首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Reproductive patterns of tropical and temperate plants are usually associated with climatic seasonality, such as rainfall or temperature, and with their phylogeny. It is still unclear, however, whether plant reproductive phenology is influenced by climatic factors and/or phylogeny in aseasonal subtropical regions. The plant reproductive phenology of a subtropical rain forest in northern Taiwan (24°45′ N, 121°35′ E) was monitored at weekly intervals during a 7‐yr period (2002–2009). The flowering patterns of 46 taxa and fruiting patterns of 26 taxa were examined and evaluated in relation to climatic seasonality, phylogenetic constraints, and different phenophases. Our results indicated that most of the studied species reproduced annually. Additionally, both community‐wide flowering and fruiting patterns exhibited distinct annual rhythms and varied little among years. The community flowering peak matched seasonal changes in day length, temperature, and irradiance; while the community fruiting peak coincided with an increase in bird richness and the diet‐switching of resident omnivorous birds. In addition, phylogenetically closely related species tended to reproduce during the same periods of a year. Neither the mean flowering dates nor seasonal variation in solar radiation, however, was related to the fruit development times. Our results indicate the importance of abiotic, biotic, and evolutionary factors in determining the reproductive phenology in this subtropical forest.  相似文献   

2.
We combine satellite and ground observations during 1950–2011 to study the long‐term links between multiple climate (air temperature and cryospheric dynamics) and vegetation (greenness and atmospheric CO2 concentrations) indicators of the growing season of northern ecosystems (>45°N) and their connection with the carbon cycle. During the last three decades, the thermal potential growing season has lengthened by about 10.5 days (P < 0.01, 1982–2011), which is unprecedented in the context of the past 60 years. The overall lengthening has been stronger and more significant in Eurasia (12.6 days, P < 0.01) than North America (6.2 days, P > 0.05). The photosynthetic growing season has closely tracked the pace of warming and extension of the potential growing season in spring, but not in autumn when factors such as light and moisture limitation may constrain photosynthesis. The autumnal extension of the photosynthetic growing season since 1982 appears to be about half that of the thermal potential growing season, yielding a smaller lengthening of the photosynthetic growing season (6.7 days at the circumpolar scale, P < 0.01). Nevertheless, when integrated over the growing season, photosynthetic activity has closely followed the interannual variations and warming trend in cumulative growing season temperatures. This lengthening and intensification of the photosynthetic growing season, manifested principally over Eurasia rather than North America, is associated with a long‐term increase (22.2% since 1972, P < 0.01) in the amplitude of the CO2 annual cycle at northern latitudes. The springtime extension of the photosynthetic and potential growing seasons has apparently stimulated earlier and stronger net CO2 uptake by northern ecosystems, while the autumnal extension is associated with an earlier net release of CO2 to the atmosphere. These contrasting responses may be critical in determining the impact of continued warming on northern terrestrial ecosystems and the carbon cycle.  相似文献   

3.
The springtime transition to regional‐scale onset of photosynthesis and net ecosystem carbon uptake in boreal and tundra ecosystems are linked to the soil freeze–thaw state. We present evidence from diagnostic and inversion models constrained by satellite fluorescence and airborne CO2 from 2012 to 2014 indicating the timing and magnitude of spring carbon uptake in Alaska correlates with landscape thaw and ecoregion. Landscape thaw in boreal forests typically occurs in late April (DOY 111 ± 7) with a 29 ± 6 day lag until photosynthetic onset. North Slope tundra thaws 3 weeks later (DOY 133 ± 5) but experiences only a 20 ± 5 day lag until photosynthetic onset. These time lag differences reflect efficient cold season adaptation in tundra shrub and the longer dehardening period for boreal evergreens. Despite the short transition from thaw to photosynthetic onset in tundra, synchrony of tundra respiration with snow melt and landscape thaw delays the transition from net carbon loss (at photosynthetic onset) to net uptake by 13 ± 7 days, thus reducing the tundra net carbon uptake period. Two global CO2 inversions using a CASA‐GFED model prior estimate earlier northern high latitude net carbon uptake compared to our regional inversion, which we attribute to (i) early photosynthetic‐onset model prior bias, (ii) inverse method (scaling factor + optimization window), and (iii) sparsity of available Alaskan CO2 observations. Another global inversion with zero prior estimates the same timing for net carbon uptake as the regional model but smaller seasonal amplitude. The analysis of Alaskan eddy covariance observations confirms regional scale findings for tundra, but indicates that photosynthesis and net carbon uptake occur up to 1 month earlier in evergreens than captured by models or CO2 inversions, with better correlation to above‐freezing air temperature than date of primary thaw. Further collection and analysis of boreal evergreen species over multiple years and at additional subarctic flux towers are critically needed.  相似文献   

4.
Leaf quantity (i.e., canopy leaf area index, LAI), quality (i.e., per‐area photosynthetic capacity), and longevity all influence the photosynthetic seasonality of tropical evergreen forests. However, these components of tropical leaf phenology are poorly represented in most terrestrial biosphere models (TBMs). Here, we explored alternative options for the representation of leaf phenology effects in TBMs that employ the Farquahar, von Caemmerer & Berry (FvCB) representation of CO2 assimilation. We developed a two‐fraction leaf (sun and shade), two‐layer canopy (upper and lower) photosynthesis model to evaluate different modeling approaches and assessed three components of phenological variations (i.e., leaf quantity, quality, and within‐canopy variation in leaf longevity). Our model was driven by the prescribed seasonality of leaf quantity and quality derived from ground‐based measurements within an Amazonian evergreen forest. Modeled photosynthetic seasonality was not sensitive to leaf quantity, but was highly sensitive to leaf quality and its vertical distribution within the canopy, with markedly more sensitivity to upper canopy leaf quality. This is because light absorption in tropical canopies is near maximal for the entire year, implying that seasonal changes in LAI have little impact on total canopy light absorption; and because leaf quality has a greater effect on photosynthesis of sunlit leaves than light limited, shade leaves and sunlit foliage are more abundant in the upper canopy. Our two‐fraction leaf, two‐layer canopy model, which accounted for all three phenological components, was able to simulate photosynthetic seasonality, explaining ~90% of the average seasonal variation in eddy covariance‐derived CO2 assimilation. This work identifies a parsimonious approach for representing tropical evergreen forest photosynthetic seasonality in TBMs that utilize the FvCB model of CO2 assimilation and highlights the importance of incorporating more realistic phenological mechanisms in models that seek to improve the projection of future carbon dynamics in tropical evergreen forests.  相似文献   

5.
Pollen analysis of Miocene and Pliocene sediments from the Iberian Peninsula shows a progressive reduction in plant diversity through time caused by the disappearance of thermophilous and high-water requirement plants. In addition, an increase in warm-temperate (mesothermic), seasonal-adapted “Mediterranean” taxa, high-elevation conifers and herbs (mainly Artemisia) occurred during the Middle and Late Miocene and Pliocene. This has mainly been interpreted as a response of the vegetation to global and regional processes, including climate cooling related to the development of the East Antarctic Ice Sheet and then the onset of the Arctic Ice Sheet, uplift of regional mountains related to the Alpine uplift and the progressive movement of Eurasia towards northern latitudes as a result of the northwards subduction of Africa. The development of steppe-like vegetation in southern Iberia is ancient and probably started during the Oligocene. The onset of a contrasted seasonality in temperature during the Mid-Pliocene superimposed on the pre-existing seasonality in precipitation, the annual length of which increased southward. The Mediterranean climatic rhythm (summer drought) began about 3.4 Ma and caused the individualization of modern Mediterranean ecosystems. Quaternary-type Mediterranean climatic fluctuations started at 2.6 Ma (Gelasian) resulting in repeated steppe vs. forest alternations. A latitudinal climatic gradient between the southern and the northern parts of the Iberian Peninsula existed since the Middle Miocene.  相似文献   

6.
Arctic and boreal ecosystems play an important role in the global carbon (C) budget, and whether they act as a future net C sink or source depends on climate and environmental change. Here, we used complementary in situ measurements, model simulations, and satellite observations to investigate the net carbon dioxide (CO2) seasonal cycle and its climatic and environmental controls across Alaska and northwestern Canada during the anomalously warm winter to spring conditions of 2015 and 2016 (relative to 2010–2014). In the warm spring, we found that photosynthesis was enhanced more than respiration, leading to greater CO2 uptake. However, photosynthetic enhancement from spring warming was partially offset by greater ecosystem respiration during the preceding anomalously warm winter, resulting in nearly neutral effects on the annual net CO2 balance. Eddy covariance CO2 flux measurements showed that air temperature has a primary influence on net CO2 exchange in winter and spring, while soil moisture has a primary control on net CO2 exchange in the fall. The net CO2 exchange was generally more moisture limited in the boreal region than in the Arctic tundra. Our analysis indicates complex seasonal interactions of underlying C cycle processes in response to changing climate and hydrology that may not manifest in changes in net annual CO2 exchange. Therefore, a better understanding of the seasonal response of C cycle processes may provide important insights for predicting future carbon–climate feedbacks and their consequences on atmospheric CO2 dynamics in the northern high latitudes.  相似文献   

7.
8.
No consensus has yet been reached on the major factors driving the observed increase in the seasonal amplitude of atmospheric CO2 in the northern latitudes. In this study, we used atmospheric CO2 records from 26 northern hemisphere stations with a temporal coverage longer than 15 years, and an atmospheric transport model prescribed with net biome productivity (NBP) from an ensemble of nine terrestrial ecosystem models, to attribute change in the seasonal amplitude of atmospheric CO2. We found significant (p < .05) increases in seasonal peak‐to‐trough CO2 amplitude (AMPP‐T) at nine stations, and in trough‐to‐peak amplitude (AMPT‐P) at eight stations over the last three decades. Most of the stations that recorded increasing amplitudes are in Arctic and boreal regions (>50°N), consistent with previous observations that the amplitude increased faster at Barrow (Arctic) than at Mauna Loa (subtropics). The multi‐model ensemble mean (MMEM) shows that the response of ecosystem carbon cycling to rising CO2 concentration (eCO2) and climate change are dominant drivers of the increase in AMPP‐T and AMPT‐P in the high latitudes. At the Barrow station, the observed increase of AMPP‐T and AMPT‐P over the last 33 years is explained by eCO2 (39% and 42%) almost equally than by climate change (32% and 35%). The increased carbon losses during the months with a net carbon release in response to eCO2 are associated with higher ecosystem respiration due to the increase in carbon storage caused by eCO2 during carbon uptake period. Air‐sea CO2 fluxes (10% for AMPP‐T and 11% for AMPT‐P) and the impacts of land‐use change (marginally significant 3% for AMPP‐T and 4% for AMPT‐P) also contributed to the CO2 measured at Barrow, highlighting the role of these factors in regulating seasonal changes in the global carbon cycle.  相似文献   

9.
Rising temperatures caused by climate change could negatively alter plant ecosystems if temperatures exceed optimal temperatures for carbon gain. Such changes may threaten temperature‐sensitive species, causing local extinctions and range migrations. This study examined the optimal temperature of net photosynthesis (Topt) of two boreal and four temperate deciduous tree species grown in the field in northern Minnesota, United States under two contrasting temperature regimes. We hypothesized that Topt would be higher in temperate than co‐occurring boreal species, with temperate species exhibiting greater plasticity in Topt, resulting in better acclimation to elevated temperatures. The chamberless experiment, located at two sites in both open and understory conditions, continuously warmed plants and soils during three growing seasons. Results show a modest, but significant shift in Topt of 1.1 ± 0.21 °C on average for plants subjected to a mean 2.9 ± 0.01 °C warming during midday hours in summer, and shifts with warming were unrelated to species native ranges. The 1.1 °C shift in Topt with 2.9 °C warming might be interpreted as suggesting limited capacity to shift temperature response functions to better match changes in temperature. However, Topt of warmed plants was as well‐matched with prior midday temperatures as Topt of plants in the ambient treatment, and Topt in both treatments was at a level where realized photosynthesis was within 90–95% of maximum. These results suggest that seedlings of all species were close to optimizing photosynthetic temperature responses, and equally so in both temperature treatments. Our study suggests that temperate and boreal species have considerable capacity to match their photosynthetic temperature response functions to prevailing growing season temperatures that occur today and to those that will likely occur in the coming decades under climate change.  相似文献   

10.
Ecosystem water‐use efficiency (EWUE) is an indicator of carbon–water interactions and is defined as the ratio of carbon assimilation (GPP) to evapotranspiration (ET). Previous research suggests an increasing long‐term trend in annual EWUE over many regions and is largely attributed to the physiological effects of rising CO2. The seasonal trends in EWUE, however, have not yet been analyzed. In this study, we investigate seasonal EWUE trends and responses to various drivers during 1982–2008. The seasonal cycle for two variants of EWUE, water‐use efficiency (WUE, GPP/ET), and transpiration‐based WUE (WUEt, the ratio of GPP and transpiration), is analyzed from 0.5° gridded fields from four process‐based models and satellite‐based products, as well as a network of 63 local flux tower observations. WUE derived from flux tower observations shows moderate seasonal variation for most latitude bands, which is in agreement with satellite‐based products. In contrast, the seasonal EWUE trends are not well captured by the same satellite‐based products. Trend analysis, based on process‐model factorial simulations separating effects of climate, CO2, and nitrogen deposition (NDEP), further suggests that the seasonal EWUE trends are mainly associated with seasonal trends of climate, whereas CO2 and NDEP do not show obvious seasonal difference in EWUE trends. About 66% grid cells show positive annual WUE trends, mainly over mid‐ and high northern latitudes. In these regions, spring climate change has amplified the effect of CO2 in increasing WUE by more than 0.005 gC m−2 mm−1 yr−1 for 41% pixels. Multiple regression analysis further shows that the increase in springtime WUE in the northern hemisphere is the result of GPP increasing faster than ET because of the higher temperature sensitivity of GPP relative to ET. The partitioning of annual EWUE to seasonal components provides new insight into the relative sensitivities of GPP and ET to climate, CO2, and NDEP.  相似文献   

11.
Understanding the capacity for different species to reduce their susceptibility to climate change via phenotypic plasticity is essential for accurately predicting species extinction risk. The climatic variability hypothesis suggests that spatial and temporal variation in climatic variables should select for more plastic phenotypes. However, empirical support for this hypothesis is limited. Here, we examine the capacity for ten Drosophila species to increase their critical thermal maxima (CTMAX) through developmental acclimation and/or adult heat hardening. Using four fluctuating developmental temperature regimes, ranging from 13 to 33 °C, we find that most species can increase their CTMAX via developmental acclimation and adult hardening, but found no relationship between climatic variables and absolute measures of plasticity. However, when plasticity was dissected across developmental temperatures, a positive association between plasticity and one measure of climatic variability (temperature seasonality) was found when development took place between 26 and 28 °C, whereas a negative relationship was found when development took place between 20 and 23 °C. In addition, a decline in CTMAX and egg‐to‐adult viability, a proxy for fitness, was observed in tropical species at the warmer developmental temperatures (26–28 °C); this suggests that tropical species may be at even greater risk from climate change than currently predicted. The combined effects of developmental acclimation and adult hardening on CTMAX were small, contributing to a <0.60 °C shift in CTMAX. Although small shifts in CTMAX may increase population persistence in the shorter term, the degree to which they can contribute to meaningful responses in the long term is unclear.  相似文献   

12.
Bioenergy grass species are a renewable energy source, but their productivity has not been fully realized. Improving photosynthetic efficiency has been proposed as a mechanism to increase the productivity of bioenergy grass species. Fluctuating light, experienced by all field grown crops, is known to reduce photosynthetic efficiency. This experiment aimed to evaluate the photosynthetic performance of both C3 and C4 bioenergy grass species under steady state and fluctuating light conditions by examining leaf gas exchange. The fluctuating light regime used here decreased carbon assimilation across all species when compared to expected steady state values. Overall, C4 species assimilated more carbon than C3 species during the fluctuating light regime, with both photosynthetic types assimilating about 16% less carbon than expected based on steady state measurements. Little diversity was observed in response to fluctuating light among C3 species, and photorespiration partially contributed to the rapid decreases in net photosynthetic rates during high to low light transitions. In C4 species, differences among the four NADP-ME species were apparent. Diversity observed among C4 species in this experiment provides evidence that photosynthetic efficiency in response to fluctuating light may be targeted to increase C4 bioenergy grass productivity.  相似文献   

13.

Question

Temperate grasslands are known for their high plant diversity and distinct seasonality. However, their intra-annual community dynamics are still largely overlooked by ecologists. Therefore, we explored the seasonal alpha- and beta-diversity patterns of vascular plants and their relationships to above-ground biomass in a rocky steppe (Festucion valesiacae).

Location

Pavlov Hills, SE Czech Republic.

Methods

For one year, we monitored the plant community of the rocky steppe at monthly intervals in 42 permanent plots of 0.25 m2. We examined seasonal changes in above-ground biomass (estimated from the cover and height of living plant parts) and seasonal beta-diversity, which we partitioned into turnover and nestedness components and their quantitative counterparts: balanced changes and abundance gradients.

Results

We identified a pronounced seasonal pattern of above-ground biomass, species richness and composition. Total above-ground biomass was highest in June (summer), with a peak representing only 60% of total annual production (sum of individual species' maxima). However, the observed peak in species richness occurred in March (early spring), with 80% of the total species number recorded throughout the year. Accordingly, nestedness and abundance gradient patterns differed in the spring months, while seasonal turnover and balanced changes in abundance were generally congruent. Annual, short-lived, and perennial species exhibited different seasonal patterns of species richness and biomass production, although a sharp increase in biomass and a peak in species richness in spring were universal across the community.

Conclusions

Seasonal climatic constraints on plant growth are key determinants of primary production dynamics. Plants adapt to these constraints by adjusting their life cycles in different ways. In dry grasslands, the complexity of plant responses to climatic seasonality can result in seasonal beta-diversity patterns with divergent peaks in biomass and species richness.  相似文献   

14.
Evaluating the role of terrestrial ecosystems in the global carbon cycle requires a detailed understanding of carbon exchange between vegetation, soil, and the atmosphere. Global climatic change may modify the net carbon balance of terrestrial ecosystems, causing feedbacks on atmospheric CO2 and climate. We describe a model for investigating terrestrial carbon exchange and its response to climatic variation based on the processes of plant photosynthesis, carbon allocation, litter production, and soil organic carbon decomposition. The model is used to produce geographical patterns of net primary production (NPP), carbon stocks in vegetation and soils, and the seasonal variations in net ecosystem production (NEP) under both contemporary and future climates. For contemporary climate, the estimated global NPP is 57.0 Gt C y–1, carbon stocks in vegetation and soils are 640 Gt C and 1358 Gt C, respectively, and NEP varies from –0.5 Gt C in October to 1.6 Gt C in July. For a doubled atmospheric CO2 concentration and the corresponding climate, we predict that global NPP will rise to 69.6 Gt C y–1, carbon stocks in vegetation and soils will increase by, respectively, 133 Gt C and 160 Gt C, and the seasonal amplitude of NEP will increase by 76%. A doubling of atmospheric CO2 without climate change may enhance NPP by 25% and result in a substantial increase in carbon stocks in vegetation and soils. Climate change without CO2 elevation will reduce the global NPP and soil carbon stocks, but leads to an increase in vegetation carbon because of a forest extension and NPP enhancement in the north. By combining the effects of CO2 doubling, climate change, and the consequent redistribution of vegetation, we predict a strong enhancement in NPP and carbon stocks of terrestrial ecosystems. This study simulates the possible variation in the carbon exchange at equilibrium state. We anticipate to investigate the dynamic responses in the carbon exchange to atmospheric CO2 elevation and climate change in the past and future.  相似文献   

15.
To predict forest response to long‐term climate change with high confidence requires that dynamic global vegetation models (DGVMs) be successfully tested against ecosystem response to short‐term variations in environmental drivers, including regular seasonal patterns. Here, we used an integrated dataset from four forests in the Brasil flux network, spanning a range of dry‐season intensities and lengths, to determine how well four state‐of‐the‐art models (IBIS, ED2, JULES, and CLM3.5) simulated the seasonality of carbon exchanges in Amazonian tropical forests. We found that most DGVMs poorly represented the annual cycle of gross primary productivity (GPP), of photosynthetic capacity (Pc), and of other fluxes and pools. Models simulated consistent dry‐season declines in GPP in the equatorial Amazon (Manaus K34, Santarem K67, and Caxiuanã CAX); a contrast to observed GPP increases. Model simulated dry‐season GPP reductions were driven by an external environmental factor, ‘soil water stress’ and consequently by a constant or decreasing photosynthetic infrastructure (Pc), while observed dry‐season GPP resulted from a combination of internal biological (leaf‐flush and abscission and increased Pc) and environmental (incoming radiation) causes. Moreover, we found models generally overestimated observed seasonal net ecosystem exchange (NEE) and respiration (Re) at equatorial locations. In contrast, a southern Amazon forest (Jarú RJA) exhibited dry‐season declines in GPP and Re consistent with most DGVMs simulations. While water limitation was represented in models and the primary driver of seasonal photosynthesis in southern Amazonia, changes in internal biophysical processes, light‐harvesting adaptations (e.g., variations in leaf area index (LAI) and increasing leaf‐level assimilation rate related to leaf demography), and allocation lags between leaf and wood, dominated equatorial Amazon carbon flux dynamics and were deficient or absent from current model formulations. Correctly simulating flux seasonality at tropical forests requires a greater understanding and the incorporation of internal biophysical mechanisms in future model developments.  相似文献   

16.
Reflooding formerly drained peatlands has been proposed as a means to reduce losses of organic matter and sequester soil carbon for climate change mitigation, but a renewal of high methane emissions has been reported for these ecosystems, offsetting mitigation potential. Our ability to interpret observed methane fluxes in reflooded peatlands and make predictions about future flux trends is limited due to a lack of detailed studies of methanogenic processes. In this study we investigate methanogenesis in a reflooded agricultural peatland in the Sacramento Delta, California. We use the stable‐and radio‐carbon isotopic signatures of wetland sediment methane, ecosystem‐scale eddy covariance flux observations, and laboratory incubation experiments, to identify which carbon sources and methanogenic production pathways fuel methanogenesis and how these processes are affected by vegetation and seasonality. We found that the old peat contribution to annual methane emissions was large (~30%) compared to intact wetlands, indicating a biogeochemical legacy of drainage. However, fresh carbon and the acetoclastic pathway still accounted for the majority of methanogenesis throughout the year. Although temperature sensitivities for bulk peat methanogenesis were similar between open‐water (Q10 = 2.1) and vegetated (Q10 = 2.3) soils, methane production from both fresh and old carbon sources showed pronounced seasonality in vegetated zones. We conclude that high methane emissions in restored wetlands constitute a biogeochemical trade‐off with contemporary carbon uptake, given that methane efflux is fueled primarily by fresh carbon inputs.  相似文献   

17.
We examined the response of the normalized difference vegetation index, integrated over the growing season (gNDVI) to mean precipitation, maximum temperature (Tmax), and minimum temperature (Tmin) over an 11‐year period (1990–2000) for six biomes in the conterminous United States. We focused on within‐ and across‐biome variance in long‐term average gNDVI, emphasizing the degree to which this variance is explained by spatial gradients in long‐term average seasonal climate. Since direct measurements of ecosystem function are unavailable at the spatial and temporal scales studied, we used the satellite‐based gNDVI as a proxy for net photosynthetic activity. Forested and nonforested biomes differed sharply in their response to spatial gradients in temperature and precipitation. Gradients in mean spring and fall precipitation totals explained much of the variance in mean annual gNDVI within arid biomes. For forested biomes, mean annual gNDVI was positively associated with mean annual and seasonal Tmin and Tmax. These trends highlight the importance of the seasonal components of precipitation and temperature regimes in controlling productivity, and reflect the influence of these climatic components on water balance and growing‐season length. According to the International Panel on Climate Change (IPCC) (2001) increases in temperature minima and fall precipitation have contributed the dominant components of US increases in temperature and precipitation, respectively. Within the range of conditions observed over the study region, our results suggest that these trends have particularly significant consequences for above‐ground plant productivity, especially for Grassland, Open Shrubland, and Evergreen Needleleaf Forest. If historical climatic trends and the biotic responses suggested in this analysis continue to hold, we can anticipate further increases in productivity for both forested and nonforested ecoregions in the conterminous US, with associated implications for carbon budgets and woody proliferation.  相似文献   

18.
Exclosures are used to regenerate native vegetation as a way to reduce soil erosion, increase rain water infiltration and provide fodder and woody biomass in degraded grazing lands. Therefore, this study assessed the impact of grazing exclosure on carbon sequestration and soil nutrients under 5 and 10 years of grazing exclosures and freely grazed areas in Tigray, northern Ethiopia. Carbon stocks and soil nutrients increased with increasing grazing exclusion. However, open grazing lands and 5 years of grazing exclosure did not differ in above‐ and belowground carbon stocks. Moreover, 10 years of grazing exclosure had a higher (p < 0.01) grass, herb and litter carbon stocks compared to 5 years exclosure and open grazing lands. The total carbon stock was higher for 10 years exclosure (75.65 t C ha‐1) than the 5 years exclosure (55.06 t C ha‐1) and in open grazing areas (51.98 t C ha‐1). Grazing lands closed for 10 years had a higher SOC, organic matter, total N, available P, and exchangeable K + and Na + compared to 5 year's exclosure and open grazing lands. Therefore, establishment of grazing exclosures had a positive effect in restoring degraded grazing lands, thus improving carbon sequestration potentials and soil nutrients.  相似文献   

19.
Nutrient enrichment effects on biofilm metabolism in a Mediterranean stream   总被引:1,自引:0,他引:1  
1. Biofilm biomass and metabolism were analysed in La Solana, a calcareous, undisturbed second-order stream. Measurements were carried out in two Mediterranean climatic extremes, summer and winter. Two on-site experimental channels were used to study changes following nutrient addition to one of them. 2. Algal biomass (chlorophyll a), NDPP (net daily primary production), GDPP (gross daily primary production) and R (respiration) increased in the enriched channel, and these increases were greater in summer. 3. Photosynthetic capacity (Pmaxchl) decreased during summer, possibly due to enhanced self-shading accompanying the increase in biomass. 4. In winter, Pmaxchl increased and reached values similar to those in the summer control channel. Because grazing was low, the higher values of Pmaxchl were attributed to partial substitution of the cyanobacterial assemblage by a green-algae dominated assemblage with higher photosynthetic capacity as well as the low increase in biomass preventing any significant self-shading.  相似文献   

20.
S. Perea  I. Doadrio 《Molecular ecology》2015,24(14):3706-3722
The Mediterranean freshwater fish fauna has evolved under constraints imposed by the seasonal weather/hydrological patterns that define the Mediterranean climate. These conditions have influenced the genetic and demographic structure of aquatic communities since their origins in the Mid‐Pliocene. Freshwater species in Mediterranean‐type climates will likely constitute genetically well‐differentiated populations, to varying extents depending on basin size, as a consequence of fragmentation resulting from drought/flood cycles. We developed an integrative framework to study the spatial patterns in genetic diversity, demographic trends, habitat suitability modelling and landscape genetics, to evaluate the evolutionary response of Mediterranean‐type freshwater fish to seasonal fluctuations in weather. To test this evolutionary response, the model species used was Squalius valentinus, an endemic cyprinid of the Spanish Levantine area, where seasonal weather fluctuations are extreme, although our findings may be extrapolated to other Mediterranean‐type species. Our results underscore the significant role of the Mediterranean climate, along with Pleistocene glaciations, in diversification of S. valentinus. We found higher nuclear diversity in larger drainage basins, but higher mitochondrial diversity correlated to habitat suitability rather than basin size. We also found strong correlation between genetic structure and climatic factors associated with Mediterranean seasonality. Demographic and migration analyses suggested population expansion during glacial periods that also contributed to the current genetic structure of S. valentinus populations. The inferred models support the significant contribution of precipitation and temperature to S. valentinus habitat suitability and allow recognizing areas of habitat stability. We highlight the importance of stable habitat conditions, fostered by typical karstic springs found on the Mediterranean littoral coasts, for the preservation of freshwater species inhabiting seasonally fluctuating river systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号