首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
减数分裂重组不仅保证了真核生物有性生殖过程中染色体数量的稳定,还通过父母亲本间遗传物质的互换在后代中产生遗传变异。因此,减数分裂重组是遗传多样性形成的重要途径,也是生物多样性和物种进化的主要动力。在绝大多数真核生物中,不管染色体数目的多少或基因组的大小,减数分裂重组的形成都受到严格的调控,但抑制减数分裂重组的分子机理目前仍不清楚。近年来,通过正向遗传学筛选鉴定出多个减数分裂重组抑制基因,揭示了抑制基因的功能和调控途径。本文基于拟南芥中减数分裂重组抑制基因的研究现状,综述了植物减数分裂重组抑制基因研究取得的突破性进展,并结合基因功能与其调控网络阐述了抑制植物减数分裂重组的分子机理。  相似文献   

2.
减数分裂是真核生物适应性进化的重要机制,以8种纤毛虫作为实验对象,通过生物信息学方法对其14个减数分裂基因进行了鉴定及分子进化研究。结果表明:(1)不同的纤毛虫种类存在一些特异性的减数分裂基因的丢失与复制现象;(2)减数分裂相关基因在纤毛虫中很保守;(3)纤毛虫减数分裂重要的同源重组过程是在真核生物中不常见的Ⅱ型。本研究表明,纤毛虫减数分裂可能代表了真核生物较原始的减数分裂方式,在进化的过程中很保守,为研究真核生物减数分裂起源与进化提供了重要线索。  相似文献   

3.
减数分裂是真核生物有性生殖过程中性母细胞成熟时所进行的特殊细胞分裂方式.在减数分裂过程中,同源染色体间需发生一系列有规律的重要事件,包括同源染色体配对、联会、重组、分离等,这些事件被证明是由许多遗传网络精密调控的.尽管许多调控减数分裂过程的基因已经被克隆,但减数分裂同源重组的分子机理仍不太清楚.植物是进行减数分裂研究的理想材料,近年来随着多种模式植物基因组序列测定的完成,大大加速了植物减数分裂相关基因的鉴定与功能研究.本文以拟南芥和水稻为主要对象,综述了植物减数分裂同源重组分子机理研究取得的一些重要进展,着重分析已鉴定同源重组相关蛋白的生物学功能.  相似文献   

4.
减数分裂重组是基因组进化的重要驱动力,揭示基因组在与重组有关进化压力下的进化规律是基因组进化研究领域的重要课题.一系列证据表明基因组编码信息量在进化过程中随时间增加.重组率与自然选择效率成正比,因此,在进化过程中基因组信息量的增加速率可能会受到重组率的影响.本文定义表征编码信息量增加速率的信息参数,以人类基因组为研究对象,分析基因组信息量的增加速率与重组率的关系,发现二者显著正相关,表明重组可能是加快基因组信息量增长的重要途径.  相似文献   

5.
植物减数分裂中的染色体配对、联会和重组研究进展   总被引:2,自引:1,他引:1  
Liu CX  He QY  Jin WW 《遗传》2010,32(12):1223-1231
减数分裂是有性生殖的关键步骤,而染色体配对、联会和重组又是减数分裂的重要环节,也是减数分裂研究的热点之一。近些年来,借助于先进的分子生物学和细胞学技术,通过大量突变体的筛选,在植物减数分裂中染色体的配对、联会和重组研究取得了长足的进展。文章就目前克隆的植物减数分裂中染色体配对、联会和重组相关的基因及功能研究进行了总结,并进一步对其分子机制进行了探讨。  相似文献   

6.
溯源联会     
联会被认为是减数分裂过程中染色体的特殊行为之一,是高中生物学教学中的一个难点。同源重组最初的功能可能只是修复DNA损伤,后来得到发展并被"借用"到减数分裂重组中,确保减数分裂过程中同源染色体的正确配对,保持基因组的完整性。追根溯源,是DNA分子的同源重组导致了联会。  相似文献   

7.
Chen J  Luo WX  Li M  Luo Q 《遗传》2011,33(6):648-653
减数分裂在有性生物的生命周期中起着非常重要的作用,其过程高度保守。减数分裂过程中,染色体配对、联会和重组是遗传变异的源泉、有性生物进化的推动力,也是减数分裂研究的热点之一。在植物减数分裂研究中,还不可能直接观察到染色体在减数分裂过程中的交换情况,往往是通过交换后群体的遗传分析来推测。文章通过图示基因型方法分析了来自花药培养的32个水稻双单倍体(DH)株系,发现少数株系某些染色体部分区段为杂合状态,并利用STS分子标记对杂合状态的真实性进行了验证,推测杂合区段的出现可能与染色体的修复不完全或修复错误有关。研究结果为解释植物减数分裂的机理提供了直接证据。  相似文献   

8.
近些年来,治疗性重组蛋白类药物是生物制药领域研究的热点。工业化生产中常用于重组蛋白表达的细胞系是中国仓鼠卵巢(Chinese hamster ovary,CHO)细胞。传统CHO细胞系的表达大多数基于随机整合的方式,这可能会使目标基因整合到异染色质区域或者不稳定的染色质区域,导致CHO细胞表达不稳定,需要多轮筛选才能获得理想的表达细胞系。最新研究表明,外源基因在CHO细胞预测/特定的基因组位点中进行特异性整合,可以使重组CHO细胞的表达保持长期一致性和稳定性。CHO细胞基因组中高效稳定的转录整合位点被称为热点(hot spot)。阐述CHO细胞基因组稳定的hot spot位点近几年的研究进展,其中包括热门的hot spot位点,以及如何研究新的hot spot位点的方法。总结如何将外源基因高效定位于预测的CHO细胞hot spot位点,实现高水平稳定的表达重组蛋白,为发现新的有效的hot spot位点,构建稳定表达CHO细胞系提供参考。  相似文献   

9.
程序性和非程序性DNA双链断裂起始于生理条件下的需求(如减数分裂重组)和外界的刺激(如离子辐射等).DNA的双链断裂会严重影响基因组的稳定性,因而需要恰当的处理并以一种可调控的方式加以修复.近期研究表明,蛋白质的泛素化修饰在DNA损伤反应以及减数分裂重组修复过程中发挥了重要作用.本文拟综述参与在同源重组依赖的DNA双链断裂修复过程中与泛素化相关的蛋白质以及一些蛋白质复合体在此过程中的作用及功能.  相似文献   

10.
减数分裂重组通过基因转变、碱基替换等方式影响基因组进化。紧邻碱基对突变偏好性有很强的影响,但该“紧邻碱基效应”如何随重组率变化有待深入研究。本文提出基于条件互信息(Conditional mutual information)量化突变对紧邻碱基依赖性的方法,并利用人类SNP等相关数据,分析重组率如何影响突变对紧邻碱基的依赖性。结果表明:在全基因组水平上, SNP位点上的突变对紧邻碱基的依赖性(即平均条件互信息)随着重组率的增加而增加;具体而言,当SNPs两侧碱基为A/G、C/G或C/T时,随着重组率的增加突变偏向性增强,但两侧碱基为A/A或T/T时,重组率对SNP突变偏向性产生抑制作用;另外,重组率越高,外显子与基因间区SNP的突变偏好性越强;而内含子区域SNP的突变偏好受到高重组率的抑制。结果有助于深入理解减数分裂重组如何影响基因组进化。  相似文献   

11.
12.
Peters AD 《Genetics》2008,178(3):1579-1593
There is growing evidence that in a variety of organisms the majority of meiotic recombination events occur at a relatively small fraction of loci, known as recombination hotspots. If hotspot activity results from the DNA sequence at or near the hotspot itself (in cis), these hotspots are expected to be rapidly lost due to biased gene conversion, unless there is strong selection in favor of the hotspot itself. This phenomenon makes it very difficult to maintain existing hotspots and even more difficult for new hotspots to evolve; it has therefore come to be known as the "hotspot conversion paradox." I develop an analytical framework for exploring the evolution of recombination hotspots under the forces of selection, mutation, and conversion. I derive the general conditions under which cis- and trans-controlled hotspots can be maintained, as well as those under which new hotspots controlled by both a cis and a trans locus can invade a population. I show that the conditions for maintenance of and invasion by trans- or cis-plus-trans-controlled hotspots are broader than for those controlled entirely in cis. Finally, I show that a combination of cis and trans control may allow for long-lived polymorphisms in hotspot activity, the patterns of which may explain some recently observed features of recombination hotspots.  相似文献   

13.
Wahls WP  Davidson MK 《Genetics》2011,189(3):685-694
Hotspots regulate the position and frequency of Spo11 (Rec12)-initiated meiotic recombination, but paradoxically they are suicidal and are somehow resurrected elsewhere in the genome. After the DNA sequence-dependent activation of hotspots was discovered in fission yeast, nearly two decades elapsed before the key realizations that (A) DNA site-dependent regulation is broadly conserved and (B) individual eukaryotes have multiple different DNA sequence motifs that activate hotspots. From our perspective, such findings provide a conceptually straightforward solution to the hotspot paradox and can explain other, seemingly complex features of meiotic recombination. We describe how a small number of single-base-pair substitutions can generate hotspots de novo and dramatically alter their distribution in the genome. This model also shows how equilibrium rate kinetics could maintain the presence of hotspots over evolutionary timescales, without strong selective pressures invoked previously, and explains why hotspots localize preferentially to intergenic regions and introns. The model is robust enough to account for all hotspots of humans and chimpanzees repositioned since their divergence from the latest common ancestor.  相似文献   

14.
Recombination hotspots are the regions within the genome where the rate, and the frequency of recombination are optimum with a size varying from 1 to 2 kb. The recombination event is mediated by the double-stranded break formation, guided by the combined enzymatic action of DNA topoisomerase and Spo 11 endonuclease. These regions are distributed non-uniformly throughout the human genome and cause distortions in the genetic map. Numerous lines of evidence suggest that the number of hotspots known in humans has increased manifold in recent years. A few facts about the hotspot evolutions were also put forward, indicating the differences in the hotspot position between chimpanzees and humans. In mice, recombination hot spots were found to be clustered within the major histocompatibility complex (MHC) region. Several models, that help explain meiotic recombination has been proposed. Moreover, scientists also developed some computational tools to locate the hotspot position and estimate their recombination rate in humans is of great interest to population and medical geneticists. Here we reviewed the molecular mechanisms, models and in silico prediction techniques of hot spot residues.  相似文献   

15.
Hotspots of meiotic recombination can change rapidly over time. This instability and the reported high level of inter-individual variation in meiotic recombination puts in question the accuracy of the calculated hotspot map, which is based on the summation of past genetic crossovers. To estimate the accuracy of the computed recombination rate map, we have mapped genetic crossovers to a median resolution of 70 Kb in 10 CEPH pedigrees. We then compared the positions of crossovers with the hotspots computed from HapMap data and performed extensive computer simulations to compare the observed distributions of crossovers with the distributions expected from the calculated recombination rate maps. Here we show that a population-averaged hotspot map computed from linkage disequilibrium data predicts well present-day genetic crossovers. We find that computed hotspot maps accurately estimate both the strength and the position of meiotic hotspots. An in-depth examination of not-predicted crossovers shows that they are preferentially located in regions where hotspots are found in other populations. In summary, we find that by combining several computed population-specific maps we can capture the variation in individual hotspots to generate a hotspot map that can predict almost all present-day genetic crossovers.  相似文献   

16.
17.
Meiotic recombination is initiated by DNA double-strand breaks (DSBs) made by Spo11 (Rec12 in fission yeast), which becomes covalently linked to the DSB ends. Like recombination events, DSBs occur at hotspots in the genome, but the genetic factors responsible for most hotspots have remained elusive. Here we describe in fission yeast the genome-wide distribution of meiosis-specific Rec12-DNA linkages, which closely parallel DSBs measured by conventional Southern blot hybridization. Prominent DSB hotspots are located ~65 kb apart, separated by intervals with little or no detectable breakage. Most hotspots lie within exceptionally large intergenic regions. Thus, the chromosomal architecture responsible for hotspots in fission yeast is markedly different from that of budding yeast, in which DSB hotspots are much more closely spaced and, in many regions of the genome, occur at each promoter. Our analysis in fission yeast reveals a clearly identifiable chromosomal feature that can predict the majority of recombination hotspots across a whole genome and provides a basis for searching for the chromosomal features that dictate hotspots of meiotic recombination in other organisms, including humans.  相似文献   

18.
There is strong evidence that hotspots of meiotic recombination in humans are transient features of the genome. For example, hotspot locations are not shared between human and chimpanzee. Biased gene conversion in favor of alleles that locally disrupt hotspots is a possible explanation of the short lifespan of hotspots. We investigate the implications of such a bias on human hotspots and their evolution. Our results demonstrate that gene conversion bias is a sufficiently strong force to produce the observed lack of sharing of intense hotspots between species, although sharing may be much more common for weaker hotspots. We investigate models of how hotspots arise, and find that only models in which hotspot alleles do not initially experience drive are consistent with observations of rather hot hotspots in the human genome. Mutations acting against drive cannot successfully introduce such hotspots into the population, even if there is direct selection for higher recombination rates, such as to ensure correct segregation during meiosis. We explore the impact of hotspot alleles on patterns of haplotype variation, and show that such alleles mask their presence in population genetic data, making them difficult to detect.  相似文献   

19.
In most eukaryotes, the prophase of the first meiotic division is characterized by a high level of homologous recombination between homologous chromosomes. Recombination events are not distributed evenly within the genome, but vary both locally and at large scale. Locally, most recombination events are clustered in short intervals (a few kilobases) called hotspots, separated by large intervening regions with no or very little recombination. Despite the importance of regulating both the frequency and the distribution of recombination events, the genetic factors controlling the activity of the recombination hotspots in mammals are still poorly understood. We previously characterized a recombination hotspot located close to the Psmb9 gene in the mouse major histocompatibility complex by sperm typing, demonstrating that it is a site of recombination initiation. With the goal of uncovering some of the genetic factors controlling the activity of this initiation site, we analyzed this hotspot in both male and female germ lines and compared the level of recombination in different hybrid mice. We show that a haplotype-specific element acts at distance and in trans to activate about 2,000-fold the recombination activity at Psmb9. Another haplotype-specific element acts in cis to repress initiation of recombination, and we propose this control to be due to polymorphisms located within the initiation zone. In addition, we describe subtle variations in the frequency and distribution of recombination events related to strain and sex differences. These findings show that most regulations observed act at the level of initiation and provide the first analysis of the control of the activity of a meiotic recombination hotspot in the mouse genome that reveals the interactions of elements located both in and outside the hotspot.  相似文献   

20.
Wiuf C  Posada D 《Genetics》2003,164(1):407-417
Recent experimental findings suggest that the assumption of a homogeneous recombination rate along the human genome is too naive. These findings point to block-structured recombination rates; certain regions (called hotspots) are more prone than other regions to recombination. In this report a coalescent model incorporating hotspot or block-structured recombination is developed and investigated analytically as well as by simulation. Our main results can be summarized as follows: (1) The expected number of recombination events is much lower in a model with pure hotspot recombination than in a model with pure homogeneous recombination, (2) hotspots give rise to large variation in recombination rates along the genome as well as in the number of historical recombination events, and (3) the size of a (nonrecombining) block in the hotspot model is likely to be overestimated grossly when estimated from SNP data. The results are discussed with reference to the current debate about block-structured recombination and, in addition, the results are compared to genome-wide variation in recombination rates. A number of new analytical results about the model are derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号