首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growing seasons are getting longer, a phenomenon partially explained by increasing global temperatures. Recent reports suggest that a strong correlation exists between warming and advances in spring phenology but that a weaker correlation is evident between warming and autumnal events implying that other factors may be influencing the timing of autumnal phenology. Using freely rooted, field‐grown Populus in two Free Air CO2 Enrichment Experiments (AspenFACE and PopFACE), we present evidence from two continents and over 2 years that increasing atmospheric CO2 acts directly to delay autumnal leaf coloration and leaf fall. In an atmosphere enriched in CO2 (by ~45% of the current atmospheric concentration to 550 ppm) the end of season decline in canopy normalized difference vegetation index (NDVI) – a commonly used global index for vegetation greenness – was significantly delayed, indicating a greener autumnal canopy, relative to that in ambient CO2. This was supported by a significant delay in the decline of autumnal canopy leaf area index in elevated as compared with ambient CO2, and a significantly smaller decline in end of season leaf chlorophyll content. Leaf level photosynthetic activity and carbon uptake in elevated CO2 during the senescence period was also enhanced compared with ambient CO2. The findings reveal a direct effect of rising atmospheric CO2, independent of temperature in delaying autumnal senescence for Populus, an important deciduous forest tree with implications for forest productivity and adaptation to a future high CO2 world.  相似文献   

2.
Sphagnum mosses are keystone components of peatland ecosystems. They facilitate the accumulation of carbon in peat deposits, but climate change is predicted to expose peatland ecosystem to sustained and unprecedented warming leading to a significant release of carbon to the atmosphere. Sphagnum responses to climate change, and their interaction with other components of the ecosystem, will determine the future trajectory of carbon fluxes in peatlands. We measured the growth and productivity of Sphagnum in an ombrotrophic bog in northern Minnesota, where ten 12.8‐m‐diameter plots were exposed to a range of whole‐ecosystem (air and soil) warming treatments (+0 to +9°C) in ambient or elevated (+500 ppm) CO2. The experiment is unique in its spatial and temporal scale, a focus on response surface analysis encompassing the range of elevated temperature predicted to occur this century, and consideration of an effect of co‐occurring CO2 altering the temperature response surface. In the second year of warming, dry matter increment of Sphagnum increased with modest warming to a maximum at 5°C above ambient and decreased with additional warming. Sphagnum cover declined from close to 100% of the ground area to <50% in the warmest enclosures. After three years of warming, annual Sphagnum productivity declined linearly with increasing temperature (13–29 g C/m2 per °C warming) due to widespread desiccation and loss of Sphagnum. Productivity was less in elevated CO2 enclosures, which we attribute to increased shading by shrubs. Sphagnum desiccation and growth responses were associated with the effects of warming on hydrology. The rapid decline of the Sphagnum community with sustained warming, which appears to be irreversible, can be expected to have many follow‐on consequences to the structure and function of this and similar ecosystems, with significant feedbacks to the global carbon cycle and climate change.  相似文献   

3.
Climate change is lengthening the growing season of the Northern Hemisphere extratropical terrestrial ecosystems, but little is known regarding the timing and dynamics of the peak season of plant activity. Here, we use 34‐year satellite normalized difference vegetation index (NDVI) observations and atmospheric CO2 concentration and δ13C isotope measurements at Point Barrow (Alaska, USA, 71°N) to study the dynamics of the peak of season (POS) of plant activity. Averaged across extratropical (>23°N) non‐evergreen‐dominated pixels, NDVI data show that the POS has advanced by 1.2 ± 0.6 days per decade in response to the spring‐ward shifts of the start (1.0 ± 0.8 days per decade) and end (1.5 ± 1.0 days per decade) of peak activity, and the earlier onset of the start of growing season (1.4 ± 0.8 days per decade), while POS maximum NDVI value increased by 7.8 ± 1.8% for 1982–2015. Similarly, the peak day of carbon uptake, based on calculations from atmospheric CO2 concentration and δ13C data, is advancing by 2.5 ± 2.6 and 4.3 ± 2.9 days per decade, respectively. POS maximum NDVI value shows strong negative relationships (< .01) with the earlier onset of the start of growing season and POS days. Given that the maximum solar irradiance and day length occur before the average POS day, the earlier occurrence of peak plant activity results in increased plant productivity. Both the advancing POS day and increasing POS vegetation greenness are consistent with the shifting peak productivity towards spring and the increasing annual maximum values of gross and net ecosystem productivity simulated by coupled Earth system models. Our results further indicate that the decline in autumn NDVI is contributing the most to the overall browning of the northern high latitudes (>50°N) since 2011. The spring‐ward shift of peak season plant activity is expected to disrupt the synchrony of biotic interaction and exert strong biophysical feedbacks on climate by modifying the surface albedo and energy budget.  相似文献   

4.
The carbon (C) storage capacity of northern latitude ecosystems may diminish as warming air temperatures increase permafrost thaw and stimulate decomposition of previously frozen soil organic C. However, warming may also enhance plant growth so that photosynthetic carbon dioxide (CO2) uptake may, in part, offset respiratory losses. To determine the effects of air and soil warming on CO2 exchange in tundra, we established an ecosystem warming experiment – the Carbon in Permafrost Experimental Heating Research (CiPEHR) project – in the northern foothills of the Alaska Range in Interior Alaska. We used snow fences coupled with spring snow removal to increase deep soil temperatures and thaw depth (winter warming) and open‐top chambers to increase growing season air temperatures (summer warming). Winter warming increased soil temperature (integrated 5–40 cm depth) by 1.5 °C, which resulted in a 10% increase in growing season thaw depth. Surprisingly, the additional 2 kg of thawed soil C m?2 in the winter warming plots did not result in significant changes in cumulative growing season respiration, which may have been inhibited by soil saturation at the base of the active layer. In contrast to the limited effects on growing‐season C dynamics, winter warming caused drastic changes in winter respiration and altered the annual C balance of this ecosystem by doubling the net loss of CO2 to the atmosphere. While most changes to the abiotic environment at CiPEHR were driven by winter warming, summer warming effects on plant and soil processes resulted in 20% increases in both gross primary productivity and growing season ecosystem respiration and significantly altered the age and sources of CO2 respired from this ecosystem. These results demonstrate the vulnerability of organic C stored in near surface permafrost to increasing temperatures and the strong potential for warming tundra to serve as a positive feedback to global climate change.  相似文献   

5.
Azolla filiculoides is a floating aquatic fern growing in tropical and temperate freshwater ecosystems. As A. filiculoides has symbiotic nitrogen-fixing cyanobacteria (Anabaena azollae) within its leaf cavities, it is cultivated in rice paddies to improve N availability and suppress other wetland weeds. To understand how C assimilation and N accumulation in A. filiculoides respond to elevated atmospheric carbon dioxide concentration (CO2) in combination with P addition and higher temperatures, we conducted pot experiments during the summer of 2007 and 2008. In 2007, we grew A. filiculoides in pots at two treatment levels of added P fertilizer and at two levels of [CO2] (380 ppm for ambient and 680 ppm for elevated [CO2]) in controlled-environment chambers. In 2008, we grew A. filiculoides in four controlled-environment chambers at two [CO2] levels and two temperature levels (34/26°C (day/night) and 29/21°C). We found that biomass and C assimilation by A. filiculoides were significantly increased by elevated [CO2], temperature, and P level (all P < 0.01), with a significant interaction between elevated [CO2] and added P (P < 0.01). Tissue N content was decreased by elevated [CO2] and increased by higher temperature and P level (all P < 0.01). The acetylene reduction assay showed that the N-fixation activity of A. filiculoides was not significantly different under ambient and elevated [CO2] but was significantly stimulated by P addition. N-fixation activity decreased at higher temperatures (34/26°C), indicating that 29/21°C was more suitable for A. azollae growth. Therefore, we conclude that the N accumulation potential of A. filiculoides under future climate warming depends primarily on the temperature change and P availability, and C assimilation should be increased by elevated [CO2].  相似文献   

6.
Biological mediation of carbonate dissolution represents a fundamental component of the destructive forces acting on coral reef ecosystems. Whereas ocean acidification can increase dissolution of carbonate substrates, the combined impact of ocean acidification and warming on the microbioerosion of coral skeletons remains unknown. Here, we exposed skeletons of the reef‐building corals, Porites cylindrica and Isopora cuneata, to present‐day (Control: 400 μatm – 24 °C) and future pCO2–temperature scenarios projected for the end of the century (Medium: +230 μatm – +2 °C; High: +610 μatm – +4 °C). Skeletons were also subjected to permanent darkness with initial sodium hypochlorite incubation, and natural light without sodium hypochlorite incubation to isolate the environmental effect of acidic seawater (i.e., Ωaragonite <1) from the biological effect of photosynthetic microborers. Our results indicated that skeletal dissolution is predominantly driven by photosynthetic microborers, as samples held in the dark did not decalcify. In contrast, dissolution of skeletons exposed to light increased under elevated pCO2–temperature scenarios, with P. cylindrica experiencing higher dissolution rates per month (89%) than I. cuneata (46%) in the high treatment relative to control. The effects of future pCO2–temperature scenarios on the structure of endolithic communities were only identified in P. cylindrica and were mostly associated with a higher abundance of the green algae Ostreobium spp. Enhanced skeletal dissolution was also associated with increased endolithic biomass and respiration under elevated pCO2–temperature scenarios. Our results suggest that future projections of ocean acidification and warming will lead to increased rates of microbioerosion. However, the magnitude of bioerosion responses may depend on the structural properties of coral skeletons, with a range of implications for reef carbonate losses under warmer and more acidic oceans.  相似文献   

7.
Seasonality in photosynthetic activity is a critical component of seasonal carbon, water, and energy cycles in the Earth system. This characteristic is a consequence of plant's adaptive evolutionary processes to a given set of environmental conditions. Changing climate in northern lands (>30°N) alters the state of climatic constraints on plant growth, and therefore, changes in the seasonality and carbon accumulation are anticipated. However, how photosynthetic seasonality evolved to its current state, and what role climatic constraints and their variability played in this process and ultimately in carbon cycle is still poorly understood due to its complexity. Here, we take the “laws of minimum” as a basis and introduce a new framework where the timing (day of year) of peak photosynthetic activity (DOYPmax) acts as a proxy for plant's adaptive state to climatic constraints on its growth. Our analyses confirm that spatial variations in DOYPmax reflect spatial gradients in climatic constraints as well as seasonal maximum and total productivity. We find a widespread warming‐induced advance in DOYPmax (?1.66 ± 0.30 days/decade, p < 0.001) across northern lands, indicating a spatiotemporal dynamism of climatic constraints to plant growth. We show that the observed changes in DOYPmax are associated with an increase in total gross primary productivity through enhanced carbon assimilation early in the growing season, which leads to an earlier phase shift in land‐atmosphere carbon fluxes and an increase in their amplitude. Such changes are expected to continue in the future based on our analysis of earth system model projections. Our study provides a simplified, yet realistic framework based on first principles for the complex mechanisms by which various climatic factors constrain plant growth in northern ecosystems.  相似文献   

8.
Rising temperatures caused by climate change could negatively alter plant ecosystems if temperatures exceed optimal temperatures for carbon gain. Such changes may threaten temperature‐sensitive species, causing local extinctions and range migrations. This study examined the optimal temperature of net photosynthesis (Topt) of two boreal and four temperate deciduous tree species grown in the field in northern Minnesota, United States under two contrasting temperature regimes. We hypothesized that Topt would be higher in temperate than co‐occurring boreal species, with temperate species exhibiting greater plasticity in Topt, resulting in better acclimation to elevated temperatures. The chamberless experiment, located at two sites in both open and understory conditions, continuously warmed plants and soils during three growing seasons. Results show a modest, but significant shift in Topt of 1.1 ± 0.21 °C on average for plants subjected to a mean 2.9 ± 0.01 °C warming during midday hours in summer, and shifts with warming were unrelated to species native ranges. The 1.1 °C shift in Topt with 2.9 °C warming might be interpreted as suggesting limited capacity to shift temperature response functions to better match changes in temperature. However, Topt of warmed plants was as well‐matched with prior midday temperatures as Topt of plants in the ambient treatment, and Topt in both treatments was at a level where realized photosynthesis was within 90–95% of maximum. These results suggest that seedlings of all species were close to optimizing photosynthetic temperature responses, and equally so in both temperature treatments. Our study suggests that temperate and boreal species have considerable capacity to match their photosynthetic temperature response functions to prevailing growing season temperatures that occur today and to those that will likely occur in the coming decades under climate change.  相似文献   

9.
Arctic terrestrial ecosystems are extremely vulnerable to climate change. A major concern is how the carbon balance of these ecosystems will respond to climate change. In this study, we constructed a simple ecological process-based model to assess how the carbon balance will be altered by ongoing climate change in High Arctic tundra ecosystems using in situ observations of carbon cycle processes. In particular, we simulated stand-level photosynthesis, root respiration, heterotrophic respiration, and hence net ecosystem production (NEP) of a plant community dominated by vascular plants and mosses. Analyses were carried out for current and future temperature and precipitation conditions. Our results showed that the tundra ecosystem was a CO2 sink (NEP of 2.3–18.9 gC m?2 growing season?1) under present temperature conditions. Under rising temperature (2–6 °C), carbon gain is significantly reduced, but a few days’ extension of the foliage period caused by their higher temperatures compensated for the negative effect of temperature on NEP. Precipitation is the major environmental factor driving photosynthetic productivity of mosses, but it had a minor influence on community-level NEP. However, NEP decreased by a maximum 15.3 gC m?2 growing season?1 under a 30-day prolongation of the moss-growing season, suggesting that growing season extension had a negative effect on ecosystem carbon gain, because of poorer light conditions in autumn. Because the growing season creates a weak CO2 sink at present, lengthening of the snow-free season coupled with rising temperature could seriously affect the future carbon balance of this Arctic tundra ecosystem.  相似文献   

10.
Elevated CO2 and warming may alter terrestrial ecosystems by promoting invasive plants with strong community and ecosystem impacts. Invasive plant responses to elevated CO2 and warming are difficult to predict, however, because of the many mechanisms involved, including modification of phenology, physiology, and cycling of nitrogen and water. Understanding the relative and interactive importance of these processes requires multifactor experiments under realistic field conditions. Here, we test how free‐air CO2 enrichment (to 600 ppmv) and infrared warming (+1.5 °C day/3 °C night) influence a functionally and phenologically distinct invasive plant in semi‐arid mixed‐grass prairie. Bromus tectorum (cheatgrass), a fast‐growing Eurasian winter annual grass, increases fire frequency and reduces biological diversity across millions of hectares in western North America. Across 2 years, we found that warming more than tripled B. tectorum biomass and seed production, due to a combination of increased recruitment and increased growth. These results were observed with and without competition from native species, under wet and dry conditions (corresponding with tenfold differences in B. tectorum biomass), and despite the fact that warming reduced soil water. In contrast, elevated CO2 had little effect on B. tectorum invasion or soil water, while reducing soil and plant nitrogen (N). We conclude that (1) warming may expand B. tectorum's phenological niche, allowing it to more successfully colonize the extensive, invasion‐resistant northern mixed‐grass prairie, and (2) in ecosystems where elevated CO2 decreases N availability, CO2 may have limited effects on B. tectorum and other nitrophilic invasive species.  相似文献   

11.
Boreal peatlands contain approximately 500 Pg carbon (C) in the soil, emit globally significant quantities of methane (CH4), and are highly sensitive to climate change. Warming associated with global climate change is likely to increase the rate of the temperature‐sensitive processes that decompose stored organic carbon and release carbon dioxide (CO2) and CH4. Variation in the temperature sensitivity of CO2 and CH4 production and increased peat aerobicity due to enhanced growing‐season evapotranspiration may alter the nature of peatland trace gas emission. As CH4 is a powerful greenhouse gas with 34 times the warming potential of CO2, it is critical to understand how factors associated with global change will influence surface CO2 and CH4 fluxes. Here, we leverage the Spruce and Peatland Responses Under Changing Environments (SPRUCE) climate change manipulation experiment to understand the impact of a 0–9°C gradient in deep belowground warming (“Deep Peat Heat”, DPH) on peat surface CO2 and CH4 fluxes. We find that DPH treatments increased both CO2 and CH4 emission. Methane production was more sensitive to warming than CO2 production, decreasing the C‐CO2:C‐CH4 of the respired carbon. Methane production is dominated by hydrogenotrophic methanogenesis but deep peat warming increased the δ13C of CH4 suggesting an increasing contribution of acetoclastic methanogenesis to total CH4 production with warming. Although the total quantity of C emitted from the SPRUCE Bog as CH4 is <2%, CH4 represents >50% of seasonal C emissions in the highest‐warming treatments when adjusted for CO2 equivalents on a 100‐year timescale. These results suggest that warming in boreal regions may increase CH4 emissions from peatlands and result in a positive feedback to ongoing warming.  相似文献   

12.
Under the changing climate, asymmetric warming pattern would be more likely during day and night time, instead of symmetric one. Concurrently, the growth responses and water use of plants may be different compared with those estimated based on symmetric warming. In this work, it was compared with the effects of symmetric (ETs) and asymmetric (ETa) elevation of temperature alone, and in interaction with elevated carbon dioxide concentration (EC), on the grain yield (GY) and evapotranspiration in winter wheat (Triticum aestivum L.) based on pot experiment in the North China Plain (NCP). The experiment was carried out in six enclosed‐top chambers with following climate treatments: (1) ambient temperature and ambient CO2 (CON), (2) ambient temperature and elevated CO2 (EC), (3) elevated temperature and ambient CO2 (ETs; ETa), and (4) elevated temperature and elevated CO2 (ECETs, ECETa). In symmetric warming, temperature was increased by 3°C and in asymmetric one by 3.5°C during night and 2.5°C during daytime, respectively. As a result, GY was in ETa and ETs 15.6 (P < 0.05) and 10.3% (P < 0.05) lower than that in CON. In ECETs and ECETa treatments, GY was 14.9 (P < 0.05) and 9.1% (P < 0.05) higher than that in CON. Opposite to GY, evapotranspiration was 7.8 (P < 0.05) and 17.9% (P < 0.05) higher in ETa and ETs treatments and 7.2 (P < 0.05) and 2.1% (P > 0.05) lower in ECETs and ECETa treatments compared with CON. Thus, GY of wheat could be expected to increase under the changing climate with concurrent elevation of CO2 and temperature as a result of increased WUE under the elevated CO2. However, the gain would be lower under ETa than that estimated based on ETs due to higher evapotranspiration.  相似文献   

13.
Rising atmospheric carbon dioxide (CO2) concentrations may warm northern latitudes up to 8°C by the end of the century. Boreal forests play a large role in the global carbon cycle, and the responses of northern trees to climate change will thus impact the trajectory of future CO2 increases. We grew two North American boreal tree species at a range of future climate conditions to assess how growth and carbon fluxes were altered by high CO2 and warming. Black spruce (Picea mariana, an evergreen conifer) and tamarack (Larix laricina, a deciduous conifer) were grown under ambient (407 ppm) or elevated CO2 (750 ppm) and either ambient temperatures, a 4°C warming, or an 8°C warming. In both species, the thermal optimum of net photosynthesis (ToptA) increased and maximum photosynthetic rates declined in warm‐grown seedlings, but the strength of these changes varied between species. Photosynthetic capacity (maximum rates of Rubisco carboxylation, Vcmax, and of electron transport, Jmax) was reduced in warm‐grown seedlings, correlating with reductions in leaf N and chlorophyll concentrations. Warming increased the activation energy for Vcmax and Jmax (EaV and EaJ, respectively) and the thermal optimum for Jmax. In both species, the ToptA was positively correlated with both EaV and EaJ, but negatively correlated with the ratio of Jmax/Vcmax. Respiration acclimated to elevated temperatures, but there were no treatment effects on the Q10 of respiration (the increase in respiration for a 10°C increase in leaf temperature). A warming of 4°C increased biomass in tamarack, while warming reduced biomass in spruce. We show that climate change is likely to negatively affect photosynthesis and growth in black spruce more than in tamarack, and that parameters used to model photosynthesis in dynamic global vegetation models (EaV and EaJ) show no response to elevated CO2.  相似文献   

14.
The microbial community structure of bacteria, archaea and fungi is described in an Australian native grassland soil after more than 5 years exposure to different atmospheric CO2 concentrations ([CO2]) (ambient, + 550 ppm) and temperatures (ambient, + 2°C) under different plant functional types (C 3 and C 4 grasses) and at two soil depths (0–5 cm and 5–10 cm). Archaeal community diversity was influenced by elevated [CO2], while under warming archaeal 16S rRNA gene copy numbers increased for C 4 plant Themeda triandra and decreased for the C 3 plant community (P < 0.05). Fungal community diversity resulted in three groups based upon elevated [CO2], elevated [CO2] plus warming and ambient [CO2]. Overall bacterial community diversity was influenced primarily by depth. Specific bacterial taxa changed in richness and relative abundance in response to climate change factors when assessed by a high‐resolution 16S rRNA microarray (PhyloChip). Operational taxonomic unit signal intensities increased under elevated [CO2] for both Firmicutes and Bacteroidetes, and increased under warming for Actinobacteria and Alphaproteobacteria. For the interaction of elevated [CO2] and warming there were 103 significant operational taxonomic units (P < 0.01) representing 15 phyla and 30 classes. The majority of these operational taxonomic units increased in abundance for elevated [CO2] plus warming plots, while abundance declined in warmed or elevated [CO2] plots. Bacterial abundance (16S rRNA gene copy number) was significantly different for the interaction of elevated [CO2] and depth (P < 0.05) with decreased abundance under elevated [CO2] at 5–10 cm, and for Firmicutes under elevated [CO2] (P < 0.05). Bacteria, archaea and fungi in soil responded differently to elevated [CO2], warming and their interaction. Taxa identified as significantly climate‐responsive could show differing trends in the direction of response (‘+’ or ‘?’) under elevated CO2 or warming, which could then not be used to predict their interactive effects supporting the need to investigate interactive effects for climate change. The approach of focusing on specific taxonomic groups provides greater potential for understanding complex microbial community changes in ecosystems under climate change.  相似文献   

15.
王怡萌  段磊磊  陈聪  王铭  王升忠  赵婧 《生态学报》2023,43(11):4583-4593
泥炭地水文条件影响泥炭地生物地球化学循环,控制和维持着泥炭地生态系统的结构和功能,是泥炭地生态恢复的重要前提。然而,目前关于恢复泥炭地土壤碳排放对不同水位的响应尚不明确。以长白山区天然(NP)、退耕(DP)及实施不同水文管理的恢复泥炭地(低水位(LR)、高水位(HR)与高低交替水位(H-LR))为研究对象,采用静态箱-气相色谱法对研究区泥炭地进行生长季(6-10月)土壤CO2、CH4排放监测。结果表明:温度和水位变化是研究区泥炭地土壤CO2、CH4排放季节变化的主控因子。H-LR受水位控制的影响,生长季土壤CO2排放速率波动剧烈,其它水位管理恢复区土壤CO2排放速率呈单峰型排放模式,且均与近地表温度呈指数相关(P<0.05)。除HR外,土壤CO2排放速率与水位呈显著负相关(P<0.05)。生长季,研究区HR土壤CH4排放速率呈双峰型,H-LR与NP的土壤CH4排放呈单峰型,与近地表温度呈指数相关(P<0.05),LR水位与CH4排放速率显著正相关(P<0.05)。研究区不同水位管理恢复泥炭地土壤碳排放差异显著,虽然HR的土壤CO2-C累积碳排放量显著低于其它水位恢复区,但其土壤CH4-C累积碳排放量和综合增温潜势显著高于其它水位恢复区(P<0.05)。LR的累积碳排放量显著低于退化泥炭地,且其综合增温潜势最低。因此,建议在泥炭地恢复初期将低水位管理作为短期策略,以更好地恢复泥炭地碳汇功能,减弱其增温潜势。  相似文献   

16.
Photosynthetic biochemical limitation parameters (i.e., Vcmax, Jmax and Jmax:Vcmax ratio) are sensitive to temperature and water availability, but whether these parameters in cold climate species at biome ecotones are positively or negatively influenced by projected changes in global temperature and water availability remains uncertain. Prior exploration of this question has largely involved greenhouse based short‐term manipulative studies with mixed results in terms of direction and magnitude of responses. To address this question in a more realistic context, we examined the effects of increased temperature and rainfall reduction on the biochemical limitations of photosynthesis using a long‐term chamber‐less manipulative experiment located in northern Minnesota, USA. Nine tree species from the boreal‐temperate ecotone were grown in natural neighborhoods under ambient and elevated (+3.4°C) growing season temperatures and ambient or reduced (≈40% of rainfall removed) summer rainfall. Apparent rubisco carboxylation and RuBP regeneration standardized to 25°C (Vcmax25°C and Jmax25°C, respectively) were estimated based on ACi curves measured in situ over three growing seasons. Our primary objective was to test whether species would downregulate Vcmax25°C and Jmax25°C in response to warming and reduced rainfall, with such responses expected to be greatest in species with the coldest and most humid native ranges, respectively. These hypotheses were not supported, as there were no overall main treatment effects on Vcmax25°C or Jmax25°C (p > .14). However, Jmax:Vcmax ratio decreased significantly with warming (p = .0178), whereas interactions between warming and rainfall reduction on the Jmax25°C to Vcmax25°C ratio were not significant. The insensitivity of photosynthetic parameters to warming contrasts with many prior studies done under larger temperature differentials and often fixed daytime temperatures. In sum, plants growing in relatively realistic conditions under naturally varying temperatures and soil moisture levels were remarkably insensitive in terms of their Jmax25°C and Vcmax25°C when grown at elevated temperatures, reduced rainfall, or both combined.  相似文献   

17.
18.
Rising atmospheric CO2 concentration ([CO2]) and attendant increases in growing season temperature are expected to be the most important global change factors impacting production agriculture. Although maize is the most highly produced crop worldwide, few studies have evaluated the interactive effects of elevated [CO2] and temperature on its photosynthetic physiology, agronomic traits or biomass, and seed yield under open field conditions. This study investigates the effects of rising [CO2] and warmer temperature, independently and in combination, on maize grown in the field throughout a full growing season. Free‐air CO2 enrichment (FACE) technology was used to target atmospheric [CO2] to 200 μmol mol?1 above ambient [CO2] and infrared heaters to target a plant canopy increase of 3.5 °C, with actual season mean heating of ~2.7 °C, mimicking conditions predicted by the second half of this century. Photosynthetic gas‐exchange parameters, leaf nitrogen and carbon content, leaf water potential components, and developmental measurements were collected throughout the season, and biomass and yield were measured at the end of the growing season. As predicted for a C4 plant, elevated [CO2] did not stimulate photosynthesis, biomass, or yield. Canopy warming caused a large shift in aboveground allocation by stimulating season‐long vegetative biomass and decreasing reproductive biomass accumulation at both CO2 concentrations, resulting in decreased harvest index. Warming caused a reduction in photosynthesis due to down‐regulation of photosynthetic biochemical parameters and the decrease in the electron transport rate. The reduction in seed yield with warming was driven by reduced photosynthetic capacity and by a shift in aboveground carbon allocation away from reproduction. This field study portends that future warming will reduce yield in maize, and this will not be mitigated by higher atmospheric [CO2] unless appropriate adaptation traits can be introduced into future cultivars.  相似文献   

19.
Eucalyptus species are grown widely outside of their native ranges in plantations on all vegetated continents of the world. We predicted that such a plantation species would show high potential for acclimation of photosynthetic traits across a wide range of growth conditions, including elevated [CO2] and climate warming. To test this prediction, we planted temperate Eucalyptus globulus Labill. seedlings in climate‐controlled chambers in the field located >700 km closer to the equator than the nearest natural occurrence of this species. Trees were grown in a complete factorial combination of elevated CO2 concentration (eC; ambient [CO2] +240 ppm) and air warming treatments (eT; ambient +3 °C) for 15 months until they reached ca. 10 m height. There was little acclimation of photosynthetic capacity to eC and hence the CO2‐induced photosynthetic enhancement was large (ca. 50%) in this treatment during summer. The warming treatment significantly increased rates of both carboxylation capacity (Vcmax) and electron transport (Jmax) (measured at a common temperature of 25 °C) during winter, but decreased them significantly by 20–30% in summer. The photosynthetic CO2 compensation point in the absence of dark respiration (Γ*) was relatively less sensitive to temperature in this temperate eucalypt species than for warm‐season tobacco. The temperature optima for photosynthesis and Jmax significantly changed by about 6 °C between winter and summer, but without further adjustment from early to late summer. These results suggest that there is an upper limit for the photosynthetic capacity of E. globulus ssp. globulus outside its native range to acclimate to growth temperatures above 25 °C. Limitations to temperature acclimation of photosynthesis in summer may be one factor that defines climate zones where E. globulus plantation productivity can be sustained under anticipated global environmental change.  相似文献   

20.
Siebold’s beech (Fagus crenata) is a common species in the cool temperate forests of Japan. As the natural regeneration of beech forests is expected to contribute to forest conservation in the future, we investigated the effects of different CO2 concentrations ([CO2]) on the growth of beech seedlings in relation to morphological and physiological changes. Acorns collected from beech forest in Minakami, central Japan were germinated and grown during a first growing season of 6 months under four [CO2] levels (200, 350, 550, and 750 μL L−1). Stem mass increased with increasing [CO2]; however, root mass did not change significantly among the treatments. As [CO2] increased, net photosynthetic rate (P n) and leaf area increased, whereas transpiration (T r), stomatal conductance, leaf chlorophyll content, and leaf longevity decreased. Although water-use efficiency (WUE; i.e., P n/T r) improved with increasing [CO2], the density of stomata did not significantly change. Increases in the number of buds and the terminal bud length with increasing [CO2] indicated accelerated formation of additional branches and leaves in the next season. The enhanced WUE levels seen in beech saplings growing under the higher environmental [CO2] levels that are expected in the future may be advantageous for their survival, considering that beech saplings prefer mesic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号