首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
《生物资源》1977,(4):4-6
<正> 树脂交换基的型式和上柱液的 pH 对氨基酸的分离有着十分重要的影响,根据资料报道,强酸性阳离子交换树脂的交换基为游离酸型如 H~+是其交换基时,全部氨基酸均可以进行交换吸附;交换基为盐型如 Na~+、NH_4~+是其交换基时,且上柱液的 pH 又在中性或微碱性时,只有碱性氨基酸可以进行交换吸附。但是,对于猪毛酸水解,提取胱氨酸后 pH4.8母液中精氨酸的生产,树脂交换基采用何种型式阳上柱液的 pH 以多少为最合适呢?为此,我们将732树脂处理成 H~+、Na~+、NH_4~+三种型式和调上柱液的 pH4.8、6.5,进行了精氨酸纯度和产量测定,我们又用稀氨水洗脱,绘制了精氨酸洗脱曲线。  相似文献   

2.
大孔NH_4~+型阳离子交换树脂离子交换法提取谷氨酸的研究   总被引:2,自引:1,他引:1  
采用四种大孔NH+4型阳离子交换树脂D001、D61、D72、D113从等电点结晶母液中回收谷氨酸,其中D61树脂取得了良好的交换效果。D61树脂吸附谷氨酸的离子交换等温线可以用Freundlich方程表示q=5.339(C*)0.4478。将D61树脂上柱交换,测出了不同空间流速下的穿透曲线,得到了适宜的流速为2.16ml/ml.h。  相似文献   

3.
高雁  李春  娄恺 《生物技术》2007,17(5):42-45
目的:阐明阳离子交换树脂吸附甜菜碱的机理和特性,获得从甜菜废糖蜜中提取分离甜菜碱的工艺路线。方法:采用雷氏盐比色法测定甜菜碱含量,根据吸附等温线的图形拟合方程。结果:阳离子交换树脂吸附甜菜碱是指数型的吸附等温线类型,并且可以与Freundlich方程很好地拟合。采用阳离子交换树脂从废糖蜜中分离甜菜碱,树脂动态吸附量最大为40mg/ml,吸附流速为40ml/min,盐酸洗脱浓度为1.5mol/L,洗脱速度为30ml/min进行解吸时,解吸率为33%,甜菜碱提取率为58%。结论:阳离子交换树脂吸附甜菜碱的特性为从废糖蜜中提取分离甜菜碱提供了理论依据,使工艺操作简单、易行。  相似文献   

4.
离子交换树脂纯化还原型谷胱甘肽(GSH)的研究   总被引:4,自引:0,他引:4  
潘飞  邱雁临 《生物技术》2006,16(4):38-41
研究005×7阳离子交换树脂分离纯化谷胱甘肽(GSH)的工艺条件。考察了005×7阳离子交换树脂对GSH的静态吸附量,洗脱时铵离子浓度、洗脱流速等对分离纯化产品GSH的影响。根据试验结果确定最佳工艺条件为:最适上柱pH为3.0,洗脱流速为:2.4ml/min,洗脱液为0.5mol/L的NH4Cl溶液;收集洗脱液,浓缩,乙醇沉淀,真空冷冻干燥,用高效液相色谱检测产品GSH,所得GSH纯度为60.8%,GSH的平均收得率为61.3%。说明此分离纯化GSH工艺可行。  相似文献   

5.
研究了335弱碱性阴离子交换树脂对甘草酸的吸附过程。拟合得到的吸附等温线方程为:c1/[q×(329-c1)]=0.035 8 1.872(c1/329),符合BET方程,计算得出335树脂的饱和吸附量是524.2 mg.g-1。通过吸附动力学曲线的研究,表明该树脂属于慢型吸附类型,得到树脂对甘草酸的吸附穿透曲线,穿透容量为42.00 mg.g-1,饱和容量近似为203.0 mg.g-1,交换柱的利用率小于0.206 9。用碱性洗脱液不易将树脂上吸附的甘草酸洗脱下来,利于甘草浸膏溶液中甘草酸和其它组分的分离。  相似文献   

6.
大孔树脂吸附分离烟草绿原酸的研究   总被引:1,自引:0,他引:1  
通过比较8种大孔吸附树脂对烟草绿原酸的吸附分离性能,筛选出适合分离烟草绿原酸的树脂,并对其动态吸附特性进行研究.结果表明,XDA-1树脂对烟草绿原酸不仅吸附量大,而且解吸率高,适合烟草绿原酸的分离富集.该树脂吸附分离烟草绿原酸的工艺参数为:上柱液浓度3.5 mg/mL,pH 3.0,流速3倍柱床体积/h;以6倍柱床体积的40%乙醇进行洗脱,解吸附效果最佳,绿原酸总回收率为80.06%,初步吸附分离得到的产品中绿原酸含量为39.20 g/100 g.  相似文献   

7.
发酵液中L-色氨酸分离纯化工艺研究   总被引:5,自引:0,他引:5  
通过静态吸附实验,考察了温度、pH值对001×7阳离子交换树脂平衡吸附量的影响,并测定了吸附动力学曲线。通过动态实验,测定了动态吸附曲线和洗脱曲线。最后确定了001×7阳离子交换树脂分离纯化L-色氨酸的最佳工艺条件:用001×7阳离子交换树脂吸附L-色氨酸,以浓度为2 mol.L-1氨水进行洗脱,收集的流份经D315阴离子交换树脂脱色,浓缩结晶后得L-色氨酸成品,总提取率为73.0%。  相似文献   

8.
大孔吸附树脂分离富集苜蓿皂甙的研究   总被引:2,自引:0,他引:2  
本项工作以对苜蓿皂甙的吸附量和解吸率为指标筛选大孔吸附树脂。研究结果表明,X-5吸附树脂具有较好的吸附性能和解吸效果。研究应用正交试验方法进一步对大孔吸附树脂分离纯化苜蓿皂甙的工艺条件进行试验分析,确定苜蓿皂甙分离富集的最佳操作条件为:上样浓度8mg/mL,色谱柱的径高比1∶7,药材-树脂比例1∶3;吸附完全后,先以水洗脱,除去杂质,再以50%乙醇洗脱,可以得到纯度较好的苜蓿皂甙。  相似文献   

9.
茶氨酸提取纯化工艺研究   总被引:25,自引:0,他引:25  
系统研究了从茶多酚工业废液中提取纯化茶氨酸的工艺。采用絮凝、吸附、阳离子树脂交换、重结晶工艺来分离纯化茶氨酸。结果表明,絮凝能有效的去除茶多酚工业废液中的蛋白质等杂质,杂质的去除率为50%;吸附能进一步去除色素、多酚类物质及大分子有机物;阳离子交换树脂能较专-吸附氨基酸。茶多酚工业废液经絮凝→吸附→阳离子树脂交换工艺可得纯度50%的茶氨酸,得率为1.8%;通过重结晶可得到纯度90%的茶氨酸,得率为0.8%。  相似文献   

10.
用离子交换树脂分离、提纯L-脯氨酸的研究   总被引:2,自引:0,他引:2  
本文就应用732型阳离子交换树脂分离、提纯L-脯氨酸水溶液这一课题进行了研究。最后通过正交试验确定分离、提纯的最佳条件是,上柱时L脯氨酸水溶液的pH值为3~4;洗脱剂氨水的浓度为1.6N;洗脱速度为55毫升/分。并分别作出了洗脱剂氨水浓度为1.6N和0.4N时的洗脱曲线。  相似文献   

11.
The pasting and gel textural properties of corn starch in syrup at different concentrations were investigated by Rapid Visco Analyzer (RVA) and Texture profile analysis (TPA) tests. The results showed that the pasting temperatures of corn starch greatly increased, especially at higher sugar concentration. Increasing concentration of syrup caused an increase in peak, trough and final viscosity of corn starch. Peak viscosity and the disintegration rate of starch increased in the following order: fructose syrup> maltose syrup> glucose syrup. Increasing syrup concentration to 13%, 25% and 50% resulted in a lower retrogradation rate than the control. When the maltose syrup concentration increased to 50%, the retrogradation rate decreased to 14.30% from 33.38%. The highest hardness was observed when the syrup concentration was 25%. There was a particular low hardness when the concentration of syrup was 50%. The springiness of starch gels in syrup was similar at different concentrations.  相似文献   

12.
Continuous production of isomalto-oligosaccharides from maltose syrup by the permeabilized cells ofAureobasidium pullulans immobilized into calcium alginate gel was studied using a column reactor. The immobilized cell column maintained its full activity over 45 days when the reactor was operated at a velocity of 0.1 h–1 at 50°C using 60%(w/v) maltose syrup as a substrate, and the maximum productivity achieved was around 60 g/1h.  相似文献   

13.
Millet amylase formed during malting was used for teh saccharification of cassava (Manihot esculenta) into glucose syrup. The resulting syrup was also fermented to ethanol and citric acid. The maximum α-amylase activity occurred within 30 hours of millet germination at an optimum pH 8.0 and 40°C. The T. reesei enzymes enhanced the rate of cassava hydrolysis and paper chromatography revealed the presence of maltose, glucose and galactose in the cassava hydrolysate. The low cost of millet coupled with the fact that it is readily available makes it an economic source of amylase.  相似文献   

14.
Corn syrups have been evaluated in media for embryogenesis, androgenesis and the production of secondary metabolites from plant tissue culture. In the systems examined, higher productivity was obtained with media containing corn syrups than with comparable media containing glucose or sucrose. Corn syrup did not increase growth of unorganized cell cultures. Increased productivity therefore reflects a syrup-mediated promotion of cell differentiation. The effects of corn syrup on increasing yields of secondary metabolites were evident only after several passages in syrup-containing medium. This shows the importance of monitoring production over several passages to determine the effect of different carbon sources on secondary metabolite production. Superiority of the syrup is due primarily to the component sugars maltose and glucose. Mixtures of these sugars gave higher yields of secondary products than either sugar used alone.Abbreviations DP degree of polymerization  相似文献   

15.
大孔吸附树脂分离虎杖中白藜芦醇的研究   总被引:7,自引:0,他引:7  
目的:采用大孔吸附树脂对虎杖粗提物中白藜芦醇进行初步富集、分离和纯化.方法:考察18种树脂对白藜芦醇的吸附量和解吸率,选择吸附量大、解吸率高的数种树脂进行吸附动力学研究,确定最佳的脱附工艺.结论:HPD-500树脂对白藜芦醇的吸附量可达58.67mg/g,解吸率为92.6%,经大孔吸附树脂的吸附与解吸,白藜芦醇的含量由粗提物中9.25%提高至39.5%.  相似文献   

16.
The hydrolysis of the three most important disaccharides: sucrose, maltose and cellobiose, has been comparatively studied in mild conditions (50-80°C) in water over several solid acid catalysts. Strong acidic resins (Amberlite A120 and A200), mixed oxides (silica-alumina and silica-zirconia), and niobium-containing solids (niobic acid, silica-niobia, and niobium phosphate) have been chosen as acid catalysts. The hydrolysis activity was studied in a continuous reactor with fixed catalytic bed working in total recirculation mode. Rate constants and activation parameters of the hydrolysis reactions have been obtained and discussed comparing the reactivity of the α-1,β-2-, α-1,4-, and β-1,4-glycosidic bonds of the employed disaccharides. The following order of reactivity was found: sucrose > maltose > cellobiose. The sulfonic acidic resins, as expected, gave complete sucrose conversion at 80°C and good conversions for cellobiose and maltose. Among the other catalysts, niobium phosphate provided the most interesting results toward the disaccharide hydrolysis, which are here presented for the first time. Relations between activity and surface acid properties are discussed.  相似文献   

17.
Kinetics of enzymatic hydrolysis of starch to high maltose syrup (by simultaneous use of -amylase and isoamylase) has been studied here. Main product of dual-enzyme system, maltose, showed a competitive inhibition effect on apparent overall activity of enzymes. Thermal inactivation behavior could be expressed by an empirical exponential function. A mathematical model developed here has described performance of an ultrafiltration reactor (UFR) system by considering effects of product inhibition, enzyme deactivation, and formation of side-product. Effects of concentrations in substrate and enzymes, with residence time of substrate on the performance of UFR has been investigated. Proposed model has been successfully verified in simulating experimental data under various conditions. Operation stability of UFR has also been studied.  相似文献   

18.
The goal of this study was to develop a maltose-producing enzyme using protein engineering and to clarify the relation between the substrate specificity and the structure of the substrate-binding site of dimeric maltogenic amylase isolated from Thermus (ThMA). Ala290 at the interface of ThMA dimer in the vicinity of the substrate-binding site was substituted with isoleucine, which may cause a structural change due to its bulky side chain. TLC analysis of the action pattern of the mutant ThMA-A290I, using maltooligosaccharides as substrates, revealed that ThMA-A290I used maltotetraose to produce mostly maltose, while wild-type ThMA produced glucose as well as maltose. The wild-type enzyme eventually hydrolyzed the maltose produced from maltotetraose into glucose, but the mutant enzyme did not. For both enzymes, the cleavage frequency of the glycosidic bond of maltooligosaccharides was the highest at the second bond from the reducing end. The mutant ThMA had a much higher Km value for maltose than the wild-type ThMA. The kinetic parameter, kcat/Km) of ThMA-A290I for maltose was 48 times less than that of wild-type ThMA, suggesting that the subsite affinity and hydrolysis mode of ThMA were modulated by the residue located at the interface of ThMA dimer near the active site. The conformational rearrangement in the catalytic interface probably led to the change in the substrate binding affinity of the mutant ThMA. Our results provide basic information for the enzymatic preparation of high-maltose syrup.  相似文献   

19.
A crude preparation of thermostable pullulanase from Thermococcus hydrothermalis produced glucose and maltose syrups from starches. The use of pullulanase reduced the saccharification reaction time up to 37.5%. In the case of maltose syrup production, the addition of pullulanase to - amylase led to an almost total hydrolysis of the substrate (dextrins) which is translated into a rise in the yield of the whole sugars from 6.5 to 14%.  相似文献   

20.
Naringenin, a natural plant flavonoid found in citrus fruits, has been reported to exhibit a wide range of pharmacological functions, including anticancer, antioxidant, antiatherogenic, antithrombotic, and vasodilator activities. Naringenin can be produced from the naringinase (NGase)-catalyzed enzymatic hydrolysis of naringin. However, the poor solubility of naringin in aqueous systems considerably limits the efficiency of naringenin biocatalysis. In this work, a novel substrate adsorption system was proposed for naringin adsorption to increase the efficiency of naringin hydrolysis and naringenin production. Three Amberlite macroporous resins, namely, XAD-4, XAD-7HP and XAD-16, were investigated for their naringin adsorption capacities and effects on NGase hydrolysis. Results indicated that the physical properties of the resins played a critical role in naringin adsorption and naringenin enzymatic synthesis. Naringin hydrolysis was carried out using free and adsorbed substrates. The substrate adsorption strategy could increase the catalytic efficiency at a high naringin concentration. In addition, the reaction conditions for enzymatic naringenin synthesis were optimized, and naringenin was prepared at a liter scale with a high substrate concentration. These results suggested that substrate adsorption is a promising strategy to increase the enzymatic hydrolysis efficiency of naringenin in aqueous systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号