首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Natural killer (NK) cells have been demonstrated could play an important role in the treatment of a number of tumors in mice. In the present study, chemokine CCL27, which be considered only selectively chemoattracts cutaneous lymphocyte antigen positive memory T cells and Langerhans cells, firstly demonstrated that it could induce the accumulation of NK cells into tumor by the intratumoral injection of CCL27-encoding fiber-mutant vector, AdRGD-CCL27. Experiments using spleen cell fractionation and RT-PCR showed CCL27 receptor, mCCR10, was strongly expressed in NK cells, suggesting the accumulation of NK cells in tumor was attributed to chemoattractant activity of CCL27 itself. Moreover, the combination of AdRGD-CCL27 and AdRGD-IL-12 induced the synergistic anti-tumor activity via NK-dependent manner and induced more NK cells infiltration into tumor nodule than that induced by AdRGD-CCL27 alone or AdRGD-IL-12 alone.  相似文献   

2.
For achieving optimal cancer immunotherapy, it is anticipated that both the activation and infiltration of immune cells into tumor are indispensable. In the present study, fiber-mutant adenovirus vectors (Ad) encoding chemokine FKN, (AdRGD-FKN), and cytokine interleukin 12, (AdRGD-IL-12), were constructed. The in vivo gene expression of AdRGD was confirmed and the combination of both FKN and IL-12 encoding Ad elicited synergistic anti-tumor activity in ovarian carcinoma, which induced tumor regression in all tumor-bearing mice, while using FKN alone did not show notable tumor-suppressive effect. The treatment with both IL-12 and FKN induced long-term specific immunity against OV-HM tumors in tumor-rejected mice. The results of immunohistochemical staining for CD3(+ )and perforin-positive cells suggested that the failure of using FKN alone was because of the inactivation of infiltrated immune cells. In contrast, cotransduction with IL-12 and FKN could induce more activated tumor-infiltrating immune cells than that transducted with FKN or IL-12 alone. The results indicated that using both chemokine and cytokine might be a powerful tool and a promising way for effective cancer immunotherapy.  相似文献   

3.
The effectiveness of attenuated Salmonella in inhibiting tumor growth has been demonstrated in many therapeutic models, but the precise mechanisms remain incompletely understood. In this study, we show that the anti-tumor capacity of Salmonella depends on a functional MyD88-TLR pathway and is independent of adaptive immune responses. Since myeloid suppressor cells play a critical role in tumor growth, we investigated the consequences of Salmonella treatment on myeloid cell recruitment, phenotypic characteristics, and functional activation in spleen and tumor tissue of B16.F1 melanoma-bearing mice. Salmonella treatment led to increased accumulation of splenic and intratumoral CD11b+Gr-1+ myeloid cells, exhibiting significantly increased expression of various activation markers such as MHC class II, costimulatory molecules, and Sca-1/Ly6A proteins. Gene expression analysis showed that Salmonella treatment induced expression of iNOS, arginase-1 (ARG1), and IFN-γ in the spleen, but down-regulated IL-4 and TGF-β. Within the tumor, expression of iNOS, IFN-γ, and S100A9 was markedly increased, but ARG1, IL-4, TGF-β, and VEGF were inhibited. Functionally, splenic CD11b+ cells maintained their suppressive capacity following Salmonella treatment, but intratumoral myeloid cells had significantly reduced suppressive capacity. Our findings demonstrate that administration of attenuated Salmonella leads to phenotypic and functional maturation of intratumoral myeloid cells making them less suppressive and hence enhancing the host’s anti-tumor immune response. Modalities that inhibit myeloid suppressor cells may be useful adjuncts in cancer immunotherapy.  相似文献   

4.
 We have isolated a 55 kDa protein from the seed extract of Aeginetia indica L. (AIL), a parasitic plant, by affinity chromatography on an N-hydroxysuccinimide-activated Sepharose High Performance column bound with F3, a monoclonal antibody that neutralizes the cytokine-inducing and anti-tumor effect of AIL. In the present study, we examined this protein (AILb-A) for cytokine induction and anti-tumor effects by animal study, using syngeneic Meth-A tumor-bearing BALB/c mice, in which the Th2 response is genetically dominant. AILb-A administration resulted in markedly increased levels of Th1 cytokines [interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-2, IL-12 and IL-18] in the sera derived from Meth-A-bearing mice. The in vitro re-stimulation with AILb-A of splenocytes derived from AILb-A-primed mice also selectively induced Th1-type cytokines and antigen-specific killer cell activity. The neutralizing test using cytokine-specific antibodies revealed that AILb-A-induced IL-18 plays a most significant role for IFN-γ- and killer cell-inducing activities. Furthermore, IL-12 and IL-18 induced by AILb-A inhibited specifically IL-10 and IL-4 production, respectively. Finally, we examined the anti-tumor effect of AILb-A in both Meth-A-bearing BALB/c mice and Meth-A-bearing nude mice with BALB/c background. AILb-A exhibited a striking anti-tumor effect in normal BALB/c mice inoculated with Meth-A cells. In athymic nude mice, the anti-tumor effect of AILb-A was relatively weak. These findings strongly suggested that AILb-A is a potent Th1 inducer and may be a useful immunotherapeutic agent for patients with malignant diseases. Received: 27 July 2000 / Accepted: 13 March 2001  相似文献   

5.
We isolated the lipoteichoic-acid-related molecule (OK-PSA) from OK-432, a streptococcal preparation, by affinity chromatography on CNBr-activated Sepharose-4B-bound monoclonal antibody TS-2, which neutralizes the interferon (IFN)-gamma-inducing activity of OK-432. We have previously reported that OK-PSA is a potent inducer of Th1-type cytokines in human peripheral blood mononuclear cells in vitro. In this study, we conducted an animal experiment to examine whether OK-PSA exhibits an anti-tumor effect in vivo by acting as a Th1 inducer in syngeneic Meth-A tumor-bearing BALB/c mice, in which the Th2 response is genetically dominant. It was found that OK-PSA induced Th1-type cytokines [IFN-gamma, tumor necrosis factor-alpha, interleukin (IL)-2, IL-12 and IL-18] in BALB/c mice bearing Meth-A tumor and caused a marked anti-tumor effect. Although it was suggested by an in vitro study. using spleen cells derived from the animals, that IL-18 plays the greatest role in the induction of the Th1-dominant state and tumor cell killing induced by OK-PSA, the in vivo experiments demonstrated that both IL-12 and IL-18 are essential in the anti-tumor effect exhibited by OK-PSA. These findings strongly suggest that OK-PSA is a major effector molecule of OK-432 and may be a useful immunotherapeutic agent, as a potent Th1 inducer, for cancer patients with a Th2-dominant state.  相似文献   

6.

Background  

Interleukin-12 (IL-12) is well characterized to induce cellular antitumoral immunity by activation of NK-cells and T-lymphocytes. However, systemic administration of recombinant human IL-12 resulted in severe toxicity without perceptible therapeutic benefit. Even though intratumoral expression of IL-12 leads to tumor regression and long-term survival in a variety of animal models, clinical trials have not yet shown a significant therapeutic benefit. One major obstacle in the treatment with IL-12 is to overcome the relatively low expression of the therapeutic gene without compromising the safety of such an approach. Our objective was to generate an adenoviral vector system enabling the regulated expression of very high levels of bioactive, human IL-12.  相似文献   

7.
BACKGROUND: Human breast cancer metastasizes mainly to lymph nodes, lungs, liver, and bone; in the majority of cases, it is the development of metastases which leads to death. In order to suppress mammary cancer metastasis, we applied in vivo electrogene transfer (non-viral method) as a means of interleukin-12 (IL-12) gene therapy on highly metastatic murine mammary cancer model. METHODS: Metastatic mammary tumors induced by inoculation in BALB/c female mice were treated by intratumoral injections of either a plasmid vector containing IL-12 or empty vector and then subjected to in vivo electrogene transfer once a week for 8 weeks. RESULTS: Treatment with IL-12 resulted in elevation of both IL-12 and IFNgamma levels in mammary tumors and in serum and intratumoral levels of CD4 and CD8 proteins were also increased. Tumor volumes and lymphatic and pulmonary metastases were significantly reduced. The histopathological changes induced by IL-12 characteristically included marked inflammation, increased apoptosis, decreased DNA synthesis, peripheral influx of significantly greater numbers of active macrophages, and reduced blood microvessel density, and apoptotic vascular endothelial cells were frequently seen. Western blotting showed decreases in VEGFR-3 of tumors exposed to IL-12 gene therapy. In adjuvant immunofluorescence studies, the CD31-positive endothelial cells of microvessels showed decreased VEGFR-3 expression in IL-12-treated tumors. However, apparent alterations in VEGFR-3 expression of podoplanin-positive lymphatic endothelial cells were not observed in IL-12-treated tumors. Although recombinant IL-12 did not inhibit tubular formation of human umbilical vein endothelial cells in a Matrigel assay, recombinant IFNgamma did completely suppress the tubular formation. CONCLUSIONS: In vivo electrogene transfer of IL-12 exerts strong anti-tumorigenic and anti-metastatic effects likely due to T-cell-mediated immune responses as well as anti-angiogenic action.  相似文献   

8.
BACKGROUND: Preclinical and clinical studies have demonstrated that interleukin 2 (IL-2), interleukin 12 (IL-12), and some other cytokines, play important roles in activating host immune responses against tumor growth. However, severe side effects caused by systemic high-dose administration of these cytokines limit their clinical application. In our previous study, local high doses of IL-2 were achieved by a GPI-anchoring technology; therefore, it will be interesting to know if this technology works for other cytokines. METHODS: A fusion gene containing murine IL-12 and the glycosylphosphatidylinositol (GPI) anchor signal sequence was generated and transfected into the murine melanoma tumor cell line B16F0 either alone or together with a vector encoding GPI-anchored IL-2. The GPI-anchored cytokine expression of the selected stable clones was assayed in vitro by ELISA and their anti-tumor effects were analyzed in vivo by tumor lymphocyte infiltration and tumor growth studies. RESULTS: GPI-anchored IL-12 was successfully expressed on the cell surface as indicated by FACS analysis and IL-12 ELISA assay. The GPI-anchored IL-12 enhanced lymphocyte infiltration and significantly inhibited tumor growth. More importantly, when GPI-anchored IL-12 and GPI-anchored IL-2 were co-delivered, a synergistic anti-tumor effect was observed in both subcutaneous and intravenous tumor models. CONCLUSIONS: GPI anchorage of cytokines represents a new approach to locally deliver high doses of cytokines without the severe adverse effects normally accompanied with systematic high-dose administration of these cytokines.  相似文献   

9.
We previously reported that RGD fiber-mutant adenovirus vector (AdRGD) was a very useful vector system for in vivo cytokine gene therapy for established murine B16BL6 melanoma. However, intratumoral administration of AdRGD expressing tumor necrosis factor alpha (AdRGD-TNFalpha) at high dose revealed not only the dramatic reinforcement of anti-tumor effect but also serious adverse effects, such as body weight reduction and sudden death, caused by high-level TNF-alpha leakage from the tumor into circulation. These results strongly suggested that the determination of 'limiting dose', which demonstrated therapeutic effectiveness without adverse effect, against each vector was important for the development of appropriate cytokine gene therapy. In the present study, we investigated the efficacy and the safety of AdRGD expressing interleukin-12 (AdRGD-IL12) in murine melanoma model, and determined its limiting dose. Moreover, we demonstrated that combination therapy using AdRGD-IL12 and AdRGD-TNFalpha at limiting doses or less could achieve more effective tumor regression without adverse effects. Therefore, we conclude that a combination of multiple AdRGD expressing cytokines having distinct anti-tumor mechanisms can contribute to the establishment of in vivo cytokine gene therapy for melanoma, which possesses both excellent efficacy and high safety.  相似文献   

10.
IL-12 is a cytokine which showed anti-tumor effects in clinical trials, but also produced serious toxicity. We describe a fusion protein, huBC1-IL12, designed to achieve an improved therapeutic index by specifically targeting IL-12 to tumor and tumor vasculature. huBC-1 is a humanized antibody that targets a cryptic sequence of the human ED-B-containing fibronectin isoform, B-FN, present in the subendothelial extracellular matrix of most aggressive tumors. B-FN is oncofetal and angiogenesis-associated, and is undetectable in most normal adult tissues. The original murine BC-1 antibody has been used successfully for immunoscintigraphy to image brain tumor mass in glioblastoma patients. In huBC1-IL12, each of the IgG heavy chains is genetically fused to the N-terminus of the IL-12 p35 subunit, which in turn is disulfide-bonded to the p40 subunit, resulting in a hexameric molecule of MW of ∼300 kDa. Since human IL-12 has no biological activity in mice, we produced huBC1-muIL12 as a surrogate molecule for animal tumor models. Despite the relatively poor PK profile of this molecule in mice and the apparent drawbacks of xenogeneic models in SCID mice, which lack T and B cells, one cycle of treatment with huBC1-muIL12 was efficacious in the PC3mm2, A431, and HT29 subcutaneous tumor models and PC3mm2 lung metastasis model. This molecule also was found to have surprisingly low toxicity in immunocompetent mice. A fusion protein that contains human IL-12 (huBC1-huIL12), which is a suitable molecule for investigation as a therapeutic, has also been produced. This protein has been shown to have a longer serum half-life than huBC1-muIL12 in mice, and retains both antigen binding and IL-12 activity in in vitro assays.  相似文献   

11.
Interleukin-12 in anti-tumor immunity and immunotherapy   总被引:19,自引:0,他引:19  
Interleukin-12 (IL-12) has an essential role in the interaction between the innate and adaptive arms of immunity by regulating inflammatory responses, innate resistance to infection, and adaptive immunity. Endogenous IL-12 is required for resistance to many pathogens and to transplantable and chemically induced tumors. In experimental tumor models, recombinant IL-12 treatment has a dramatic anti-tumor effect on transplantable tumors, on chemically induced tumors, and in tumors arising spontaneously in genetically modified mice. IL-12 utilizes effector mechanisms of both innate resistance and adaptive immunity to mediate anti-tumor resistance. IFN-gamma and a cascade of other secondary and tertiary pro-inflammatory cytokines induced by IL-12 have a direct toxic effect on the tumor cells or may activate potent anti-angiogenic mechanisms. The stimulating activity of IL-12 on antigen-specific immunity relies mostly on its ability to determine or augment Th1 and cytotoxic T lymphocyte responses. Because of this ability, IL-12 has a potent adjuvant activity in cancer and other vaccines. The promising data obtained in the pre-clinical models of anti-tumor immunotherapy have raised much hope that IL-12 could be a powerful therapeutic agent against cancer. However, excessive clinical toxicity and modest clinical response observed in the clinical trials point to the necessity to plan protocols that minimize toxicity without affecting the anti-tumor effect of IL-12.  相似文献   

12.
Recently, several novel members of the IL-1 family have been identified. The possible therapeutic utility and the underlying biologic role of these new members remain unclear. In the present study we analyzed the anti-tumor activity of human IL-1 homologue 4(IL-1H4; renamed IL-F7) by adenovirus-mediated gene transfer (AdIL-1H4) directly into murine tumors. In vitro expression analysis showed that IL-1H4 was a secretory protein. Treatment of an established MCA205 mouse fibrosarcoma by single intratumoral injection of AdIL-1H4 resulted in significant growth suppression. Furthermore, complete inhibition of tumor growth was observed following multiple injections of AdIL-1H4. The anti-tumor activity of IL-1H4 was abrogated in nude and SCID mice and in IL-12-, IFN-gamma-, or Fas ligand-deficient mice. In contrast, IL-1H4 was able to confer substantial anti-tumor effects in NKT-deficient mice. These results suggest that IL-1H4 could play an important role in the link between innate and adaptive immunity and may be useful for tumor immunotherapy.  相似文献   

13.
Therapy of cancer by cytokines mediated by gene therapy approach   总被引:13,自引:0,他引:13  
Qian C  Liu XY  Prieto J 《Cell research》2006,16(2):182-188
Gene therapy offers a new approach for treatment of cancer. Transfer of genes encoding immunostimulatory cytokines has been used with remarkable success to eliminate cancer in animals. However, clinical trials in patients with this strategy had limited efficacy. Therefore, improvement ofgene transfer vector system is necessary. A hybrid viral vector, consisting of SFV replicon with either murine IL-12 or reporter LacZ gene, was constructed. This hybrid vector showed specificity and high level of expression in HCC both in vitro and in vivo. In a rat orthotropic liver tumor model, treatment of established tumors by the hybrid vector with raiL- 12 gene resulted in a strong anti-tumor activity without accompanying toxicity. Subsequently, a helper-dependent adenovirus vectors containing a mifepristone (RU486) inducible system was constructed for controlled and liver-specific expression of human interleukin 12 (hIL- 12) (HD-Ad/RUhIL- 12) and mouse IL-12 (mIL-12) (HD-Ad/RUmIL-12). Data showed that high and sustained serum levels of hlL-12 could be attained by continuing administration of RU486 every 12 or 24 h. Repetitive induction ofhlL-12 could be obtained over, at least, a period of 48 weeks after a single injection of HD-Ad/RUhlL-12. Treatment of liver metastases with of HD-Ad/RUmIL- 12 plus RU846 resulted in complete tumor regression in all animals. Then, different cytokine genes were inserted into conditional replicative adenoviruses vectors (also called oncolytic adenovirus). Replication ofadenovirus in tumor cells would kill tumor cells and release viruses, which infect surrounding tumor cells. The combination of cytopathic effect by oncolytic adenovirus and biological effect of transgene would exert strong antitumor activity. These new types of vectors may provide a potent and safe tool for cancer gene therapy.  相似文献   

14.
Interleukin-12 (IL-12) has been evaluated in both preclinical and clinical immunotherapy protocols as a potential therapy for melanoma. However, delivery of IL-12 in the form of recombinant protein can result in severe toxicity, and gene therapy has had limited success against B16.F10 murine melanoma. This study investigated the therapeutic effect of delivering a plasmid encoding IL-12 followed by electroporation on primary and secondary tumors. Three treatments of intratumoral (i.t.) plasmid injection and electroporation resulted in 80% of mice with B16.F10 melanoma tumors being tumor free for >100 days (cure). The "cured animals" were resistant to challenge with B16 cells. In a separate experiment, B16 cells were injected on the opposite flank of the treated tumor on the day of treatment. Eighty-seven percent of control mice developed a distant tumor while only 43.8% of mice receiving two or three i.t. electroporation treatments developed a distant tumor. For examination of tumor development in the lungs, mice were injected intravenously with B16.F10 cells then treated with i.m. injections of plasmid with or without electroporation. Only 37.5% of mice receiving i.m. injections and electroporation developed nodules in the lungs compared to 87.5% of mice in the no-treatment group. The results show that administration of a plasmid encoding IL-12 with electroporation has a therapeutic effect on primary tumors as well as distant tumors and metastases.  相似文献   

15.
目的:近年来通过应用白介素-12治疗肿瘤取得良好效果,因此对国内外应用腺病毒携带IL-12增强抗原致敏树突细胞在肝癌基因治疗中的研究进展进行总结,以探索更为可行治疗方法。方法:运用Pubmed、Elsevier Sciencedirect、CNKI及万方全文数据库检索系统,以腺病毒,IL-12,肝癌,树突细胞为关键词,检索2008-01至2012-11月发表的文献。纳入标准:1)IL-12的生物学特性,在抗肿瘤过程中的免疫作用,2)应用腺病毒携带IL-12对抗肝癌治疗研究,3)肿瘤抗原致敏树突细胞对肿瘤的影响。根据纳入标准分析文献26篇。结果:通过腺病毒携带IL-12可以增强肿瘤抗原致敏树突细胞的免疫应答。并通过诱导肿瘤细胞的凋亡,减少新生血管的生成而对肿瘤产生直接抑制,有效抑制肝癌的生长和转移。结论:本文通过对IL-12的生物学特征、抗肿瘤通路、作用机制及在腺病毒介导下肿瘤抗原致敏树突细胞研究进展的概述,为腺病毒携带IL-12作为肝癌的基因治疗进一步提供理论依据和探索,期待在将来应用IL-12为基础的基因治疗一定会为包括肝癌在内的肿瘤治疗提供新的途径。  相似文献   

16.
IL-12 is a potent immunostimulatory cytokine, but its impact as an antitumor drug in clinical practice is limited. Upsurge of regulatory T cells (Treg) in the tumor milieu has been proposed to limit the efficacy of the treatment. In this paper, two drugs (cyclophosphamide [CPA] and anti-CD25 mAb) widely used to eliminate Treg were used in an attempt to enhance the antitumor effect of IL-12 gene therapy. Both anti-CD25 and CPA combined with IL-12 were able to deplete intratumoral Treg and myeloid-derived suppressor cells (MDSC), but only IL-12 plus CPA achieved significant antitumor activity in mice with large established s.c. colon carcinoma. This therapeutic effect was associated with the emergence of a heterogeneous population of myeloid cells within the tumor, termed inflammatory myeloid cells (IMC), composed of Ly6C(high)Ly6G(low) inflammatory monocytes and Ly6G(high)Ly6C(+) neutrophils. IMC showed a distinctive pattern of cytokine/chemokine production, and in contrast to MDSC, they did not induce conversion of naive CD4(+) T cells into Treg. The appearance of IMC coincided with intense tumor infiltration by effector T cells, which was abrogated by elimination of IMC by anti-Gr1 mAb, a maneuver that abolished the antitumor effect of the therapy. Therefore, the combination of IL-12 and CPA eliminates intratumoral Treg and MDSC, while it induces the appearance of IMC within the tumor microenvironment. The latter effect is essential to facilitate effector T cell infiltration and subsequent tumor elimination.  相似文献   

17.
To induce cytolytic immunity, dendritic cells (DCs) need to release bioactive interleukin-12 (IL-12) p70 heterodimeric molecules. To study the role of IL-12 for the generation of an anti-tumor immune response, we generated two classes of DCs. (1) DCs were initiated to secrete IL-12 by exposure to LPS/IFN- for 2 h resulting, as demonstrated in vitro, in continued IL-12 release for another 24 h (termed active DCs). (2) DCs were exposed to LPS/IFN- for 24 h and injected into mice at a time point when IL-12 production had ceased (termed exhausted DCs). These two classes of DCs were probed for their capacity to induce a cytolytic anti-tumor immune response in vivo in a syngeneic mouse tumor model. The mouse tumor cell line K-Balb was engineered to express neomycin phosphotransferase (NPT) as a model tumor antigen. DCs were charged with various NPT-derived antigens, including recombinant NPT protein, whole tumor cell lysate and NPT-derived synthetic peptides, and the induction of in vivo anti-tumor immunity was determined by measuring tumor growth. Only the injection of active DCs, i.e., cells that maintained the capacity to secrete IL-12, but not exhausted DCs that had lost the ability to produce IL-12, resulted in a measurable deceleration of growth of K-Balb-NPT tumors. This anti-tumor immune response was most pronounced when using recombinant protein as an antigen source, which was evident in a prophylactic as well as in a therapeutic setting. The absence of a response to parental K-Balb tumors confirmed the antigen specificity of the anti-tumor immune response. Together these data provide evidence for the unique capacity of actively IL-12 secreting DCs to trigger effective anti-tumor immunity using exogenous tumor antigens.  相似文献   

18.
The antitumor activity of peritoneal exudate cells (PEC) induced by murine interleukin-5 (mIL-5) was examined using Meth-A sarcoma cells transplanted into the peritoneal cavity of mice. Although in vitro treatment of Meth-A sarcoma cells with mIL-5 did not result in inhibition of their growth, treatment of mice intraperitoneally with mIL-5 (1 g/day) from day –5 to +5 (tumor cells were inoculated on day 0) led to a significant increase in survival or even rejection of tumor cells. This antitumor effect depended on the dose of mIL-5. Interestingly, there was identical therapeutic activity when the protocol of days –10 to –1 was used as opposed to –5 to +5. In addition, post-treatment with mIL-5 from day +1 to +10 was ineffective. This suggests that the therapeutic activity of IL-5 is largely prophylactic. Under the former condition, the number of PEC was found to increase over 50-fold when compared to levels in control mice. Moreover, the antitumor effect of mIL-5 was completely abolished by subcutaneous injection of anti-mIL-5 monoclonal antibodies. The treatment of mice injected intraperitoneally with human IL-2 also resulted in an increase in survival. Winn assay experiments using PEC recovered from mIL-5-treated mice (1g/day, from day –10 to –1) revealed that these PEC could mediate antitumor activity against Meth-A sarcoma cells. Furthermore, when the cured mice were re-injected with Meth-A sarcoma cells or syngeneic MOPC 104E cells, they could reject Meth-A sarcoma cells but not MOPC 104E cells, indicating that immune memory had been generated. These results suggest that IL-5 augumented the PEC tumoricidal activity but we have no indication that the tumoricidal activity was mediated through a mIL-5-dependent mechanism.  相似文献   

19.

Background  

Modulation of the immune system by genetically modified lymphoma cell vaccines is of potential therapeutic value in the treatment of B cell lymphoma. However, the anti-tumor effect of any single immunogene transfer has so far been limited. Combination treatment of recombinant IL-2 and IL-12 has been reported to be synergistic for inducing anti-tumor responses in solid tumors but the potential of IL-2/IL-12 gene modified B cell lymphoma cells has not been explored yet.  相似文献   

20.
We introduced the interleukin-12 (IL-12) gene into the mouse bladder cancer cell line (MBT2) to establish sublines that secrete bioactive IL-12. IL-12-secreting MBT2 (MBT2/IL-12) sublines were completely rejected when subcutaneously implanted into immunocompetent syngeneic C3H mice. Although this antitumor effect did not change when IL-12-secreting cells were injected into immunodeficient mice whose CD8+ T or CD4+ T cells had been depleted by the corresponding antibody, it was abrogated when natural killer cells were depleted by anti-asialoGM1 antibody. In addition, when parental MBT2 cells mixed with MBT2/IL-12 cells were subcutaneously injected into mice, admixed MBT2/IL-12 inhibited the growth of the parental tumor. Furthermore, this antitumor effect was enhanced by systemic IL-18 administration. This synergism was abrogated when the mice were treated with interferon-γ-neutralizing antibody in vivo. In conclusion, local secretion of IL-12 led to effective antitumor activity that was enhanced by systemic administration of IL-18. Interferon-γ plays an important role in the synergism of IL-12 gene transduction and systemic administration of IL-18. Received: 7 May 1998 / Accepted: 27 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号