首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
摘要:目的 转酮酶是非氧化磷酸化戊糖途径中的关键酶。5-磷酸木酮糖是分析测定转酮酶酶活性的底物,然而因该底物难以化学合成,生产成本高,从而导致厂家停止生产,目前市场上无法得到。因此有必要建立起新的转酮酶酶活测定方法。方法 (1)将酿酒酵母的木酮糖激酶基因(XKS1)克隆于pET30a载体。(2)纯化木酮糖激酶。(3)建立酶偶联反应,以木酮糖为底物,将其转化为5-磷酸木酮糖,用于转酮酶酶活的测定。结果 (1)成功地将XKS1基因克隆于pET 30a得到质粒pXZ-X004。(2)质粒pXZ-X004诱导表达产生C端His-tag标签的XK,用Ni柱分离得到纯化的木酮糖激酶(XK)。(3)纯化的XK活性为21.0 U/mg protein,当用12.5%的甘油保存于?80 ℃环境1个月,仍有74%的活性。(4)用纯化的XK建立了转酮酶(TK)酶活测定新方法,当TK酶活低至0.00875 U时仍能够利用新方法检测。结论 本实验通过克隆和表达XKS1基因,成功地建立了TK酶活性测定的新方法,并应用于木糖代谢工程菌株TK酶活的测定,为医学和生态学领域中TK酶活的分析奠定了基础。  相似文献   

2.
Rubisco活化机制廖祥儒,朱新产(西北农业大学,陕西杨陵712100)关键词Rubisco,CO_2,活化酶,CAIP1,5-二磷酸核酮糖羧化酶/氧合酶(Rubisco)是目前仅知的5种具有双功能催化活性的酶之一。它既能催化1,5-二磷酸核酮糖(?..  相似文献   

3.
强化海藻酸钠凝胶制备固定化酶   总被引:12,自引:0,他引:12  
为了确定生产帕拉金糖(异麦芽酮糖)的固化酶最佳条件,在固化材料和固化方法上进行多项试验。结果表明:使用添加剂强化海藻酸钙凝胶包埋整个细胞酶,固化效果最佳,固化酶的酶活为30~60u/g,蔗糖平均转化率85%,最高转化率95%,实验室中固化酶连续转化半衰期长达45d。  相似文献   

4.
以pUC9质粒DNA作为载体,用PstⅠ酶切、碱性磷酸酯酶处理后,与PstⅠ部分酶切的多能硫杆菌染色体DNA3-10kbDNA片段连接,转化大肠杆菌JM83,在MacConkey培养基上筛选重组于,所得的重组子为6.5×103,达到建库要求的理论值。进一步用光合细菌Rhodobactersphaeroides类型Ⅱ磷酸核酮糖羧化酶/加氧酶基因(rbcL-rbcS)为探针,从该库中筛选到了含有多能硫杆菌的1,5-二磷酸核酮糖羧化酶/加氧酶(RubisCO)基因片段的重组子  相似文献   

5.
用在L-阿拉伯糖上培养的白地霉(Geotrichum candidum Link)2.361无细胞提取液进行了L-阿拉伯糖代谢酶体系的研究。查明L-阿拉伯糖代谢的变化途径如下: L-阿拉伯糖+NADPH_2 戊醛糖还原酶L-阿拉伯糖醇+NADP L-阿拉伯糖醇+NAD L-阿拉伯糖醇脱氢酶L-木酮糖+NADH_2 L-木酮糖+NADPH_2 NADP-木糖醇脱氢酶木糖醇+NADP 木糖醇+NAD NAD-木糖醇脱氢酶D-木酮糖+NADH_2 D-木酮糖+ATP D-木酮糖激酶→D-木酮糖-5-磷酸+ADP L-阿拉伯糖醇脱氢酶仅存在于L-阿拉伯糖培养的菌体中,而不存在于木糖培养的菌体中。可见它与木糖醇脱氢酶不是同一个酶。这一点与文献报导的不同,在黄青霉中这两种酶活力被认为是同一种酶的作用。  相似文献   

6.
核酮糖单磷酸途径最初在甲基营养菌中发现,现在被认为是在细菌中广泛存在的和甲醛同化作用及脱毒相关的一条途径,该途径的关键酶是6-磷酸己酮糖合成酶和6-磷酸己酮糖异构酶。文章将介绍来源于各种细菌的核酮糖单磷酸途径的生理作用及其两个关键酶基因的组织结构、表达调控机制与应用前景。  相似文献   

7.
(1)用在木糖上培养的白地霉2.361无細胞提取液进行了木糖代謝酶体系的研究。查明木糖代謝的初步变化途径如下: D-木糖 TPNH H~ →木糖还原酶←木糖醇 TPN~ (1) 木糖醇 DPN~ →木糖醇脫氫酶←D-木酮糖 DPNH H~ (2) D-木酮糖 ATP→D-木酮糖激酶D-木酮糖-5-磷酸(3) (2)催化式(1)的酶为木糖还原酶,需要TPN。用紙层析法鉴定木糖还原的产物为木糖醇。(3)催化式(2)的酶称木糖醇脫氫酶,需DPN。(4)催化式(3)的酶为D-木酮糖激酶,所試过的其他戊糖在同样条件下均不被磷酸化。(5)白地霉无細胞提取液中测不出木糖(?)构酶的活力。排除了这一途径的可能性。(6)催化式(1)(2)(3)各反应的酶均有适应形成的特性,符合Stanier的連續适应学說。  相似文献   

8.
目的转酮酶是非氧化磷酸化戊糖途径中的关键酶。5-磷酸木酮糖是分析测定转酮酶酶活性的底物,然而因该底物难以化学合成,生产成本高,从而导致厂家停止生产,目前市场上无法得到。因此有必要建立起新的转酮酶酶活测定方法。方法(1)将酿酒酵母的木酮糖激酶基因(XKS1)克隆于pET30a载体。(2)纯化木酮糖激酶。(3)建立酶偶联反应,以木酮糖为底物,将其转化为5-磷酸木酮糖,用于转酮酶酶活的测定。结果 (1)成功地将XKS1基因克隆于pET 30a得到质粒pXZ-X004。(2)质粒pXZ-X004诱导表达产生C端His-tag标签的XK,用Ni柱分离得到纯化的木酮糖激酶(XK)。(3)纯化的XK活性为21.0U/mg protein,当用12.5%的甘油保存于-80℃环境1个月,仍有74%的活性。(4)用纯化的XK建立了转酮酶(TK)酶活测定新方法,当TK酶活低至0.008 75U时仍能够利用新方法检测。结论本实验通过克隆和表达XKS1基因,成功地建立了TK酶活性测定的新方法,并应用于木糖代谢工程菌株TK酶活的测定,为医学和生态学领域中TK酶活的分析奠定了基础。  相似文献   

9.
《遗传》1985,7(2):40-40
高等植物二磷酸核酮糖矮化酶(RuBPC:ase)是由8 个大亚基和8个小亚基组成的复合体。大亚基由叶绿 体基因组编码合成,小亚基由核基因编码合成。因此 它是研究细咆质遗传和核质关系的一个理想的遗传标 记物。  相似文献   

10.
木酮糖是生物体内的代谢中间产物,是多种稀有糖合成的前体物质,因其独特的生物活性在膳食、保健、医药等领域发挥着重要作用。本研究旨在从最基本有机原料之一的甲醛出发,利用生物酶法催化甲醛合成木酮糖。通过来源于恶臭假单胞菌Pseudomonas putida的苯甲酸脱羧酶(Benzoylformate decarboxylase)突变体BFD-M3催化甲醛聚合生成羟基乙醛和1,3-二羟基丙酮(DHA)。通过来源于大肠杆菌的转醛醇酶(Transaldolase)突变体Tal B-F178Y进一步催化羟基乙醛和DHA聚合生成木酮糖,最终实现甲醛到木酮糖的酶法转化,转化率为0.4%。此外,经过优化甲醛底物浓度,木酮糖转化率达到4.6%,比优化前提高了11.5倍。为了进一步提高木酮糖的转化率,采用Scaffold多酶组装技术固定BFD-M3、Tal B-F178Y蛋白,使木酮糖转化率达到14.02%,较未用Scaffold技术前提高3倍,为生物法合成稀有糖提供了一种新方案。  相似文献   

11.
The degradation of protoheme in the heme oxygenase reaction involves three oxidation steps: from protoheme to hydroxyheme, from hydroxyheme to a 688-nm substance, a protein-bound intermediate, and from the 688-nm substance to a biliverdin-iron complex. The 688-nm substance has a ferrous iron and it readily binds carbon monoxide to form a CO-complex, called the 638-nm substance (Yoshida, T., Noguchi, M., & Kikuchi, G. (1980) J. Biochem. 88, 557-563). The ferric 688-nm substance was prepared from the 638-nm substance by the addition of potassium ferricyanide together with aspiration to eliminate CO. The ferric 688-nm substance did not show any distinct absorption maximum in the red region of the absorption spectrum. The ferric 688-nm substance was readily reduced on the addition of the NADPH-cytochrome P-450 reductase system, but the ferric 688-nm substance could also be reduced spontaneously though at a very low rate. The ferrous 688-nm substance free from excess reducing agents was prepared by passing the 638-nm substance through a column of Sephadex G-25. The ferrous 688-nm substance was degraded to a biliverdin-iron complex much more rapidly in the presence of the NADPH-cytochrome P-450 reductase system than in its absence, indicating that a reducing equivalent is essential for the initiation of heme degradation even when starting from the ferrous 688-nm substance. Cyanide was found to bind to the ferrous 688-nm substance to form a stable compound; the cyanide compound formed could revert to neither the ferrous 688-nm substance nor the 638-nm substance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The present study sought to examine the mechanism of substance P to modulate the antinociceptive action of intrathecal (i.t.) morphine in paw-licking/biting response evoked by subcutaneous injection of capsaicin into the plantar surface of the hindpaw in mice. The i.t. injection of morphine inhibited capsaicin-induced licking/biting response in a dose-dependent manner. Substance P (25 and 50 pmol) injected i.t. alone did not alter capsaicin-induced nociception, whereas substance P at a higher dose of 100 pmol significantly reduced the capsaicin response. Western blots showed the constitutive expression of endopeptidase-24.11 in the dorsal and ventral parts of lumbar spinal cord of mice. The N-terminal fragment of substance P (1–7), which is known as a major product of substance P by endopeptidase-24.11, was more effective than substance P on capsaicin-induced nociception. Combination treatment with substance P (50 pmol) and morphine at a subthreshold dose enhanced the antinociceptive effect of morphine. The enhanced effect of the combination of substance P with morphine was reduced significantly by co-administration of phosphoramidon, an inhibitor of endopeptidase-24.11. Administration of d-isomer of substance P (1–7), [d-Pro2, d-Phe7]substance P (1–7), an inhibitor of [3H] substance P (1–7) binding, or antisera against substance P (1–7) reversed the enhanced antinociceptive effect by co-administration of substance P and morphine. Taken together these data suggest that morphine-induced antinociception may be enhanced through substance P (1–7) formed by the enzymatic degradation of i.t. injected substance P in the spinal cord.  相似文献   

13.
The effects of substance P on cultured rabbit osteoclasts were investigated. The intracellular Ca(2+) concentration ([Ca(2+)](i)) which was monitored by the microfluorometric technique using fura-2, in osteoclasts elevated by the addition of substance P (0.3-5 microM). The EC(50) value of substance P was about 200 nM. This substance P-evoked [Ca(2+)](i) elevation was not observed in the Ca(2+)-free medium. Simultaneous application of spantide, a substance P receptor antagonist, blocked the Ca(2+) response. The addition of substance P (0.1-10 microM) to cultured osteoclasts enhanced their bone resorption activity which was evaluated by the pit formation assay. Maximum enhancement of the pit formation by substance P (5 microM) peaked at about 170% of the control level. The addition of substance P receptor antagonists also inhibited the enhancement of the bone resorption by substance P addition. Substance P possibly stimulates the bone remodeling by osteoclasts via the [Ca(2+)](i) elevation.  相似文献   

14.
Rat genomic clones were used to quantitate preprotachykinin mRNAs in the rat basal ganglia, while the tachykinin peptide products substance P and substance K were measured by radioimmunoassay. Administration of the dopamine antagonist (antipsychotic) drug haloperidol significantly decreased substance P, substance K, and both alpha (substance P encoding) and beta (substance P/substance K encoding) preprotachykinin mRNAs, suggesting a drug-induced decrease in striatonigral tachykinin biosynthesis. The time course for decreased preprotachykinin mRNAs and tachykinins apparently parallels the period of maximum risk for the development of certain antipsychotic drug-induced extrapyramidal side effects seen clinically. Tachykinin interaction with dopamine neurons may play an important role in the modulation of basal ganglia function.  相似文献   

15.
H Sugiya  J F Obie    J W Putney  Jr 《The Biochemical journal》1988,253(2):459-466
In rat parotid acinar cells prelabelled with [3H]inositol, substance P (100 nM) induced the formation of [3H]inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. Ins(1,4,5)P3 reached a maximum 7 s after substance P stimulation, and thereafter decreased and reached a stable value at 60 s. When the cells were exposed to substance P for 10, 30, 60, or 300 s, washed, and re-exposed to this peptide, the formation of [3H]inositol trisphosphate (InsP3) was attenuated in a time-dependent manner. In the cells pretreated as described above, the number of [3H]substance-P-binding sites (Bmax) was also decreased. Possible role(s) of Ca2+ and protein kinase (protein kinase C) control mechanisms in regulating substance P responses were investigated. Desensitization of substance P-induced InsP3 was not affected by the Ca2+ ionophore ionomycin, nor was it dependent on Ca2+ mobilization. On the other hand, in the presence of 4 beta-phorbol 12,13-dibutyrate (PDBu) and 12-O-tetradecanoyl-4 beta-phorbol 13-acetate, known activators of protein kinase C, substance P-induced InsP3 formation was inhibited. However, PDBu had no effect on [3H]substance P binding, whether present during the assay or when cells were pretreated. The persistent desensitization of InsP3 formation induced by substance P was not affected by PDBu. These results suggest that the persistent desensitization of InsP3 formation induced by substance P is a homologous process involving down-regulation of the substance P receptor; the mechanism does not appear to involve, or to be affected by, the Ca2+ or protein kinase C signalling systems. Protein kinase C activation can, however, inhibit substance P-induced InsP3 formation, which may indicate the presence of a negative-feedback control on the substance P pathway.  相似文献   

16.
The role of intestinal flora in the production of anorexigenic substance was investigated. Proteus mirabilis (P. mirabilis) and Escherichia coli (E. coli) were found to produce an anorexigenic substance, while Enterococcus faecalis (E. faecalis, type 1 and 2) and Staphylococcus intermedius (S. intermedius) did not. The anorexigenic substance was purified and was detected as, a single though broad band by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The specific activity of the final form of the purified substance was 120 units/mg carbohydrate. The substance contained no protein residue and appeared to be a lipopolysaccharide. The evidence that intestinal flora produces an anorexigenic substance leads to an interesting assumption that the intestinal flora may be responsible for regulating food intake.  相似文献   

17.
Rat brain cortex membranes bind to a conjugate of substance P and 125I-labeled Bolton-Hunter reagent, and this binding can be inhibited by a low concentration of substance P (Kd = 1.2 +/- 0.4 X 10(-8) M). This binding is reversible and saturable (0.5 +/- 0.1 pmol of binding sites/mg of protein). Fragments of substance P as small as the carboxyl-terminal hexapeptide can inhibit the binding although their potency decreases with the decrease in the length of the peptides. The binding affinities of smaller peptides or peptides in which the carboxyl-terminal amide or amino acids are removed are drastically reduced. Biologically active analogs of substance P, physalaemin, eledoisin, substance P methyl ester, [D-Ala0]hepta(5-11)substance P, kassinin, and the eledoisin-related hexapeptide also can inhibit the binding. However, the binding is not inhibited by polypeptides structurally unrelated to substance P or by amine hormones/neurotransmitters. The binding affinities of biologically active peptides to rat brain cortex membranes are almost identical with their affinities for rat parotid cells which we previously determined. Furthermore, the recently described substance P antagonist, [D-Pro, D-Trp]substance P, inhibits the binding of the 125I-labeled substance P derivative to brain cortex membranes and to parotid cells equally well. These results suggest that the substance P receptors in the brain cortex and the parotid gland are similar. The brain cortex membrane binding of the 125I-labeled substance P derivative can be inhibited by micromolar concentrations of GTP, GDP, and their analogs. ITP and IDP were less active. Adenine and pyridine nucleotides were inactive.  相似文献   

18.
The structural similarity between substance P (SP, Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-NH(2)) and Arg/Pro rich bactericidal peptides suggests a possible direct effect of SP on invasive microbes. We now present evidence that substance P possesses direct antimicrobial activity, highest against S. aureus. A substance P antagonist also possesses such activity but while less potent than substance P agonist S. aureus, is more potent than substance P against C. albicans. Our data also show that the endogenous peptides bradykinin and neurotensin, that also play role in modulation of the host-defense system in situ, have antimicrobial properties but are less potent than substance P.  相似文献   

19.
A biologically active 125I-substance P derivative (I125-BH-substance P), prepared by conjugation of substance P with [125I]Bolton-Hunter reagent, binds specifically to isolated rat parotid cells. The Kd is 4 nM for I-BH-substance P, 5 nM for substance P, 0.18 μM for substance P octa(4–11)peptide, and 1.6 μM for substance P [pyroglutamyl6]hexa(6–11)peptide. Substance P free acid and substance P penta(7–11)peptide are much weaker competitors and the C-terminal tri(9–11)peptide has no effect at 30 μM. The binding is also inhibited by 1 μM physalaemin, eledoisin and substance P methyl ester, but not by unrelated peptides. The selective inhibition of the binding by the biologically active analogs and fragments of substance P indicates that the 125I-labeled N(1)acylated substance P derivative may interact with a substance P receptor on parotid cells.  相似文献   

20.
农田生态条件下植物残体腐解过程腐解物的能态变化特征   总被引:4,自引:1,他引:3  
用氧弹量熟计法研究了农田生态条件下玉米秸杆腐解过程腐解物的能态变化特征,并探讨了腐解物中不同组分对腐解物能态的影响。结果指出,在试验条件下,玉米秸杆腐解过程腐解物能态呈现波动起伏──趋于稳定2个阶段,其中多以吸能、放能交错的方式迸行,但从整体上看是放能过程。能量活性物质(苯-醇溶性物、水溶性物、纤维素、半纤维素)对腐解前期腐解物能恣变化影响较大;能量非活性物质(木质素、腐殖质等)对维持腐解后期腐解物能态趋于稳定具有重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号