首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 602 毫秒
1.
自由基生物化学概念   总被引:3,自引:0,他引:3  
自由基是一类具有高度活性的物质,可在细胞代谢过程中连续不断地产生,并参与生物体内正常的生理生化过程。但是,过量的自由基会造成生物体损伤,是引起多种疾病和生物衰老的重要原因。因此,对自由基的研究目前已成为国内外许多科学家极为关注的课题。  相似文献   

2.
水生生物体内抗氧化酶及其影响因素研究进展   总被引:5,自引:0,他引:5  
生物体在新陈代谢过程中,细胞内会产生少量的自由基,参与了机体内多种生理过程,具有重要的生理功能。但是在一些应激因子的作用下,体内产生的活性氧大量积累,将会对细胞产生损伤,抗氧化酶类在清除体内活性氧的过程中具有重要作用。在综述了抗氧化酶的分类、结构特点及相互间作用的基础上,阐述了水生生物体内抗氧化酶及其影响因素的研究进展。  相似文献   

3.
自由基对线粒体DNA的氧化损伤与衰老   总被引:41,自引:0,他引:41  
自由基是一类氧化剂,对生物具有多种损害作用.衰老的自由基学说是有关衰老机理的诸多学说之一.线粒体DNA组成结构特殊,易受自由基攻击;目前认为,线粒体DNA的氧化损伤是自由基引起衰老的分子基础.  相似文献   

4.
自由基是不配对的电子结构,具有极其活泼的化学特性,体内过剩的自由基可与细胞和生物大分子相互作用,从而引起机体的过氧化损伤。视网膜色素上皮处在高氧和光照环境中,其发挥生理功能时容易受氧化损伤。本文介绍了自由基的概念、自由基致视网膜色素上皮氧化损伤机制、一氧化氮自由基与视网膜色素上皮和抗氧化剂等方面的内容。  相似文献   

5.
本研究将爪蟾卵母细胞暴露于黄嘌呤氧化酶-次黄嘌呤(XO-HPX)反应系统,观察自由基对细胞膜及其乙酰胆碱(Ach)受体的损伤,结果表明,在自由基的作用下膜被动电学参数发生显著变化,其效果与XO-HPX的浓度和作用时间成正比,XO-HPX作用2h不影响膜功能,大于4h各项膜功能指标明显下降,Ach极化反应减弱,上升时间延长,去极化幅度下降,下降1/2时间缩短;超氧化物歧化酶(SOD)可消除自由基对上述膜参数的影响。枸杞多糖可以使损伤膜的被动电学参数改善,但对Ach去极化反应无恢复作用。结果提示,XO-HPX反应系统是通过产生超氧阴离子自由基造成细胞膜和Ach受体的损伤,枸杞多糖可对抗自由基对质膜的作用,但对M样受体无效。  相似文献   

6.
APE/Ref-1在中枢神经系统氧化应激反应中的保护作用   总被引:1,自引:0,他引:1  
化学性质活泼的自由基(free radicals)在保持产生和清除平衡的稳衡性动态下能履行正常的生理功能,但超过生物体的清除能力则可导致多种疾病.无嘌呤/无嘧啶核酸内切酶/氧化还原因子1(apurinic/apyrimidinic endonuclease/redox-factor 1, APE/Ref-1)是一种体内分布广泛的多功能蛋白质,通过修复DNA的无嘌呤/无嘧啶(apurinic/apyrimidinic, AP)部位参与DNA的碱基切除修复(base excision repair, BER).APE/Ref-1还可通过还原许多转录因子的半胱氨酸残基使之易于与DNA结合而调控真核细胞的基因表达.APE/Ref-1的抗细胞凋亡作用使其在自由基所致中枢神经系统病变如脑缺血-再灌注损伤、神经退行性病变、脑动脉粥样硬化中发挥了重要作用.  相似文献   

7.
血脑屏障的破坏是引起脑缺血损伤及继发水肿、出血、炎症的微观原因。缺血缺氧和再灌注过程产生的自由基,以及后续基质金属蛋白酶的激活,是破坏血脑屏障结构和功能的重要分子机制。因而,在脑缺血早期及时抑制自由基产生并清除自由基,抑制基质金属蛋白酶的活性,是降低脑缺血血脑屏障损伤及其并发症的关键环节。本文将从血脑屏障损伤的角度,概述自由基与基质金属蛋白酶在脑缺血损伤过程中的作用。  相似文献   

8.
自由基在生物体内的功能和抑制剂   总被引:10,自引:1,他引:9  
自由基(Freeradicals)作为活性生物体产生的一类特殊的小分子基团,它们可能与正常的生物大分子,膜,组织产生氧化等作用,对上述生物系统产生有利或不利的影响,这一过程是一种非常常见的生理过程,对这一生理过程的研究和探讨对揭示生物体的生命过程是非...  相似文献   

9.
应激性溃疡是一种临床上常见的疾病,死亡率很高。其病因包括烧伤、中枢神经系统损伤、感染、败血症、创伤、手术、休克以及心、肺、肝、肾衰竭等多种疾病。研究其发生机制具有重要的理论意义和临床意义。生物氧化可为机体的代谢提供能量,因此,需氧生物离不开氧。但在生物氧化过程中,机体也可产生一些与氧有关的自由基。如超氧自由基(superoxide free radical,O_2)氢氧自由基(hy-droxyi free radical,OH)等。而这些自由基对机体往往是有害的。如自由基可与生物膜磷脂分子中的多不饱和脂肪酸发生过氧化作用,从而破坏  相似文献   

10.
Fenton反应及其可能的活性产物   总被引:2,自引:0,他引:2  
活性氧对许多生物分子,如脂质、蛋白质和DNA等均可引起损伤,它与许多疾病过程相联系.由超氧阴离子自由基和过氧化氢所引起的许多损伤被认为与它们转变为反应活性更强的组分有关,这些组分包括羟自由基及可能的高价铁组分.实验材料及理论结果表明,当铁盐与过氧化氢混合时,除羟自由基产生以外,高价铁组分也被认为同时产生.Fenton试剂的活性中间体是一亲核加合物,其反应活性及其产物不同于游离态羟自由基的反应活性及产物.Fenton试剂的产物分布依赖于不同的过渡金属离子、不同的配位体、不同的反应底物以及不同的溶剂基体效应.  相似文献   

11.
Abstract: We have previously shown, using qualitative approaches, that oligodendroglial precursors are more readily damaged by free radicals than are astrocytes. In the present investigation we quantified the oxidative stress experienced by the cells using oxidation of dichlorofluorescin diacetate to dichlorofluorescein as a measure of oxidative stress; furthermore, we have delineated the physiological bases of the difference in susceptibility to oxidative stress found between oligodendroglial precursors and astrocytes. We demonstrate that (a) oligodendroglial precursors under normal culture conditions are under six times as much oxidative stress as astrocytes, (b) oxidative stress experienced by oligodendroglial precursors increases sixfold when exposed to 140 mW/m2 of blue light, whereas astrocytic oxidative stress only doubles, (c) astrocytes have a three times higher concentration of GSH than oligodendroglial precursors, (d) oligodendroglial precursors have >20 times higher iron content than do astrocytes, and (e) oxidative stress in oligodendroglial precursors can be prevented either by chelating intracellular free iron or by raising intracellular GSH levels to astrocytic values. We conclude that GSH plays a central role in preventing free radical-mediated damage in glia.  相似文献   

12.
Hydroxyl radical in living systems and its separation methods   总被引:11,自引:0,他引:11  
It has recently been shown that hydroxyl radicals are generated under physiological and pathological conditions and that they seem to be closely linked to various models of pathology putatively implying oxidative stress. It is now recognized that the hydroxyl radical is well-regulated to help maintain homeostasis on the cellular level in normal, healthy tissues. Conversely, it is also known that virtually every disease state involves free radicals, particularly the most reactive hydroxyl radical. However, when hydroxyl radicals are generated in excess or the cellular antioxidant defense is deficient, they can stimulate free radical chain reactions by interacting with proteins, lipids, and nucleic acids causing cellular damage and even diseases. Therefore, a confident analytical approach is needed to ascertain the importance of hydroxyl radicals in biological systems. In this paper, we provide information on hydroxyl radical trapping and detection methods, including liquid chromatography with electrochemical detection and mass spectrometry, gas chromatography with mass spectrometry, capillary electrophoresis, electron spin resonance and chemiluminescence. In addition, the relationships between diseases and the hydroxyl radical in living systems, as well as novel separation methods for the hydroxyl radical are discussed in this paper.  相似文献   

13.
Hemoglobin: A mechanism for the generation of hydroxyl radicals   总被引:4,自引:0,他引:4  
Oxyhemoglobin (HbO2) reduces Fe(III) NTA aerobically to become methemoglobin (metHb) and Fe(II)NTA. These conditions are favorable for the generation via Fenton chemistry of the hydroxyl radical that was measured by HPLC using salicylate as a probe. The levels of hydroxyl radicals generated are a function of both the percent metHb formed and the chemical nature of the buffer. The rates of formation of both metHb and hydroxyl radicals were dependent upon the concentration of Fe(III)NTA. Of the buffers tested, HEPES was the most effective scavenger of hydroxyl radicals while the other buffers scavenged in the order: HEPES > Tris > MOPS > NaCl ≈ unbuffered. The addition of catalase to remove H202 or bathophenanthroline to chelate Fe(II) inhibited virtually all hydroxyl radical formation. Carbonyl formation from free radical oxidation of amino acids was found to be 0.1 mol/mol of hemoglobin. These experiments demonstrate the ability of hemoglobin to participate directly in the generation of hydroxyl radicals mediated by redox metals, and provide insight into potential oxidative damage from metals released into the blood during some pathologic disorders including iron overload.  相似文献   

14.
Creatine kinase is a sulfhydryl containing enzyme that is particularly susceptible to oxidative inactivation. This enzyme is potentially vulnerable to inactivation under conditions when it would be used as a diagnostic marker of tissue damage such as during cardiac ischemia/reperfusion or other oxidative tissue injury. Oxidative stress in tissues can induce the release of iron from its storage proteins, making it an available catalyst for free radical reactions. Although creatine kinase inactivation in a heart reperfusion model has been documented, the mechanism has not been fully described, particularly with regard to the role of iron. We have investigated the inactivation of rabbit muscle creatine kinase by hydrogen peroxide and by xanthine oxidase generated superoxide or Adriamycin radicals in the presence of iron catalysts. As shown previously, creatine kinase was inactivated by hydrogen peroxide. Ferrous iron enhanced the inactivation. In addition, micromolar levels of iron and iron chelates that were reduced and recycled by superoxide or Adriamycin radicals were effective catalysts of creatine kinase inactivation. Of the physiological iron chelates studied, Fe(ATP) was an especially effective catalyst of inactivation by what appeared to be a site-localized reaction. Fe(ICRF-198), a non-physiological chelate of interest because of its putative role in alleviating Adriamycin-induced cardiotoxicity, also catalyzed the inactivation. Scavenger studies implicated hydroxyl radical as the oxidant involved in iron-dependent creatine kinase inactivation. Loss of protein thiols accompanied loss of creatine kinase activity. Reduced glutathione (GSH) provided marked protection from oxidative inactivation, suggesting that enzyme inactivation under physiological conditions would occur only after GSH depletion.  相似文献   

15.
Previous studies in our laboratory have suggested that an oxidation reaction is responsible for the actions of free radicals to decrease synaptic potentials. Recently we observed that free radicals both decreased depolarization-induced vesicular release and enhanced basal, nonvesicular release of the excitatory amino acid, [3H]L-glutamate. In order to evaluate the contribution of oxidative reactions to this latter effect, we evaluated the actions of the oxidizing agent chloramine-T on synaptosomal release of excitatory amino acids, using [3H]D-aspartate as the exogenous label. Basal and depolarization evoked [3H]D-aspartate release were calcium-independent and nonvesicular. Chloramine-T pretreatment significantly increased basal release, while having no effect on high K+-evoked release. These data suggest that an oxidative process can mimic the free radical increase of basal release, as well as the decrease in synaptic potentials. On the other hand, the calcium-independent-evoked release may involve a different mechanism. Our results demonstrate that under basal, nondepolarizing conditions, oxidative stress exerts an adverse effect on the presynaptic nerve terminal, resulting in an increased release of potentially damaging excitatory amino acid neurotransmitters.  相似文献   

16.
The relationship of oxidative stress with maximum life span (MLSP) in different vertebrate species is reviewed. In all animal groups the endogenous levels of enzymatic and non-enzymatic antioxidants in tissues negatively correlate with MLSP and the most longevous animals studied in each group, pigeon or man, show the minimum levels of antioxidants. A possible evolutionary reason for this is that longevous animals produce oxygen radicals at a low rate. This has been analysed at the place where more than 90% of oxygen is consumed in the cell, the mitochondria. All available work agrees that, across species, the longer the life span, the lower the rate of mitochondrial oxygen radical production. This is true even in animal groups that do not conform to the rate of living theory of aging, such as birds. Birds have low rates of mitochondrial oxygen radical production, frequently due to a low free radical leak in their respiratory chain. Possibly the low rate of mitochondrial oxygen radical production of longevous species can decrease oxidative damage at targets important for aging (like mitochondrial DNA) that are situated near the places of free radical generation. A low rate of free radical production can contribute to a low aging rate both in animals that conform to the rate of living (metabolic) theory of aging and in animals with exceptional longevities, like birds and primates. Available research indicates there are at least two main characteristics of longevous species: a high rate of DNA repair together with a low rate of free radical production near DNA. Simultaneous consideration of these two characteristics can explain part of the quantitative differences in longevity between animal species. Accepted: 12 December 1997  相似文献   

17.
In vivo total antioxidant capacity: comparison of different analytical methods   总被引:12,自引:0,他引:12  
Several methods have been developed to measure the total antioxidant capacity of a biological sample. The use of peroxyl or hydroxyl radicals as pro-oxidants in the oxygen radical absorbance capacity (ORAC) assay makes it different and unique from the assays that involve oxidants that are not necessarily pro-oxidants. An improvement in quantitation is achieved in the ORAC assay by taking the reaction between substrate and free radicals to completion and using an area-under-curve technique for quantitation compared to the assays that measure a lag phase. The interpretation of the changes in plasma or serum antioxidant capacity becomes complicated by the different methods used in detecting these changes. The interpretation also depends upon the conditions under which the antioxidant capacity is determined because the measurement reflects outcomes in a dynamic system. An increased antioxidant capacity in plasma or serum may not necessarily be a desirable condition if it reflects a response to increased oxidative stress. Similarly, a decrease in plasma or serum antioxidant capacity may not necessarily be an undesirable condition if the measurement reflects decreased production of reactive species. Because of these complications, no single measurement of antioxidant status is going to be sufficient, but a "battery" of measurements, many of which will be described in Forum articles, will be necessary to adequately assess oxidative stress in biological systems.  相似文献   

18.
Polyphenols are widely distributed in various fruits, vegetables and seasonings. It is well known that they have several physiological effects due to their antioxidative activities. Their activities depend on structural characteristics that favour the formation of their corresponding stable radicals. During the examination at which pH values, the polyphenol radicals are stabilized, we confirmed that polyphenol radicals were stabilized in NaHCO3/Na2CO3 buffer (pH 10) rather than in physiological pH region. Then, we measured electron spin resonance (ESR) spectra at pH 10 to examine the characteristics of free radical species derived from caffeic acid (CA) with an unsaturated side chain, dihydrocaffeic acid (DCA) with a saturated side chain, chlorogenic acid (ChA) and rosmarinic acid (RA). In analyzing the radical structures, ESR simulation, determinations of macroscopic and microscopic acid dissociation constants and molecular orbital (MO) calculation were performed. In CA, the monophenolate forms were assumed to participate in the formation of free radical species, while in DCA, the diphenol form and the monophenolate forms were presumed to contribute to the formation of free radical species. On the basis of the results, we propose the possible structures of the free radical species formed from polyphenols under alkaline conditions.  相似文献   

19.
Role of oxygen free radicals in carcinogenesis and brain ischemia   总被引:39,自引:0,他引:39  
R A Floyd 《FASEB journal》1990,4(9):2587-2597
Even though oxygen is necessary for aerobic life, it can also participate in potentially toxic reactions involving oxygen free radicals and transition metals such as Fe that damage membranes, proteins, and nucleic acids. Oxygen free radical reactions and oxidative damage are in most cases held in check by antioxidant defense mechanisms, but where an excessive amount of oxygen free radicals are produced or defense mechanisms are impaired, oxidative damage may occur and this appears to be important in contributing to several pathological conditions including aging, carcinogenesis, and stroke. Several newer methods, such as in vivo spin-trapping, have become available to monitor oxygen free radical flux and quantitate oxidative damage. Using a combination of these newer methods collectively focused on one model, recent results show that oxidative damage plays a key role in brain injury that occurs in stroke. Subtle changes, such as oxidative damage-induced loss of glutamine synthetase activity, may be a key event in stroke-induced brain injury. Oxygen free radicals may play a key role in carcinogenesis by mediating formation of base adducts, such as 8-hydroxyguanine, which can now be quantitated to very low levels. Evidence is presented that a new class of free radical blocking agents, nitrone spin-traps, may help not only to clarify if free radical events are involved, but may help prevent the development of injury in certain pathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号