of treated plants decreased at the initial 3–5 ramets (ranged from 68° to 78° at the first ramet level), then remained a relatively constant value (about 90°) in the following spacers. These data indicate that plagiotropic stolons were formed to project the ramets to sediment surface and to escape sedimentation stress primarily by elongating spacer length and decreasing branching angle, rather than by adjusting biomass allocation.  相似文献   

8.
The seed banks of two temporarily open/closed estuaries in South Africa were quantified in this study. Charophyte öospores represented almost 72% of the sexual propagules in the sediment with a mean öospore density of 31,306 öospores m−2. This was followed by the seeds of the intertidal salt marsh plant Sarcocornia perennis (18%) (7929 seed m−2) and the submerged angiosperm Ruppia cirrhosa (7%) (2852 seeds m−2). The remaining 3% was made up of a mixture of species such as Salicornia meyeriana, Sporobolus virginicus, Stukenia pectinata, Bolboschoenus maritimus and terrestrial species. Although seed density did not differ significantly with depth, seeds still occurred at 20 cm depth providing a regeneration source in the event of sediment disturbance. Three salinity (0, 17 and 35 PSU) and moisture treatments (exposed, waterlogged and submerged) were applied to collected sediment to determine how fast species would germinate. S. perennis germinated after 3 d to a maximum of 82%. Submerged species began to germinate only after 18 d (Chara vulgaris and R. cirrhosa) and had low germination percentages of between 11 and 15% after 91 d. Results from this study indicate that in the event of unpredictable disturbance events such as water level fluctuations, large sediment seed reserves would ensure habitat persistence.  相似文献   

9.
The role of salt marshes as nitrogen sink is examined taking into consideration the seasonal variation of above and belowground biomass of Spartina martima and Halimione portulacoides in two marshes from Tagus estuary, Pancas and Corroios, and the degradation rates of belowground litter. Total nitrogen was determined in plant components, decomposing litter and sediment. Biomass was higher in Corroios, the saltier marsh, with 7190 g m−2 y−1 dw of S. maritima and 6593 g m−2 y−1 dw of H. portulacoides and the belowground component contributed to 96% and 90% of total biomass, respectively. In the other marsh, Pancas, belowground biomass contributed to 56% and 76% of total biomass for S. maritima and H. portulacoides, respectively. Litterbag experiment showed that between 25% and 50% of nitrogen is lost within the first month and remained relatively constant in the next four months. Slower decomposition is observed in sediments with higher nitrogen concentration (max. 0.7% N in the saltier marsh). Higher concentrations of N were found in the sediment upper layers. Considering the sediment-root system, most of the nitrogen is stored in the sediment compartment and only about 1–4% of the total N was found in the roots. Considering these results, Tagus salt marshes act as a sink for nitrogen.  相似文献   

10.
We examined aboveground biomass dynamics, aboveground net primary production (ANPP), and woody detritus input in an old Sequoia sempervirens stand over a three-decade period. Our estimates of aboveground biomass ranged from 3300 to 5800 Mg ha−1. Stem biomass estimates ranged from 3000 to 5200 Mg ha−1. Stem biomass declined 7% over the study interval. Biomass dynamics were patchy, with marked declines in recent tree-fall patches <0.05 ha in size. Larger tree-fall patches approaching 0.2 ha in size were observed outside the study plot. Our estimates of ANPP ranged from 6 to 14 Mg ha−1yr−1. Estimates of 7 to 10 Mg ha−1yr−1 were considered to be relatively accurate. Thus, our estimates based on long-term data corroborated the findings of earlier short-term studies. ANPP of old, pure stands of Sequoia was not above average for temperate forests. Even though production was potentially high on a per stem basis, it was moderate at the stand level. We obtained values of 797 m3 ha−1 and 262 Mg ha−1 for coarse woody detritus volume and mass, respectively. Fine woody detritus volume and mass were estimated at 16 m3 ha−1 and 5 Mg ha−1, respectively. Standing dead trees (or snags) comprised 7% of the total coarse detritus volume and 8% of the total mass. Coarse detritus input averaged 5.7 to 6.9 Mg ha−1yr−1. Assuming steady-state input and pool of coarse detritus, we obtained a decay rate constant of 0.022 to 0.026. The old-growth stand of Sequoia studied had extremely high biomass, but ANPP was moderate and the amount of woody detritus was not exceptionally large. Biomass accretion and loss were not rapid in this stand partly because of the slow population dynamics and low canopy turnover rate of Sequoia at the old-growth stage. Nomenclature: Hickman (1993).  相似文献   

11.
Predictions of how salt marsh primary production and carbon storage will respond to environmental change can be improved through detailed datasets documenting responses to real‐world environmental variation. To address a shortage of detailed studies of natural variation, we examined drivers of Spartina alterniflora stem allometry and productivity in seven marshes across three regions in southern Louisiana. Live‐stem allometry varied spatially and seasonally, generally with short stems weighing more (and tall stems weighing less) in the summer and fall, differences that persist even after correcting for flowering. Strong predictive relationships exist between allometry parameters representing emergent stem mass and mass accumulation rates, suggesting that S. alterniflora populations navigate a trade‐off between larger mass at emergence and faster rates of biomass accumulation. Aboveground production and belowground production were calculated using five and four approaches, respectively. End‐of‐season aboveground biomass was a poor proxy for increment‐based production measures. Aboveground production (Smalley) ranged from 390 to 3,350 g m?2 year?1 across all marshes and years. Belowground production (max–min) was on average three times higher than aboveground; total production ranged from 1,400 to 8,500 g m?2 year?1. Above‐ and belowground production were both positively correlated with dissolved nutrient concentrations and negatively correlated to salinity. Synthesis: Interannual variation in water quality is sufficient to drive above‐ and belowground productivity. The positive relationship between nutrients and belowground production indicates that inputs of nutrients and freshwater may increase salt marsh carbon storage and ecosystem resilience to sea level rise.  相似文献   

12.
Red tide blooms of Cochlodinium polykrikoides in a coastal cove   总被引:1,自引:0,他引:1  
Successive blooms of the dinoflagellate Cochlodinium polykrikoides occurred in Pettaquamscutt Cove, RI, persisting from September through December 1980 and again from April through October 1981. Cell densities varied from <100 cells L−1 at the onset of the bloom and reached a maximum density exceeding 3.4 × 106 cells L−1 during the summer of 1981. The bloom was mainly restricted to the mid to inner region of this shallow cove with greatest concentrations localized in surface waters of the southwestern region during summer/fall periods of both years. Highly motile cells consisting of single, double and multiple cell zooids were found as chains of 4 and 8 cells restricted to the late August/September periods. The highest cell densities occurred during periods when annual temperatures were between 19 and 28 °C and salinities between 25 and 30. A major nutrient source for the cove was Crying Brook, located at the innermost region at the head of the cove. Inorganic nitrogen (NH3 and NO2 + NO3) from the brook was continually detectable throughout the study with maximum values of 57.5 and 82.5 μmol L−1, respectively. Phosphate (PO4-P) was always present in the source waters and rarely <0.5 μmol L−1; silicate always exceeded 30 μmol L−1 with maximum concentrations reaching 226 μmol L−1. Chlorophyll a and ATP concentrations during the blooms varied directly with cell densities. Maximum Chl a levels were 218 mg m−3 and ATP-carbon was >20 g C m−3. Primary production by the dinoflagellate-dominated community during the bloom varied between 4.3 and 0.07 g C m−3 d−1. Percent carbon turnover calculated from primary production values and ATP-carbon varied from 6 to 129% d−1. The dinoflagellates dominated the entire summer period; other flagellates and diatoms were present in lesser amounts. A combination of low washout rate due to the cove dynamics, active growth, and life cycles involving cysts allowed C. polykrikoides to maintain recurrent bloom populations in this area.  相似文献   

13.
Different induction strategies for fed-batch recombinant protein production under the control of the strong T5 promoter in Escherichia coli have been investigated. Since the production of recombinant rhamnulose 1-phosphate aldolase is growth-related, the productivity of the process can be strongly reduced due to the negative effect of protein expression on cell growth. IPTG pulse induction as well as inducer dosage have been applied and their advantages and drawbacks highlighted. Both strategies led to high levels of the recombinant protein, 1000 AU g DCW−1. Inducer concentration and inducer to biomass ratio were identified as the parameters influencing the rate of protein production and final enzymatic activity per gram of biomass. In pulse induction, the maximum enzymatic activity was found at inducer concentration of 70 μM. In continuous induction experiments, inducer concentrations between 4 and 12 μM were identified as the working range in which cell growth and recombinant protein accumulation occurred simultaneously. On the other hand, the amount of IPTG per gram of biomass required was 1.6 μmol IPTG gDCW−1 in pulse induction and between 0.3 and 0.5 μmol IPTG g DCW−1 in continuous induction.  相似文献   

14.
The lipase from filamentous fungi Rhizopus chinensis, as a membrane-bound enzyme, possesses the excellent catalysis ability for esterification and transesterification reactions, and has a good potential in many industrial applications. In order to improve the synthetic activity of the lipase, the effects of oils and oil-related substrates on its production and the fermentation media optimization were investigated. Based on the results, it was suggested that oleic acid could be the important substrate for the lipase production. Among various oils and oil-related substrates, olive oil containing high content of oleic acid was the optimal one for the lipase production. Using orthogonal test and response surface methodology (RSM), the composition of fermentation media was further optimized. The optimized media for lipase synthetic activity and activity yield was composed of peptone 57.94 and 55.58 g L−1, olive oil 21.94 and 22.99 g L−1, maltose 12.91 and 14.34 g L−1, respectively, with K2HPO4 3 g L−1, MgSO4·7H2O 5 g L−1 and initial pH 6.0. Under the optimal conditions, the lipase activity and the activity yield were improved 61.5 and 93.4% comparing the results before optimization, respectively. The adequate models obtained had predicted the lipase production successfully.  相似文献   

15.
The density, biomass and shoot morphology of two populations of Zostera noltii were monitored from January 1998 to July 1999 at two shallow Mediterranean lagoons of Biguglia and Urbino, which differ in hydro-morphological conditions and nutrient loading. Monitoring included the principal biological and foliar parameters (shoot density, aboveground and belowground biomass, length, width and number of leaves, LAI and coefficient A: percentage of leaves having lost their apex), the organic matter contents of the sediment and the environmental conditions (salinity, turbidity, temperature, nutrient concentrations and dissolved oxygen levels). The two populations of Z. noltii displayed seasonal changes in density (1600–19600 m2), aboveground biomass (11–153 g. DW. m−2), leaf length (33–255 mm), and leaf width (0.9–1.8 mm). Temperature and turbidity were significant environmental factors influencing the temporal changes observed in the Z. noltii meadows studied. Conversely, the belowground biomass, the number of leaves per shoot and the LAI did not undergo any seasonal changes. In the Biguglia lagoon, the functioning dynamics of the Z. noltii seagrass beds are determined by the catchment area and the inputs of nutrients derived from it, whereas in the Urbino lagoon the dynamics of the Z. noltiibeds depend on low levels of water turbidity.  相似文献   

16.
Field and laboratory experiments were designed to determine the differential growth and toxin response to inorganic and organic nitrogen additions in Pseudo-nitzschia spp. Nitrogen enrichments of 50 μM nitrate (KNO3), 10 μM ammonium (NH4Cl), 20 μM urea and a control (no addition) were carried out in separate carboys with seawater collected from the mouth of the San Francisco Bay (Bolinas Bay), an area characterized by high concentrations of macronutrients and iron. All treatments showed significant increases in biomass, with chlorophyll a peaking on days 4–5 for all treatments except urea, which maintained exponential growth through the termination of the experiment. Pseudo-nitzschia australis Frenguelli abundance was 103 cells l−1 at the start of the experiment and increased by an order of magnitude by day 2. Particulate domoic acid (pDA) was initially low but detectable (0.15 μg l−1), and increased throughout exponential and stationary phases across all treatments. At the termination of the experiment, the urea treatment produced more than double the amount of pDA (9.39 μg l−1) than that produced by the nitrate treatment (4.26 μg l−1) and triple that of the control and ammonium treatments (1.36 μg l−1 and 2.64 μg l−1, respectively). The mean specific growth rates, calculated from increases in chlorophyll a and from cellular abundance of P. australis, were statistically similar across all treatments.These field results confirmed laboratory experiments conducted with a P. australis strain isolated from Monterey Bay, CA (isolate AU221-a) grown in artificial seawater enriched with 50 μM nitrate, 50 μM ammonium or 25 μM of urea as the sole nitrogen source. The exponential growth rate of P. australis was significantly slower for cells grown on urea (ca. 0.5 day−1) compared to the cells grown on either nitrate or ammonium (ca. 0.9 day−1). However the urea-grown cells produced more particulate and dissolved domoic acid (DA) than the ammonium- or nitrate-grown cells. The field and laboratory experiments demonstrate that P. australis is able to grow effectively on urea as the primary source of nitrogen and produced more pDA when grown on urea in both natural assemblages and unialgal cultures. These results suggest that the influence of urea from coastal runoff may prove to be more important in the development or maintenance of toxic blooms than previously thought, and that the source of nitrogen may be a determining factor in the relative toxicity of west coast blooms of P. australis.  相似文献   

17.
The dimorphic fungus Mucor indicus was grown in different forms classified as purely filamentous, mostly filamentous, mostly yeast-like and purely yeast-like, and the relationship between morphology and metabolite production, inhibitor tolerance and the cell wall composition was investigated. Low concentrations of spores in the inoculum with subsequent aeration promoted filamentous growth, whereas higher spore concentrations and anaerobic conditions promoted yeast-like growth. Ethanol was the main metabolite with glycerol next under all conditions tested. The yields of ethanol from glucose were between 0.39 and 0.42 g g−1 with productivities of 3.2–5.0 g l−1 h−1. The ethanol productivity of mostly filamentous cells was increased from 3.9 to 5.0 g l−1 h−1 by the presence of oxygen, whereas aeration of purely yeast-like cells showed no such effect. All growth forms were able to tolerate 4.6 g l−1 furfural and 10 g l−1 acetic acid and assimilate the sugars, although with different consumption rates. The cell wall content of the fungus measured as alkali insoluble materials (AIM) of the purely yeast-like cells was 26% of the biomass, compared to 8% of the pure filaments. However, the chitosan concentration of the filaments was 29% of the AIM, compared to 6% of the yeast-like cells.  相似文献   

18.
Wilcke  W.  Lilienfein  J. 《Plant and Soil》2004,258(1):31-41
Conversion of native savanna in Brazil, the Cerrado, to agri- and silvicultural land use causes changes in metal storages of the ecosystems. To evaluate the sustainability of land use these changes have to be known. Therefore, we examined the Al, Ca, Fe, K, Mg, Mn, Na, and Zn storages in above- and belowground biomass, the organic layer, and the top 2 m of the mineral soil (Anionic Acrustoxes) of three replicate plots in each of six native and land-use systems. The systems were native Cerrado, Pinus caribaea Morelet plantations, productive and degraded Brachiaria decumbens Stapf pastures, and conventional and no-tillage soybean cultivation. The total metal storage varied little among the studied systems except for Ca, K, and Mg. All land-use systems had larger Ca storages (cropping systems 202–205 g m–2, productive pasture: 112, degraded pasture: 84, Pinus: 81) than the Cerrado (62 g m–2). The K storage was smaller in the pastures (17–18 g m–2) than in Cerrado and Pinus stands (22–24) and largest in the cropping systems (26). The Mg storages were largest in the cropping systems (65–69) and productive pasture (59 g m–2); those in the Pinus stands (52), the degraded pasture (51), and the Cerrado (53) were similar. For most metals, the aboveground biomass contained up to 1% of the total storage including the top 2 m of the soil (<5% if the lower ecosystem boundary was set at 0.3 m soil depth). However, the aboveground biomass stored up to 12% of Ca, K, and Mg down to 2 m soil depth (41% if the lower ecosystem boundary was set at 0.3 m soil depth). In the Pinus stands, the storage of most metals was larger in the below- than in the aboveground biomass; for the other systems the reverse was true. Metal storages in soil were little affected by land use except that liming resulted in increased Ca and Mg storages in the topsoil. The comparison between known inputs of Ca, K, and Mg and mean annual change rates of their storages revealed that there were considerable base metal losses by leaching, grazing, and removal with the harvest. After 12–20 years, the land-use impact on metal storages is restricted to Ca, Mg, and K. Generally, all land-use systems tend to be richer in these nutrients except for the significant depletion in K of the pastures.  相似文献   

19.
Indole and its derivatives form a class of toxic recalcitrant environmental pollulants. Sporotrichum thermophile was grown in a persolvent fermentation system containing a large amount of indole. The medium contained up to 20% by volume soybean oil and up to 2 g L−1 indole. Most of the indole was partitioned in the organic solvent layer. When the organism was grown in the medium containing indole at 1 g L−1, indole was totally consumed after 6 days. Under a fed–batch fermentation process where daily batches of indole (1 g L−1) supplemented the microbial culture for 4 days, the biodegradation level was 3.0 g L−1. These values make this process promising and worthy of further investigation for the microbial degradation of other toxic compounds.  相似文献   

20.
Abundances of Pseudo-nitzschia spp. and concentrations of particulate domoic acid (DA) were determined in the Southern California Bight (SCB) along the coasts of Los Angeles and Orange Counties during spring and summer of 2003 and 2004. At least 1500 km2 were affected by a toxic event in May/June of 2003 when some of the highest particulate DA concentrations reported for US coastal waters were measured inside the Los Angeles harbor (12.7 μg DA L−1). Particulate DA levels were an order of magnitude lower in spring of 2004 (February and March), but DA concentrations per cell at several sampling stations during 2004 exceeded previously reported maxima for natural populations of Pseudo-nitzschia (mean = 24 pg DA cell−1, range = 0–117 pg DA cell−1). Pseudo-nitzschia australis dominated the Pseudo-nitzschia assemblage in spring 2004. Overall, DA-poisoning was implicated in >1400 mammal stranding incidents within the SCB during 2003 and 2004. Ancillary physical and chemical data obtained during our regional surveys in 2004 revealed that Pseudo-nitzschia abundances, particulate DA and cellular DA concentrations were inversely correlated with concentrations of silicic acid, nitrogen and phosphate, and to specific nutrient ratios. Particulate DA was detected in sediment traps deployed at 550 and 800 m depth during spring of 2004 (0.29–7.6 μg DA (g sediment dry weight)−1). The highest DA concentration in the traps was measured within 1 week of dramatic decreases in the abundances of Pseudo-nitzschia in surface waters. To our knowledge these are the deepest sediment trap collections from which DA has been detected. Sinking of the spring Pseudo-nitzschia bloom may constitute a potentially important link between DA production in surface waters and benthic communities in the coastal ocean near Los Angeles. Our study indicates that toxic blooms of Pseudo-nitzschia are a recurring phenomenon along one of the most densely populated coastal stretches of the SCB and that the severity and magnitude of these events can be comparable to or greater than these events in other geographical regions affected by domoic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号