首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 178 毫秒
1.
大肠杆菌碱性磷酸酶的体外定向进化研究   总被引:8,自引:1,他引:7  
大肠杆菌碱性磷酸酶(E.coli alkaline phosphatase, EAP, EC 3.1.3.1)是一个非特异性二聚体磷酸单酯酶. 采用易错聚合酶链反应(error prone PCR)的方法,在原有高活力突变株的基础上,对EAP远离活性中心催化三联体的区域进行定向进化,经两轮error prone PCR,获得催化活力较亲本D101S突变株提高3倍、较野生型酶提高35倍的进化酶4-186,并对该酶的催化动力学特征进行了分析. 进化酶基因的DNA测序表明4-186含两个有义氨基酸置换:K167R和S374C,二者既不位于底物结合位点,也不位于酶的金属离子结合位点.  相似文献   

2.
本研究旨在探讨L-赖氨酸脱羧酶Ldc1E关键氨基酸在底物识别和催化过程中的作用;通过生物信息学方法选择突变位点,并利用直接定点突变技术,完成了6个关键氨基酸残基突变和功能鉴定研究。突变酶D692N最适温度和pH值分别为40℃和6.5。突变酶D692N比野生型Ldc1E对高温具有更强的耐受性,在40℃~55℃温浴1 h后剩余酶活力达到35%以上,在60℃温浴1 h后仍然保留20%的酶活力;而野生型酶Ldc1E在50℃以上温浴1 h后几乎失活。此外,50 mmol/L DMSO、5 mmol/L Al~(3+)和Ca~(2+)对突变酶的酶活力有激活作用,而Al3+对野生型酶Ldc1E具有明显抑制作用。突变酶D692N的分子动力学常数K_m升高了1.78倍,k_(cat)下降了20.2倍。突变酶S221A、H245A、D330A、H366A、F607Y经检测酶催化活性丧失。研究结果表明氨基酸残基位点D692对酶与底物的结合具有重要影响;而S221、H245、D330、H366、F607是Ldc1E酶活性能够体现的关键氨基酸位点,不可替换。本研究为探究L-赖氨酸脱羧酶的结构与功能关系提供理论参考。  相似文献   

3.
本研究用鸟枪法构建了枯草芽孢杆菌(Bacillus subtilis)HB002的基因组文库,经平板法筛选得到了六株能水解合成底物对硝基苯αD葡萄糖吡喃糖苷的阳性克隆,经鉴定均含克隆了寡聚1,6葡萄糖苷酶基因的重组质粒(命名为pHBM001~pHBM006)。选择pHBM003,对其插入片段测序分析,此片段内有一编码561个氨基酸的开放阅读框,该蛋白质的计算分子量为65985kD。HB002的寡聚1,6葡萄糖苷酶的氨基酸序列与Bacillus sp.和凝结芽孢杆菌(Bacillus coagulans)的寡聚1,6葡萄糖苷酶的氨基酸序列一致性分别为81%、67%,相似性分别为89%、79%。从pHBM003中扩增出寡聚1,6葡萄糖苷酶基因,克隆到pBV220上,转化大肠杆菌(Escherichia coli)DH5α,得到三个能水解对硝基苯αD葡萄糖吡喃糖苷的阳性克隆HBM0031~HBM0033,将此三个菌株热诱导表达,SDSPAGE电泳可检测到特异表达的蛋白质,其中HBM0031、HBM0032表达的蛋白约66kD,为完整的寡聚1,6葡萄糖苷酶,而HBM0033表达的蛋白质偏小;表达的蛋白质均有寡聚1,6葡萄糖苷酶活性。  相似文献   

4.
本研究用鸟枪法构建了枯草芽孢杆菌(Bacillus subtilis)HB002的基因组文库,经平板法筛选得到了六株能水解合成底物对-硝基苯-α-D-葡萄糖吡喃糖苷的阳性克隆,经鉴定均含克隆了寡聚-1,6-葡萄糖苷酶基因的重组质粒(命名为pHBM001-pHBM006)。选择pHBM003,对其插入片段测序分析,此片段内有一编码561个氨基酸的开放阅读框,该 蛋白质的计算分子量为65.985kD。HB002的寡聚-1,6-葡萄糖苷酶的氨基酸序列与Bacillus sp.和凝结芽孢杆菌(Bacillus coagulans)的寡聚-1,6-葡萄糖苷酶的氨基酸序列一致性分别为81%、67%,相似性分别为89%、79%。从pHBM003中扩增出寡聚-1,6-葡萄糖苷酶基因,克隆到pBV220上,转化大肠杆菌(Escherichia coli)DH5α,得到三个能水解对-硝基苯-α-D-葡萄糖吡喃糖苷的阳性克隆HBM003-1~HBM003-3,将此三个菌株热诱导表达,SDS-PAGE电泳可检测到特异表达的蛋白质,其中HBM003-1、HBM003-2表达的蛋白约66kD,为完整的寡聚-1,6-葡萄糖苷酶,而HBM003-3表达的蛋白质偏小;表达的蛋白质均有寡聚-1,6-葡萄糖苷酶活性。  相似文献   

5.
王飞  李周坤  周杰  崔中利 《微生物学报》2015,55(12):1584-1592
摘要:【目的】DamH是一种具有酯酶活性的酰胺水解酶,其非活性中心氨基酸残基的突变对重组酶可溶性表达和比酶活产生一定的影响。拟探索DamH的活性中心氨基酸残基构成,并对其非活性中心氨基酸残基突变对可溶性表达和比酶活的影响进行研究。【方法】通过重叠延伸的方法对DamH可能的活性中心氨基酸S149、E244和H274以及非活性中心氨基酸D165及N192进行定点突变,通过静息细胞测活验证了S149、E244和H274 在催化2-氯-N-(2’-甲基-6’-乙基苯基)乙酰胺(CMEPA)水解反应中的作用,通过Ni2+- NTA亲和层析对D165及N192突变子进行纯化,对突变株和野生型比酶活进行比较。【结果】研究表明S149A使DamH的CMEPA 水解酶活性下降为野生型的5%,E244A和H274A突变导致其失去活性;D165P和N192P突变影响到DamH的可溶性表达,表达量分别为野生型的28.2%和20.8%,突变子N192P、D165P比酶活分别为野生型比酶活的55.5%和49.7%。【结论】DamH催化酯类底物和芳基酰胺类底物可能共用同一活性中心S149、E244和H274,其两个α螺旋的转角处氨基酸侧链极性和刚性结构的改变对可溶性表达以及活性有很大的影响。  相似文献   

6.
采用易错PCR技术对来源于红酵母Rhodotorula gracilis的D-氨基酸氧化酶基因(RgDAAO)进行突变,构建并优化了突变株文库;结合48深孔板的高通量筛选方法,获得突变株M3217,其V_(max)相对于野生型提高了16.8%。对测序结果进行分析,发现突变酶基因序列中有5处点突变,其中3处发生了氨基酸置换,分别为:D242V/Q253R/D304V。利用Swiss-Model对突变株M3217进行三维结构模拟,结果显示所有突变位点都不在催化活性中心的附近,特别是V304的位置在连接F5和F6两个β折叠股的长loop环上。推测D304V这一突变位点很可能增强了RgDAAO二聚体形态的稳定性,或是增强了与辅酶FAD的结合能力,从而间接提高了全酶的催化活力。  相似文献   

7.
【目的】结核分枝杆菌同源重组效率很低,突变株的构建需要半年之久。本研究的目的在于构建一种用于在结核分枝杆菌中进行基因快速敲除、且易于筛选的高效同源重组系统。【方法】野生型结核分枝杆菌转化含有SacB反向选择标记、且能诱导表达两种同源重组酶gp60和gp61的质粒pSL002。然后分别将靶基因的两个同源臂克隆入到含有hyg(潮霉素)抗性基因和gfp(绿色荧光蛋白)基因的重组质粒pSL001中,再将靶基因同源臂-loxP-hyg-gfp-loxP片段从pSL001切下,转化含有pSL002的野生型结核分枝杆菌,一步得到双交换突变株。再将含有SacB反向选择标记、且表达Cre重组酶的质粒pSL003转化入结核分枝杆菌双交换突变株中,切除两个loxP之间的hyg抗性基因和gfp基因,得到无痕缺失突变株。最后利用含有2%蔗糖的琼脂糖平板去除含有SacB反向选择标记的质粒pSL002和pSL003。【结果】在结核分枝杆菌中成功构建了高效同源重组系统,利用该系统构建了rv1364c、pstP跨膜区、pstP胞外区三个突变株,得到双交换突变株的效率为25%-62.5%,从双交换突变株得到无痕缺失突变株的效率为100%。通过gfp作为荧光标记基因,利用NightSea BlueStar蓝光手电筒和滤光眼镜,可以对平板上的基因缺失株直接进行快速判定。【结论】该同源重组系统利用gp60和gp61重组酶,在时间上将在结核分枝杆菌中无痕缺失突变株的构建从6个月缩短到3个月。这是目前为止在结核分枝杆菌中构建突变株最快且效率最高的方法,为加速分枝杆菌功能基因组的研究提供了新的遗传工具。  相似文献   

8.
枯草杆菌蛋白酶E的蛋白质工程   总被引:2,自引:0,他引:2  
用定点突变和随机突变的方法,对枯草杆菌碱性蛋白酶E基因进行改造。突变后的基因插入大肠杆菌-枯草杆菌穿梭质粒pBE-2中,在碱性和中性蛋白酶缺陷型的枯草杆菌DBl04中进行表达,得到突变种的碱性蛋白酶.它们的突变位点分别是(M222A)、(M222A、N118S)、(M222A、N118S、Q103R)、(M222A、N118S、Q103R、D60N)。各突变种酶的性质测定 结果表明.M222A突变使酶抗氧化,N118S突变使酶增加热稳定性,Q103R和D60N突变虽然能增加酶的比活,但使酶的热稳定性大大下降,尤其是D60N突变使酶变得极不稳定。野生型碱性蛋白酶与(M222A)突变种的等电点均为8.92.而M222A,N118S)。(M222A,N118S ,Ql03R)和(M222A,118S.Q103R,D60N)突变酶分别为8.88.9.10和9.17。用Nsuc-AAPF-pNA作为底物时酶反应景适pH值为7.5~9.5,而用酪蛋白底物时最适pH值为10~12。  相似文献   

9.
【目的】通过定点突变探究腾冲嗜热厌氧菌MB4中生物合成型丙氨酸消旋酶Tt Alr底物通道内氨基酸位点A172和S173的功能。【方法】利用定点突变PCR技术构建突变体,通过亲和层析法纯化酶蛋白,采用D-氨基酸氧化酶偶联法检测各突变蛋白的活性及其稳定性。【结果】通过定点突变PCR成功得到8个突变体,酶学特性分析发现,A172位点突变为丝氨酸(S)后酶蛋白的相对活性有所提升,但含有该位点突变的酶蛋白稳定性均大幅下降;S173位点突变为天门冬氨酸(D)后导致突变体蛋白的最适反应温度提升了15°C,半衰期大幅延长,但相对活性明显下降。【结论】丙氨酸消旋酶Tt Alr底物通道内A172和S173位点均是影响酶蛋白催化活性和稳定性的关键位点。  相似文献   

10.
[目的]对鞘糖脂内切糖苷酶EGCaseⅡ进行半理性设计,获得高水解活性突变体。[方法]用半理性设计方法进行突变库设计,利用HPLC对突变库进行筛选,随后对阳性突变体进行动力学及底物谱表征,并利用结构建模对活性提高的分子机制进行解析。[结果]获得了对鞘糖脂GM1、GM3水解活性提高的突变体S63G/D311E、I276L/D311V,活性分别提高为野生型的25.3倍、11.8倍。酶动力学表征显示,S63G/D311E的K_M由0.17 mmol/L降低到0.06 mmol/L,kcat由5.5 min~(-1)增大到50.3 min~(-1)。酶-底物复合物模式结构分析表明,D311E、D311V、I276L这几种突变更有利于酶与底物结合,从而提高酶活性。[结论]通过半理性设计成功获得对GM1和GM3水解活性分别提高25.3倍和11.8倍的EGCaseⅡ突变体。  相似文献   

11.
Yun CH  Miller GP  Guengerich FP 《Biochemistry》2000,39(37):11319-11329
Mutants with altered activities were obtained from random libraries of human cytochrome P450 (P450) 1A2 with the putative substrate recognition sequences (SRS) mutated [Parikh, A., Josephy, P. D., and Guengerich, F. P. (1999) Biochemistry 38, 5283-5289]. Six mutants from SRS 2 (E225I, E225N, F226I, and F226Y) and 4 (D320A and V322A) regions were expressed as oligohistidine-tagged proteins, purified to homogeneity, and used to analyze kinetics of individual steps in the catalytic cycle, to determine which reaction steps have been altered. When the wild-type, E225I, E225N, F226I, F226Y, D320A, and V322A proteins were reconstituted with NADPH-P450 reductase, rates of 7-ethoxyresorufin O-deethylation and phenacetin O-deethylation were in accord with those expected from membrane preparations. Within each assay, the values of k(cat)/K(m) varied by 2-3 orders of magnitude, and in the case of E225I and E225N, these parameters were 7-8-fold higher than for the wild-type enzyme. The coupling efficiency obtained from the rates of product formation and NADPH oxidation was low (<20%) in all enzymes. No correlation was found between activities and several individual steps in the catalytic cycle examined, including substrate binding, reduction kinetics, NADPH oxidation, and H(2)O(2) formation. Quench reactions did not show a burst for either phenacetin O-deethylation or formation of the acetol, a minor product, indicating that rate-determining steps occur prior to product formation. Inter- and intramolecular kinetic deuterium isotope effects for phenacetin O-deethylation were 2-3. In the case of phenacetin acetyl hydroxylation (acetol formation), large isotope effects [(D)k(cat) or (D)(k(cat)/K(m)) > 10] were observed, providing evidence for rate-limiting C-H bond cleavage. We suggest that the very high isotope effect for acetol formation reflects rate-limiting hydrogen atom abstraction; the lower isotope effect for O-deethylation may be a consequence of a 1-electron transfer pathway resulting from the low oxidation potential of the substrate phenacetin. These pre-steady-state, steady-state, and kinetic hydrogen isotope effect studies indicate that the rate-limiting steps are relatively unchanged over an 800-fold range of catalytic activity. We hypothesize that these SRS mutations alter steps leading to the formation of the activated Michaelis complex following the introduction of the first electron.  相似文献   

12.
Identifying key structural features of cytochromes P450 is critical in understanding the catalytic mechanism of these important drug-metabolizing enzymes. Cytochrome P450BM-3 (BM-3), a structural and mechanistic P450 model, catalyzes the regio- and stereoselective hydroxylation of fatty acids. Recent work has demonstrated the importance of water in the mechanism of BM-3, and site-specific mutagenesis has helped to elucidate mechanisms of substrate recognition, binding, and product formation. One of the amino acids identified as playing a key role in the active site of BM-3 is alanine 328, which is located in the loop between the K helix and β 1-4. In the A328V BM-3 mutant, substrate affinity increases 5-10-fold and the turnover number increases 2-8-fold compared to wild-type enzyme. Unlike wild-type enzyme, this mutant is purified from E. coli with endogenous substrate bound due to the higher binding affinity. Close examination of the crystal structures of the substrate-bound native and A328V mutant BMPs indicates that the positioning of the substrate is essentially identical in the two forms of the enzyme, with the two valine methyl groups occupying voids present in the active site of the wild-type substrate-bound structure.  相似文献   

13.
P450 monooxygenases from microorganisms, similar to those of eukaryotic mitochondria, display a rather narrow substrate specificity. For native P450 BM-3, no other substrates than fatty acids or an indolyl-fatty acid derivative have been reported (Li, Q.S., Schwaneberg, U., Fischer, P., Schmid, R.D., 2000. Directed evolution of the fatty-acid hydroxylase P450BM-3 into an indole-hydroxylating catalyst. Chem. Eur. J. 6 (9), 1531-1536). Engineering the substrate specificity of Bacillus megaterium cytochrome P-450 BM3: hydroxylation of alkyl trimethylammonium compounds. Biochem. J. 327, 537-544). We thus were quite surprised to observe, in the course of our investigations on the rational evolution of this enzyme towards mutants, capable of hydroxylating shorter-chain fatty acids, that a triple mutant P450 BM-3 (Phe87Val, Leu188-Gln, Ala74Gly, BM-3 mutant) could efficiently hydroxylate indole, leading to the formation of indigo and indirubin (Li, Q.S., Schwaneberg, U., Fischer, P., Schmid, R.D., 2000. Directed evolution of the fatty-acid hydroxylase P450BM-3 into an indole-hydroxylating catalyst. Chem. Eur. J. 6 (9), 1531-1536). Indole is not oxidized by the wild-type enzyme; it lacks the carboxylate group by which the proper fatty acid substrates are supposed to be bound at the active site of the native enzyme, via hydrogen bonds to the charged amino acid residues Arg47 and Tyr51. Our attempts to predict the putative binding mode of indole to P450 BM-3 or the triple mutant by molecular dynamics simulations did not provide any useful clue. Encouraged by the unexpected activity of the triple mutant towards indole, we investigated in a preliminary, but systematic manner several alkanes, alicyclic, aromatic, and heterocyclic compounds, all of which are unaffected by the native enzyme, for their potential as substrates. We here report that this triple mutant indeed is capable to hydroxylate a respectable range of other substrates, all of which bear little or no resemblance to the fatty acid substrates of the native enzyme.  相似文献   

14.
Rational evolution of a medium chain-specific cytochrome P-450 BM-3 variant   总被引:3,自引:0,他引:3  
The single mutant F87A of cytochrome P-450 BM-3 from Bacillus megaterium was engineered by rational evolution to achieve improved hydroxylation activity for medium chain length substrates (C8-C10). Rational evolution combines rational design and directed evolution to overcome the drawbacks of these methods when applied individually. Based on the X-ray structure of the enzyme, eight mutation sites (P25, V26, R47, Y51, S72, A74, L188, and M354) were identified by modeling. Sublibraries created by site-specific randomization mutagenesis of each single site were screened using a spectroscopic assay based on omega-p-nitrophenoxycarboxylic acids (pNCA). The mutants showing activity for shorter chain length substrates were combined, and these combi-libraries were screened again for mutants with even better catalytic properties. Using this approach, a P-450 BM-3 variant with five mutations (V26T, R47F, A74G, L188K, and F87A) that efficiently hydrolyzes 8-pNCA was obtained. The catalytic efficiency of this mutant towards omega-p-nitrophenoxydecanoic acid (10-pNCA) and omega-p-nitrophenoxydodecanoic acid (12-pNCA) is comparable to that of the wild-type P-450 BM-3.  相似文献   

15.
Cytochrome P450 (P450) 2A6 is an important human enzyme involved in the metabolism of many xenobiotic chemicals including coumarin, indole, nicotine, and carcinogenic nitrosamines. A combination of random mutagenesis and high-throughput screening was used in the analysis of P450 2A6, utilizing a fluorescent coumarin 7-hydroxylation assay. The steady-state kinetic parameters (k(cat) and Km) for coumarin 7-hydroxylation by wild-type P450 2A6 and 35 selected mutants were measured and indicated that mutants throughout the coding region can have effects on activity. Five mutants showing decreased catalytic efficiency (k(cat)/Km) were further analyzed for substrate selectivity and binding affinities and showed reduced catalytic activities for 7-methoxycoumarin O-demethylation, tert-butyl methyl ether O-demethylation, and indole 3-hydroxylation. All mutants except one (K476E) showed decreased coumarin binding affinities (and also higher Km values), indicating that this is a major basis for the decreased enzymatic activities. A recent x-ray crystal structure of P450 2A6 bound to coumarin (Yano, J. K., Hsu, M. H., Griffin, K. J., Stout, C. D., and Johnson, E. F. (2005) Nat. Struct. Mol. Biol. 12, 822-823) indicates that the recovered A481T and N297S mutations appear to be close to coumarin, suggesting direct perturbation of substrate interaction. The decreased enzymatic activity of the K476E mutant was associated with decreases both in NADPH oxidation and the reduction rate of the ferric P450 2A6-coumarin complex. The attenuation is caused in part to lower binding affinity for NADPH-P450 reductase, but the K476E mutant did not achieve the wild-type coumarin 7-hydroxylation activity even at high reductase concentrations.  相似文献   

16.
Cytochrome P450 BM-3 (CYP102) catalyzes the subterminal hydroxylation of fatty acids with a chain length of 12–22 carbons. The paper focuses on the regioselectivity and substrate specificity of the purified wild-type enzyme and five mutated variants towards caprylic, capric, and lauric acid. The enzymes were obtained by random mutagenic fine-tuning of the mutant F87A(LARV). F87A(LARV) was selected as the best enzyme variant in a previous study in which the single mutant F87A was subjected to rational evolution to achieve hydroxylation activity for short chain length substrates using a p-nitrophenolate-based spectrophotometric assay.

The best mutants, F87V(LAR) and F87V(LARV), show a higher catalytic activity towards ω-(p-nitrophenoxy)decanoic acid (10-p-NCA) than F87A(LARV). In addition, they proved capable of hydroxylating ω-(p-nitrophenoxy)octanoic acid (8-p-NCA) which the wild-type enzyme is unable to do. Both variants catalyzed hydroxylation of capric acid, which is not a substrate for the wild-type, with a conversion rate of up to 57%. The chain length specificity of the mutants in fatty acid hydroxylation processes shows a good correlation with their activity towards p-NCA pseudosubstrates. The p-NCA assay therefore, allows high-throughput screening of large mutant libraries for the identification of enzyme variants with the desired catalytic activity towards fatty acids as the natural substrates.  相似文献   


17.
NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH), a member of the short-chain dehydrogenase/reductase (SDR) family, catalyzes the first step in the catabolic pathways of prostaglandins and lipoxins, and is believed to be the key enzyme responsible for the biological inactivation of these biologically potent eicosanoids. The enzyme utilizes NAD(+) specifically as a coenzyme. Potential amino acid residues involved in binding NAD(+) and facilitating enzyme catalysis have been partially identified. In this report, we propose that three more residues in 15-PGDH, Ile-17, Asn-91, and Val-186, are also involved in the interaction with NAD(+). Site-directed mutagenesis was used to examine their roles in binding NAD(+). Several mutants (I17A, I17V, I17L, I17E, I17K, N91A, N91D, N91K, V186A, V186I, V186D, and V186K) were prepared, expressed as glutathione S-transferase (GST) fusion enzymes in Escherichia coli, and purified by GSH-agarose affinity chromatography. Mutants I17E, I17K, N91L, N91K, and V186D were found to be inactive. Mutants N91A, N91D, V186A, and V186K exhibited comparable activities to the wild type enzyme. However, mutants I17A, I17V, I17L, and V186I had higher activity than the wild type. Especially, the activities of I17L and V186I were increased nearly 4- and 5-fold, respectively. The k(cat)/K(m) ratios of all active mutants for PGE(2) were similar to that of the wild type enzyme. However, the k(cat)/K(m) ratios of mutants I17A and N91A for NAD(+) were decreased 5- and 10-fold, respectively, whereas the k(cat)/K(m) ratios of mutants I17V, N91D, V186I, and V186K for NAD(+) were comparable to that of the wild type enzyme. The k(cat)/K(m) ratios of mutants I17L and V186A for NAD(+) were increased over nearly 2-fold. These results suggest that Ile-17, Asn-91, and Val-186 are involved in the interaction with NAD(+) and contribute to the full catalytic activity of 15-PGDH.  相似文献   

18.
A method has been developed to search for the elongation factor Tu (EF-Tu) domain(s) that interact with elongation factor Ts (EF-Ts). This method is based on the suppression of Escherichia coli EF-Tu-dominant negative mutation K136E, a mutation that exerts its effect by sequestering EF-Ts. We have identified nine single-amino acid- substituted suppression mutations in the region 146-199 of EF-Tu. These mutations are R154C, P168L, A174V, K176E, D181G, E190K, D196G, S197F, and I199V. All suppression mutations but one (R154C) significantly affect EF-Tu's ability to interact with EF-Ts under equilibrium conditions. Moreover, with the exception of mutation A174V, the GDP affinity of EF-Tu appears to be relatively unaffected by these mutations. These results suggest that the domain of residues 154 to 199 on EF-Tu is involved in interacting with EF-Ts. These suppression mutations are also capable of suppressing dominant negative mutants N135D and N135I to various degrees. This suggests that dominant negative mutants N135D and N135I are likely to have the same molecular basis as the K136E mutation. The method we have developed in this study is versatile and can be readily adapted to map other regions of EF-Tu. A model of EF-Ts-catalyzed guanine-nucleotide exchange is discussed.  相似文献   

19.
The complete amino acid sequence of coagulogen purified from the hemocytes of the horseshoe crab Carcinoscorpius rotundicauda was determined by characterization of the NH2-terminal sequence and the peptides generated after digestion of the protein with lysyl endopeptidase, Staphylococcal aureus protease V8 and trypsin. Upon sequencing the peptides by the automated Edman method, the following sequence was obtained: A D T N A P L C L C D E P G I L G R N Q L V T P E V K E K I E K A V E A V A E E S G V S G R G F S L F S H H P V F R E C G K Y E C R T V R P E H T R C Y N F P P F V H F T S E C P V S T R D C E P V F G Y T V A G E F R V I V Q A P R A G F R Q C V W Q H K C R Y G S N N C G F S G R C T Q Q R S V V R L V T Y N L E K D G F L C E S F R T C C G C P C R N Y Carcinoscorpius coagulogen consists of a single polypeptide chain with a total of 175 amino acid residues and a calculated molecular weight of 19,675. The secondary structure calculated by the method of Chou and Fasman reveals the presence of an alpha-helix region in the peptide C segment (residue Nos. 19 to 46), which is released during the proteolytic conversion of coagulogen to coagulin gel. The beta-sheet structure and the 16 half-cystines found in the molecule appear to yield a compact protein stable to acid and heat. The amino acid sequences of coagulogen of four species of limulus have been compared and the interspecies evolutionary differences are discussed.  相似文献   

20.
Two key amino acids, Thr252 and Asp251, are known to be important for dioxygen activation by cytochrome P450cam. We have solved crystal structures of a critical intermediate, the ferrous dioxygen complex (Fe(II)-O2), of the wild-type P450cam and its mutants, D251N and T252A. The wild-type dioxygen complex structure is very much the same as reported previously (Schlichting, I., Berendzen, J., Chu, K., Stock, A. M., Maves, S. A., Benson, D. E., Sweet, R. M., Ringe, D., Petsko, G. A., and Sligar, S. G. (2000) Science 287, 1615-1622) with the exception of higher occupancy and a more ordered structure of the iron-linked dioxygen and two "catalytic" water molecules that form part of a proton relay system to the iron-linked dioxygen. Due to of the altered conformation of the I helix groove these two waters are missing in the D251N dioxygen complex which explains its lower catalytic activity and slower proton transfer to the dioxygen ligand. Similarly, the T252A mutation was expected to disrupt the active site solvent structure leading to hydrogen peroxide formation rather than substrate hydroxylation. Unexpectedly, however, the two "catalytic" waters are retained in the T252A mutant. Based on these findings, we propose that the Thr(252) accepts a hydrogen bond from the hydroperoxy (Fe(III)-OOH) intermediate that promotes the second protonation on the distal oxygen atom, leading to O-O bond cleavage and compound I formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号