首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four strains of the coccolithophore Emiliania huxleyi (CCMP strains 370, 373, 374, 379) were tested for their ability to grow on various nitrogen sources. All strains grew on ammonium, nitrate, and urea, although growth of CCMP379 on urea was low. Responses to other dissolved organic nitrogen (DON) sources varied. CCMP379 did not grow on any DON source other than urea. All other strains grew on one of the two tested amino acids: CCMP370 and CCMP373 on glutamine, and CCMP374 on alanine. All three of these strains also grew on hypoxanthine; in addition, two grew well on acetamide and one on ethanolamine. E. huxleyi strains also differed in their susceptibility to predation by the ciliate Strobilidium sp. CCMP374 was ingested at substantially higher rates than CCMP373 regardless of E. huxleyi growth condition. Ciliate feeding rates also depended on E. huxleyi growth condition. For CCMP374, feeding rates were 2× higher on growing E. huxleyi cells than on non-growing cells (average 27.5 versus 15.6 cells ciliate−1 h−1, respectively). For CCMP373, a relationship between E. huxleyi growth rate and ciliate feeding rate was not evident, but E. huxleyi grown on some N sources (ammonium, nitrate, urea) were ingested at consistently higher rates than E. huxleyi grown on other sources (ethanolamine, glutamine). Interstrain differences in the ability to utilize DON and resist predation may contribute to maintenance of high genetic diversity within this cosmopolitan, bloom-forming species.  相似文献   

2.
The nitrogen uptake and growth capabilities of the potentially harmful, raphidophycean flagellate Heterosigma akashiwo (Hada) Sournia were examined in unialgal batch cultures (strain CCMP 1912). Growth rates as a function of three nitrogen substrates (ammonium, nitrate and urea) were determined at saturating and sub-saturating photosynthetic photon flux densities (PPFDs). At saturating PPFD (110 μE m−2 s−1), the growth rate of H. akashiwo was slightly greater for cells grown on NH4+ (0.89 d−1) compared to cells grown on NO3 or urea, which had identical growth rates (0.82 d−1). At sub-saturating PPFD (40 μE m−2 s−1), both urea- and NH4+-grown cells grew faster than NO3-grown cells (0.61, 0.57 and 0.46 d−1, respectively). The N uptake kinetic parameters were investigated using exponentially growing batch cultures of H. akashiwo and the 15N-tracer technique. Maximum specific uptake rates (Vmax) for unialgal cultures grown at 15 °C and saturating PPFD (110 μE m−2 s−1) were 28.0, 18.0 and 2.89 × 10−3 h−1 for NH4+, NO3 and urea, respectively. The traditional measure of nutrient affinity—the half saturation constants (Ks) were similar for NH4+ and NO3 (1.44 and 1.47 μg-at N L−1), but substantially lower for urea (0.42 μg-at N L−1). Whereas the α parameter (α = Vmax/Ks), which is considered a more robust indicator for substrate affinity when substrate concentrations are low (<Ks), were 19.4, 12.2 and 6.88 × 10−3 h−1/(μg-at N L−1) for NH4+, NO3 and urea, respectively. These laboratory results demonstrate that at both saturating and sub-saturating N concentrations, N uptake preference follows the order: NH4+ > NO3 > urea, and suggests that natural blooms of H. akashiwo may be initiated or maintained by any of the three nitrogen substrates examined.  相似文献   

3.
Field and laboratory experiments were designed to determine the differential growth and toxin response to inorganic and organic nitrogen additions in Pseudo-nitzschia spp. Nitrogen enrichments of 50 μM nitrate (KNO3), 10 μM ammonium (NH4Cl), 20 μM urea and a control (no addition) were carried out in separate carboys with seawater collected from the mouth of the San Francisco Bay (Bolinas Bay), an area characterized by high concentrations of macronutrients and iron. All treatments showed significant increases in biomass, with chlorophyll a peaking on days 4–5 for all treatments except urea, which maintained exponential growth through the termination of the experiment. Pseudo-nitzschia australis Frenguelli abundance was 103 cells l−1 at the start of the experiment and increased by an order of magnitude by day 2. Particulate domoic acid (pDA) was initially low but detectable (0.15 μg l−1), and increased throughout exponential and stationary phases across all treatments. At the termination of the experiment, the urea treatment produced more than double the amount of pDA (9.39 μg l−1) than that produced by the nitrate treatment (4.26 μg l−1) and triple that of the control and ammonium treatments (1.36 μg l−1 and 2.64 μg l−1, respectively). The mean specific growth rates, calculated from increases in chlorophyll a and from cellular abundance of P. australis, were statistically similar across all treatments.These field results confirmed laboratory experiments conducted with a P. australis strain isolated from Monterey Bay, CA (isolate AU221-a) grown in artificial seawater enriched with 50 μM nitrate, 50 μM ammonium or 25 μM of urea as the sole nitrogen source. The exponential growth rate of P. australis was significantly slower for cells grown on urea (ca. 0.5 day−1) compared to the cells grown on either nitrate or ammonium (ca. 0.9 day−1). However the urea-grown cells produced more particulate and dissolved domoic acid (DA) than the ammonium- or nitrate-grown cells. The field and laboratory experiments demonstrate that P. australis is able to grow effectively on urea as the primary source of nitrogen and produced more pDA when grown on urea in both natural assemblages and unialgal cultures. These results suggest that the influence of urea from coastal runoff may prove to be more important in the development or maintenance of toxic blooms than previously thought, and that the source of nitrogen may be a determining factor in the relative toxicity of west coast blooms of P. australis.  相似文献   

4.
Light and nutrient availability change throughout dinoflagellate diel vertical migration (DVM) and/or with sub-population location in the water column along the west Florida shelf. Typically, the vertical depth of the shelf is greater than the distance a sub-population can vertically migrate during a diel cycle, limiting the ability of a sub-population to photosynthetically fix carbon toward the surface and access nutrients sub-surface. This project investigated changes of Karenia brevis (C.C. Davis) G. Hansen et Moestrup intracellular carbon, nitrogen, internal nitrate (iNO3), free amino acid (FAA), and total lipid concentrations in high-light, nitrate-replete (960 μmol quanta m−2 s−1, 80 μM NO3), and high-light, nitrate-reduced (960 μmol quanta m−2 s−1, <5 μM NO3) mesocosms. The nitrate-reduced mesocosm had a slowed cell division rate when compared to the nitrate-replete mesocosm. Minimum intracellular carbon, nitrogen, iNO3, FAA, and total lipid concentrations during the largest surface sub-population aggregations led to the conclusion that daughter cells resulting from cell division received unequal shares of the parental resources and that this inequality influenced migration behavior. Nutrient reduced daughter cells were more strongly influenced by light and phototaxis for carbon production than their replete same cell division sister cells during vertical migration thus rapidly increasing the fulfillment of constituents through photosynthesis. Vertical migration was consistent with an optimization scheme based on threshold limits through utilization or formation of photosynthate. We propose a simplified conceptual model describing how K. brevis is transported along the benthos of the west Florida shelf from off-shore to on-shore. Dynamic carbon thresholds are also suggested for future DVM modeling efforts on K. brevis populations transported between nitrogen replete and nitrogen reduced environmental conditions.  相似文献   

5.
The red tide dinoflagellate Karenia brevis (Davis) G. Hansen and Moestrup is noted for causing mass mortalities of marine organisms in the Gulf of Mexico. Most research has focused on culture isolates from the eastern Gulf of Mexico. In this investigation, we examine the effects of light, temperature and salinity on the growth rate of K. brevis from the western Gulf of Mexico. Growth rates of K. brevis were determined under various combinations of irradiance (19, 31, 52, 67, and 123 μmol m−2 s−1), salinity (25, 30, 35, 40 and 45), and temperature (15, 20, 25, and 30 °C). Maximum growth rates varied from 0.17 to 0.36 div day−1 with exponential growth rates increasing with increasing irradiance. Little or no growth was supported at 19 μmol photons m−2 s−1 for any experiment. Maximum growth rates at 15 °C were much lower than at other temperatures. Maximum growth rates of the Texas clone (SP3) fell within the range of Florida clones reported in the literature (0.17–0.36 div day−1 versus 0.2–1.0 div day−1). The Texas clone SP3 had a very similar light saturation point compared to that of a Florida isolate (Wilson's clone) (67 μmol m−2 s−1 versus 65 μmol m−2 s−1), and light compensation (20–30 μmol m−2 s−11). The upper and lower salinity tolerance of the Texas clone was similar than that of some Florida clones (45 versus 46 and 25 versus 22.5, respectively). In our study, the Texas clone had the same temperature tolerance reported for Florida clones (15–30 °C). While individual clones can vary considerably in maximum growth rates, our results indicate only minor differences exist between the Texas and Florida strains of K. brevis in their temperature and salinity tolerance for growth. While the literature notes lower salinity occurrences of K. brevis in nearby Louisiana, our isolate from the southern Texas coast has the higher salinity requirements typical of K. brevis in the eastern Gulf of Mexico.  相似文献   

6.
Two Caribbean strains (1651 and 1655) of the ciguatera-causing dinoflagellate Gambierdiscus toxicus were grown in xenic, batch culture under defined, measured nutrient conditions with nitrate, ammonium, urea, a mix of free amino acids (FAA), or putrescine as the nitrogen source. Cultures were maintained at 27 °C, salinity 35, 110 μmol m−2 s−1 (12 h:12 h light:dark cycle) on L2 medium at an initial nitrogen concentration of 50 μM N. Toxicity was determined using a ouabain/veratridine-dependent cytotoxicity assay (N2A assay) standardized to a ciguatoxin standard. Nitrate, ammonium, FAA, and putrescine supported growth, but urea did not. The appearance of ammonium in the organic nitrogen cultures indicated that G. toxicus and/or associated bacteria remineralized the available organic nitrogen. Both strains were exposed to nitrogen-limiting conditions as evidenced by chlorophyll a content per cell, nitrogen content, and nitrogen (N) to phosphorus (P) (N:P) ratio significantly declining once nitrogen was no longer available in the medium and cells entered stationary phase. Strain 1651 grew significantly faster than strain 1655 when nitrate, FAA, and putrescine was the nitrogen source, but not ammonium. Nitrogen source had no effect on growth rate (0.14 d−1) in strain 1651. The growth rate of strain 1655 (0.10–0.13 d−1) was significantly faster on ammonium than the other nitrogen sources. Strain 1655 was significantly more toxic (10-fold) than strain 1651 except when growing on ammonium at exponential phase. Toxicity ranged from 1.3 to 8.7 fg C-CTX1-Eq cell−1 in strain 1651 and from 30.7 to 54.3 fg C-CTX1-Eq cell−1 in strain 1655. Nitrogen source had no significant affect on toxicity. Toxicity was greater in stationary versus exponential phase cells for strain 1651 when grown on nitrate and strain 1655 regardless of nitrogen source. The difference in toxicity between growth phases may result from an increase in ciguatoxin and/or maitotoxin. Our results suggest that some strains of G. toxicus when associated with bacteria are able to take advantage of organic as well as inorganic nitrogen sources on short time scales to support future growth. The uncoupling of total nitrogen and phosphorus pools from conditions in the water column suggest that instantaneous growth rates can be supported by nutrients acquired hours to days earlier.  相似文献   

7.
Recent novel mixed blooms of several species of toxic raphidophytes have caused fish kills and raised health concerns in the highly eutrophic Inland Bays of Delaware, USA. The factors that control their growth and dominance are not clear, including how these multi-species HAB events can persist without competitive exclusion occurring. We compared and contrasted the relative environmental niches of sympatric Chattonella subsalsa and Heterosigma akashiwo isolates from the bays using classic Monod-type experiments. C. subsalsa grew over a temperature range from 10 to 30 °C and a salinity range of 5–30 psu, with optimal growth occurring from 20 to 30 °C and 15 to 25 psu. H. akashiwo had similar upper temperature and salinity tolerances but also lower limits, with growth occurring from 4 to 30 °C and 5 to 30 psu and optimal growth between 16 and 30 °C and 10 and 30 psu. These culture results were confirmed by field observations of bloom occurrences in the Inland Bays. Maximum nutrient-saturated growth rates (μmax) for C. subsalsa were 0.6 d−1 and half-saturation concentrations for growth (Ks) were 9 μM for nitrate, 1.5 μM for ammonium, and 0.8 μM for phosphate. μmax of H. akashiwo (0.7 d−1) was slightly higher than C. subsalsa, but Ks values were nearly an order of magnitude lower at 0.3 μM for nitrate, 0.3 μM for ammonium, and 0.2 μM for phosphate. H. akashiwo is able to grow on urea but C. subsalsa cannot, while both can use glutamic acid. Cell yield experiments at environmentally relevant levels suggested an apparent preference by C. subsalsa for ammonium as a nitrogen source, while H. akashiwo produced more biomass on nitrate. Light intensity affected both species similarly, with the same growth responses for each over a range from 100 to 600 μmol photons m−2 s−1. Factors not examined here may allow C. subsalsa to persist during multi-species blooms in the bays, despite being competitively inferior to H. akashiwo under most conditions of nutrient availability, temperature, and salinity.  相似文献   

8.
Seasonal changes of field populations and growth rates of two dinoflagellates, Ceratium furca and Ceratium fusus, were examined in the temperate coastal water of Sagami Bay, Japan. Weekly field sampling was conducted from August 2002 to August 2003, and laboratory experiments were also carried out to investigate effects of temperature, irradiance and photoperiod on the growth rates of these two Ceratium species. In the field, the abundances of both species increased significantly from April to August 2003, were gradually decreased from November 2002 and were not observed in January 2003. C. fusus was able to increase at lower temperatures in February 2003 compared to C. furca. In the laboratory, the two species did not grow at <10 °C or >32 °C. The highest specific growth rate of C. furca was 0.72 d−1 at 24 °C and 600 μmol m−2 s−1. Optimum growth rates (>0.4 d−1) of C. furca were observed at temperatures from 18 to 28 °C and at irradiances from 216 to 796 μmol m−2 s−1. The highest growth rate of C. fusus was 0.56 d−1 at 26 °C and 216 μmol m−2 s−1. Optimum growth rates of C. fusus were observed at the same irradiance rage of C. furca, whereas optimum temperature range was narrower (26–28 °C). The growth curves of both species indicated saturation of the growth rates when light intensity was above 216 μmol m−2 s−1, and did not show photoinhibition at irradiances up to 796 μmol m−2 s−1. The specific growth rates of both Ceratium species were clearly decreased at L:D = 10:14 relative to those at L:D = 14:10 and L:D = 12:12. The present study indicates the two Ceratium species can adapt to a wide range of temperature and irradiance.  相似文献   

9.
Spirulina platensis was cultivated, in comparative studies, using several sources of nitrogen. The standard source used (sodium nitrate) was the same as that used in the synthetic medium Zarrouk, whereas the alternative nitrogen sources consisted of ammonium nitrate, urea, ammonium chloride, ammonium sulphate or acid ammonium phosphate. The initial nitrogen concentrations tested were 0.01, 0.03 and 0.05 M in an aerated photobioreactor at 30 °C, with an illuminance of 1900 lux, and 12 h-light/12 h-dark photoperiod over a period of 672 h. Maximum biomass was produced in medium containing sodium nitrate (0.01–0.03–0.05 M), followed by ammonium nitrate (0.01 M) and urea (0.01 M). The final biomass concentrations were 1.992 g l–1 (0.03 M sodium nitrate), 1.628 g l–1 (0.05 M sodium nitrate), 1.559 g l–1 (0.01 M sodium nitrate), 0.993 g l–1 (0.01 M ammonium nitrate) and 0.910 g l–1 (0.01 M urea). This suggested that it is possible to utilize nitrogen sources other than sodium nitrate for growing S. platensis, in order to decrease the production costs of scaled up projects.  相似文献   

10.
Karlodinium veneficum is a common member of temperate, coastal phytoplankton assemblages that occasionally forms blooms associated with fish kills. Here, we tested the hypothesis that the cytotoxic and ichthyotoxic compounds produced by K. veneficum, karlotoxins, can have anti-grazing properties against the heterotrophic dinoflagellate, Oxyrrhis marina. The sterol composition of O. marina (>80% cholesterol) renders it sensitive to karlotoxin, and does not vary substantially when fed different algal diets even for prey that are resistant to karlotoxin. At in situ bloom concentrations (104–105 K. veneficum ml−1), grazing rates (cells ingested per Oxyrrhis h−1) on toxic K. veneficum strain CCMP 2064 were 55% that observed on the non-toxic K. veneficum strain MD5. At lower prey concentrations typical of in situ non-bloom levels (<103 cells ml−1), grazing rates (cells ingested per Oxyrrhis h−1) on toxic K. veneficum strain CCMP 2064 were 70–80% of rates on non-toxic strain MD5. Growth of O. marina was significantly suppressed when fed the toxic strain of K. veneficum. Experiments with mixed prey cultures, where non-toxic strain MD5 was fluorescently stained, showed that the presence of toxic strain CCMP 2064 inhibited grazing of O. marina on the co-occurring non-toxic strain MD5. Exogenous addition of a sub-lethal dose (100 ng ml−1) of purified karlotoxin inhibited grazing of O. marina by approximately 50% on the non-toxic K. veneficum strain MD5 or the cryptophyte S. major. These results identify karlotoxin as an anti-grazing compound for those grazers with appropriate sterol composition (i.e., desmethyl sterols). This strategy is likely to be an important mechanism whereby growth of K. veneficum is uncoupled from losses due to grazing, allowing it to form ichthyotoxic blooms in situ.  相似文献   

11.
The rates of uptake of a range of forms of nitrogenous nutrients were measured in cultures of Pfiesteria piscicida and Pfiesteria shumwayae maintained at varying physiological states. The measured rates of dissolved N uptake under some conditions approached the rates of N uptake that are achieved through phagotrophy. Rates of dissolved N uptake by P. piscicida contributed <10% of the cellular N of flagellated cells feeding on algae, but were equal to or greater than phagotrophic N acquisition in cells recently removed from fish cultures. Specific N uptake rates (V, h−1) were higher for cells that were maintained on algal prey for long periods (months) than those that were grown with live fish. However, rates of N uptake on a cellular basis for cells grown on or recently removed from fish were comparable to those maintained on algal prey, likely reflecting differences in the sizes of cells of different physiological condition. Preferences for form of N generally followed a decreasing trend of amino acids > urea > NH4+ > NO3. Nitrate consistently was not a preferred form of N. Although Pfiesteria spp. are often found in eutrophic environments, the relationship between Pfiesteria spp. and nutrient availability is likely to be primarily indirect, mediated through the production of various prey on which Pfiesteria spp. feed. These findings also confirm, however, that when dissolved N concentrations are elevated, they can contribute to the supplemental nutrition of these cells, and thus may provide a significant source of N to Pfiesteria spp. in nature.  相似文献   

12.
Rates of inorganic nitrogen uptake by three Northeast US and three Asian species of Porphyra were compared in short-term incubations to evaluate potential for longer term and larger scale examination of bioremediation of nutrient-loaded effluents from finfish aquaculture facilities. The effects of nitrogen (N) species and concentration, temperature, acclimation history, and irradiance were investigated. Uptake rates increased ca. nine-fold from 20 to 150 μM N. Nitrate and ammonium uptake occurred at similar rates. Irradiance had a strong effect, with uptake at 40 μmol photons m−2 s−1only 55% of uptake at 150 μmol photons m−2 s−1. N-replete tissue took up inorganic nitrogen at rates that averaged only 60% of nutrient-deprived tissue. Although there were species (P. amplissima > (P. purpurea = P. umbilicalis)) and temperature effects (10 °C>5 °C>15 °C), interactions among factors indicated that individual species be considered separately. Overall, P. amplissima was the best Northeast US candidate. It took up ammonium at faster rates than other local species at 10 and 15 °C, two temperatures that fall within the expected range of industrial conditions for finfish operations.  相似文献   

13.
Miniature heat balance-sap flow gauges were used to measure water flows in small-diameter roots (3–4 mm) in the undisturbed soil of a mature beech–oak–spruce mixed stand. By relating sap flow to the surface area of all branch fine roots distal to the gauge, we were able to calculate real time water uptake rates per root surface area (Js) for individual fine root systems of 0.5–1.0 m in length. Study aims were (i) to quantify root water uptake of mature trees under field conditions with respect to average rates, and diurnal and seasonal changes of Js, and (ii) to investigate the relationship between uptake and soil moisture θ, atmospheric saturation deficit D, and radiation I. On most days, water uptake followed the diurnal course of D with a mid-day peak and low night flow. Neighbouring roots of the same species differed up to 10-fold in their daily totals of Js (<100–2000 g m−2 d−1) indicating a large spatial heterogeneity in uptake. Beech, oak and spruce roots revealed different seasonal patterns of water uptake although they were extracting water from the same soil volume. Multiple regression analyses on the influence of D, I and θ on root water uptake showed that D was the single most influential environmental factor in beech and oak (variable selection in 77% and 79% of the investigated roots), whereas D was less important in spruce roots (50% variable selection). A comparison of root water uptake with synchronous leaf transpiration (porometer data) indicated that average water fluxes per surface area in the beech and oak trees were about 2.5 and 5.5 times smaller on the uptake side (roots) than on the loss side (leaves) given that all branch roots <2 mm were equally participating in uptake. Beech fine roots showed maximal uptake rates on mid-summer days in the range of 48–205 g m−2 h−1 (i.e. 0.7–3.2 mmol m−2 s−1), oak of 12–160 g m−2 h−1 (0.2–2.5 mmol m−2 s−1). Maximal transpiration rates ranged from 3 to 5 and from 5 to 6 mmol m−2 s−1 for sun canopy leaves of beech and oak, respectively. We conclude that instantaneous rates of root water uptake in beech, oak and spruce trees are above all controlled by atmospheric factors. The effects of different root conductivities, soil moisture, and soil hydraulic properties become increasingly important if time spans longer than a week are considered.  相似文献   

14.
In the summer of 2004, a harmful bloom caused by Chattonella ovata (Raphidophyceae) occurred over almost the entire area of the Seto Inland Sea and caused fishery damages. This incident was the first record of a bloom and damage to the fisheries caused by this species in Japanese waters. In order to elucidate the mechanism of the bloom outbreak, we examined the nutrition and the growth kinetics in nitrogen (N)- and phosphorus (P)-limited semi-continuous cultures of this species. Inorganic N compounds, such as nitrate, nitrite, and ammonium, were found to be good nitrogen sources for the growth of C. ovata, while organic nitrogen (urea and uric acid) was not utilized. This species was capable of using ATP, ADP and inorganic phosphorus compounds, but did not utilize phosphate monoesters as a sole P source. Under both N-limited and P-limited steady state conditions, the growth rate as a function of cell nitrogen and phosphorus quota, respectively, followed the Droop equation. Kinetic parameters μm (maximum growth rate) and kq (minimum cell quota) obtained for N- and P-limited cultures were 0.79 day−1 and 5.5 pmol N cell−1 and 0.86 day−1 and 0.48 pmol P cell−1, respectively. The minimum cell quotas were 23–30% lower than those of C. antiqua. The nutrient availability and kinetic parameters of C. ovata are compared with other harmful algae and the ecological implications of these characteristics discussed.  相似文献   

15.
Using shipboard data collected from the central west Florida shelf (WFS) between 2000 and 2001, an optical classification algorithm was developed to differentiate toxic Karenia brevis blooms (>104 cells l−1) from other waters (including non-blooms and blooms of other phytoplankton species). The identification of K. brevis blooms is based on two criteria: (1) chlorophyll a concentration ≥1.5 mg m−3 and (2) chlorophyll-specific particulate backscattering at 550 nm ≤ 0.0045 m2 mg−1. The classification criteria yielded an overall accuracy of 99% in identifying both K. brevis blooms and other waters from 194 cruise stations. The algorithm was validated using an independent dataset collected from both the central and south WFS between 2005 and 2006. After excluding data from estuarine and post-hurricane turbid waters, an overall accuracy of 94% was achieved with 86% of all K. brevis bloom data points identified successfully. Satisfactory algorithm performance (88% overall accuracy) was also achieved when using underway chlorophyll fluorescence and backscattering data collected during a repeated alongshore transect between Tampa Bay and Florida Bay in 2005 and 2006. These results suggest that it may be possible to use presently available, commercial optical backscattering instrumentation on autonomous platforms (e.g. moorings, gliders, and AUVs) for rapid and timely detection and monitoring of K. brevis blooms on the WFS.  相似文献   

16.
A massive outbreak of Karenia brevis that had been ongoing for several months along the southwestern coast of Florida was sampled in early September 2005 off Sanibel Island to assess the utility of bio-optical features and ataxonomic analysis (quantification of eukaryotic and cyanobacterial picoplankton) by flow cytometry in monitoring red tide blooms. Sea-surface sampling followed aircraft visual location of discolored water. Within the most concentrated area of the bloom, chlorophyll a values exceeded 500 μg l−1, and concentrations of nitrate (0.3 μM ± 0.0) and ammonium (<0.2 μM) were depleted compared to high concentrations of total dissolved nitrogen, total dissolved phosphorus, and soluble reactive phosphorus (141 ± 34 μM, 16.5 ± 2.5 μM, and 6.44 ± 0.57 μM, respectively). Low water clarity in the bloom (Secchi depth transparency 0.3 m, Kd estimated at 4.83 m−1) was strongly influenced by attenuation from dinoflagellates as well as chromophoric dissolved organic matter (CDOM). The fact that the K. brevis bloom occurred in lower-salinity (30 psu), high-nutrient waters implicates riverine transport of land-based nutrients as a source of nutrient supplies that fueled or sustained the bloom. Throughout ongoing efforts to advance modeling and technological capabilities that presently lack reliable predictive capability, bio-optical remote sensing via aerial flyovers along with in-water sensor data can continue to provide accurate coverage of relatively large temporal and spatial features. Flow cytometry can provide conservative (because of some cell lysis), rapid, near-real-time validation of bloom components. The concentration and position of the organisms, along with water mass scalars, can also help to diagnose factors promoting K. brevis bloom development and dispersion.  相似文献   

17.
Summary Absorption of nitrate and ammonium was studied in water culture experiments with 4 to 6 weeks old plants of barley (Hordeum vulgare L.), buckwheat (Fagopyrum esculentum L. Moench) and rape (Brassica napus L.). The plants were grown in a complete nutrient solution with nitrate (5.7±0.2 mM) or nitrate (5.6±0.2 mM) + ammonium (0.04±0.02 mM). The pH of the nutrient solution was kept at 5.0 using a pH-stat. It was found that phosphorus deficiency reduced the rate of nitrate uptake by 58±3% when nitrate was the sole N source and by 83±1% when both nitrate and ammonium were present. The reduction occurred even before growth was significantly impeded by P deficiency. The inhibition of the uptake of ammonium was less,i.e. ammonium constituted 10±1% of the total N uptake in the P sufficient plants and 30±5% in the P deficient plants. The reduction of nitrate absorption greatly decreased the difference between the uptake of anions and cations. It is suggested that P deficiency reduced the assimilation of NO 3 into the proteins, which might cause a negative feedback on NO 3 influx and/or stimulate NO 3 efflux.  相似文献   

18.
Phosphorus uptake and release by periphyton mats were quantified in the Everglades Nutrient Removal Project (ENRP) to evaluate the potential for periphyton P removal. Short-term P uptake rates were determined by incubating cyanobacteria (Oscillatoria princeps and Shizothrix calcicola) and Chlorophycean (primarily Rhizoclonium spp.) algal mat samples for 0.5–2 h under ambient conditions in BOD bottles spiked with soluble reactive P (SRP). Cyanobacterial mats removed P more than twice as fast (80–164 μg P h−1 g−1 AFDM) as Chlorophycean mats (33–61 μg P h−1 g−1 AFDM) during these incubations. In a longer term study, fiberglass cylinders were used to enclose 1.8 m2 plots within the wetland and were dosed weekly for 7 weeks with: (1) no nutrients; (2) SRP (0.25 g P m−2 week−1); or (3) SRP plus nitrate (0.42 g N m−2 week−1) and ammonium (0.83 g N m−2 week−1). Phosphorus uptake rates by this periphyton assemblage, which was dominated by the chlorophytes Stigeoclonium spp. and Oedogonium spp., were measured weekly and were similar among nutrient treatments on most dates, indicating that the algal storage compartment for P was not saturated despite repeated P additions. Decomposition rates and P loss by cyanobacteria and Chlorophycean mats were determined by measuring biomass loss and SRP release in darkened BOD bottles over 28–42 day periods under anaerobic and aerobic conditions. First-order aerobic and anaerobic decomposition rates for cyanobacterial mats (k = 0.1095 and 0.1408 day−1, respectively) were 4–20-fold higher than rates for Chlorophycean mats (k = 0.0066 and 0.0250 day−1, respectively) and cyanobacteria released considerably more P back to the water column. Our findings suggest that periphyton can be an important short-term sink for P in treatment wetlands and that retention is strongly affected by the taxonomic composition of the periphyton assemblage.  相似文献   

19.
Canna indica L. is an upright perennial rhizomatous herb, and Schoenoplectus validus (Vahl) A. Löve and D. Löve is a tall, perennial, herbaceous sedge. The nutrient uptake kinetics of C. indica and S. validus were investigated using the modified depletion method after plants were grown for 4 weeks in simulated secondary-treated wastewater. The maximum uptake rate (Imax) and Michaelis–Menten constant (Km) were estimated by iterative curve fitting. The Imax for NH4N (623 μmol g−1 dry root weight h−1) was significantly higher than that for NO3N (338 μmol g−1 dry root weight h−1) in S. validus. In contrast, no difference was observed in C. indica. The Imax values for NO3N and NH4N were higher in S. validus than in C. indica. A significantly lower Km was detected for NO3N uptake in C. indica (385 μmol L−1) compared to that in S. validus (1908 μmol L−1). The Imax for PO4P did not differ between the plant species. The Km for PO4P was significantly higher in C. indica (157 μmol L−1) than in S. validus (60 μmol L−1). In conclusion, we found that S. validus preferred NH4N over NO3N, had greater capacity for N uptake and higher affinity for PO4P, but C. indica had greater affinity for NO3N. Nutrient uptake capacity is likely related to habitat preference, and is influenced by the structure of roots and rhizomes.  相似文献   

20.
In order to study the influence of nutrients on the growth characteristics of the dominant dinoflagellates, Ceratium furca and Ceratium fusus, in the temperate coastal area of Sagami Bay, Japan, we conducted field monitoring from January 2000 to December 2005 and performed laboratory culture experiments. In the field study, population densities of C. furca and C. fusus were high, even in low nutrient concentrations (N: 1.58 μM, P: 0.17 μM). Both species were more abundant in the surface and sub-surface layers than in the bottom layers during the stratification periods. In the laboratory study, the specific growth rates of C. furca and C. fusus increased gradually along with increasing nutrients up to the T5 (N: 5 μM, P: 0.5 μM) and T10 (N: 10 μM, P: 1 μM) concentration levels, after which the growth rate plateaued at the T50 (N: 50 μM, P: 5 μM) concentration level. In contrast, the nutrient uptake rates of both species continuously increased, indicating “luxury consumption”, i.e., excessive cellular storage not related to growth rate. The half-saturation constants (Ks) of C. furca for nitrate (0.49 μM) and phosphate (0.05 μM) were slightly higher than C. fusus (0.32 and 0.03 μM, respectively). We offer two reasons why the two Ceratium population densities were maintained at high levels in low nutrient conditions. First, these two species have a competitive advantage over other algal species because of low Ks values and specific characteristics for nutrient uptake such as luxury consumption. Their ability to obtain nutrients through alternative methods, such as phagotrophy, might contribute to bloom formation and population persistence. Second, the cell densities of both Ceratium species increased along with nitrate concentrations in the media even when phosphorus was held constant. In particular, the growth of C. furca was directly supported by various nitrogen sources such as nitrate, ammonium, and urea, although the highest growth rates were observed only in the nitrate-enriched cultures. Our field and laboratory results revealed that the growth rates of the two Ceratium species increased readily in high N:P nutrient conditions (i.e., conditions of P limitation) indicating an advantage over other algal species in phosphorus-limited environments such as Sagami Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号