首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 343 毫秒
1.
恐惧消散被认为是一种通过形成新的抑制性学习来拮抗最初的恐惧记忆的复杂过程。目前,通过旨在促进恐惧消散的疗法治疗诸如焦虑症等神经精神疾病已在临床上取得了较好的疗效,因此,如何更有效持久地维持恐惧消散记忆具有重要的意义。围绕与恐惧记忆消散相关的脑区及恐惧记忆消散的分子机制进行阐述,有助于更深入地理解恐惧记忆消散相关的神经生物学机制,为后续研究提供新的方向。  相似文献   

2.
记忆是进行思维、想象等高级心理活动的基础,是累积经验、促进个体生存的重要功能。然而,创伤后应激障碍和物质滥用障碍具有某种非适应性记忆过强的特征,不利于个体生存。因此,以病理性改变的记忆为靶点,通过削弱或更新非适应性记忆,可以达到缓解症状甚至治愈的目的。记忆并非是对经验的刻板记录,而是对经验不断更新整合的过程,因此记忆有被干预的可能。记忆的再次激活可能会诱发记忆消退和再巩固,这为记忆相关精神疾病的干预提供了思路和启发。非侵入性脑刺激(noninvasive brain stimulation,NIBS)技术作为一种时间、空间分辨率较高的无创神经调控技术,近年来开始被结合运用到记忆干预研究中。不同刺激参数的NIBS (如频率、极性,以及受刺激区域的初始神经激活状态)应用于特定大脑皮质区域,可以调节神经可塑性,增强或降低靶点脑区的兴奋性,从而削弱或增强行为表现,实现记忆消退增强或在再巩固时间窗内干预记忆。本文首先介绍了记忆相关的脑功能基础研究与局部脑区干预方案的理论联系,继而回顾了近年来NIBS与记忆干预相结合应用于创伤或物质滥用相关障碍的临床干预研究,为精神疾病临床诊疗提供理论依据和启发。  相似文献   

3.
恐惧是人类的基本情绪,在人类生存和适应中发挥着重要的作用.先前的研究表明,睡眠剥夺会对恐惧记忆巩固过程产生影响,然而睡眠剥夺影响恐惧记忆巩固的认知神经机制并不清楚.为此,本研究采用了功能性磁共振技术探究睡眠剥夺影响恐惧记忆巩固的认知神经基础.行为结果发现,相对于控制组,睡眠剥夺组在恐惧习得过程中有更大的主观恐惧和皮肤电反应;脑成像结果发现,恐惧记忆巩固中,睡眠剥夺组增强了杏仁核的活动,减弱了腹内侧前额叶的活动;进一步的相关分析表明,睡眠剥夺组杏仁核活动变化程度与个体恐惧习得效果呈现显著的正相关,而控制组腹内侧前额叶活动变化程度与个体恐惧习得效果呈现显著的正相关.这些结果表明,睡眠剥夺可能削弱了恐惧记忆巩固过程中腹内侧前额叶对杏仁核自上而下的调节能力.  相似文献   

4.
神经同步活动被认为是神经系统信息处理的关键。脑内存在多种不同频段的局部同步活动和区域间同步活动,这些神经同步活动与多种行为和认知功能相关。记忆作为脑的高级认知功能,其形成和巩固的过程与神经同步活动关系密切。本文主要从体内非快速眼动(non-rapid eye movement, NREM)睡眠期间多个脑区间的神经振荡活动以及体外培养神经网络的同步爆发活动两个层面综述了神经同步活动与记忆巩固关系的研究进展,分析了当前研究存在的问题,并对今后的相关研究作出展望。  相似文献   

5.
恐惧是一种特殊的情感,形成恐惧记忆的能力对于动物及人类检测和应对危险至关重要。近几年研究发现,表观遗传学可以在多个层面调控恐惧记忆,如组蛋白乙酰化与DNA甲基化在恐惧记忆消退过程中发挥重要作用。动物模型中的许多研究表明,适度的表观遗传调节对于学习记忆过程是必要的,表观遗传学机制失调将导致行为水平的认知缺陷,并且表观遗传失调已被越来越多地认为是各种精神疾病的重要因素,如创伤后应激障碍(post-traumatic stress disorder,PTSD)。因此,理解记忆形成的机制具有巨大的科学意义以及社会和医疗效益。  相似文献   

6.
社交行为对于个体身心健康和社会发展都极其重要。社交行为障碍已成为多种精神类疾病的典型临床表征,对个体的发展有严重不良影响。前额叶皮层作为调节社交行为的关键脑区之一,参与了社交、情绪、决策等高级功能,其内部神经元、神经胶质细胞的活动变化及相互作用对调节社交行为有着重要影响,而且前额叶皮层与其他脑区之间的协作也会影响不同的社会行为。本文回顾了前额叶皮层中神经元、神经胶质细胞以及脑区投射与社交行为关系的最新研究,系统综述了前额叶皮层在社交行为调节中的作用,以期为社交障碍的神经机制和有效诊疗提供参考。  相似文献   

7.
Zheng JW  Wu XH  Li L 《生理科学进展》2007,38(3):269-273
恐惧性条件化学习的行为范式是研究情绪信息编码和储存的神经生物学机制的一个重要手段。杏仁核,尤其是外侧杏仁核(lateral nucleus of amygdala,LA),在恐惧性条件化的建立、恐惧信息的表达,以及恐惧性事件信息的存贮过程中起着非常重要的作用。本文着重论述外侧杏仁核在恐惧性条件化学习过程中的神经可塑性变化和相关的LTP机制,以及决定这种可塑性变化的分子信号转导通路。  相似文献   

8.
海马(HPC)和前额叶皮层(PFC)的协同作用是记忆加工过程的关键,其相互作用对学习和记忆功能至关重要.大量证据表明,情景记忆的形成、巩固与检索依赖于特征神经节律在PFC和HPC脑区间的同步作用,这些节律包括theta节律、gamma节律和sharp wave ripples (SWRs)节律等.在精神类疾病中患者往往伴随出现学习记忆功能障碍,基于人类和动物的脑电研究均发现以上3种神经节律在HPC和PFC之间的同步性下降,可能作为反映精神病理下认知功能障碍的重要指标.本文从HPC-PFC网络中的神经节律研究出发,总结了theta节律、gamma节律和SWRs节律在两脑区间的协调交互模式在情景记忆中的作用,以及精神分裂症和抑郁症状态下HPC-PFC通路上神经节律的异常表现及其潜在损伤机制,为今后精神疾病的快速诊断提供客观依据.  相似文献   

9.
与恐惧有关的神经环路位于杏仁核,该部位是形成恐惧记忆的关键。最近Shumyatsky等发现杏仁核侧部主要神经元可大量释放胃泌素分泌相关肽(GRP),该肽类神经递质的受体则分布在同一区域释放γ-氨基丁酸(GABA)的中间神经元上。GRP可引起含有GRP受体的神经元释放更多的GABA,大量的GABA可增强对该区域主要神经元活动的抑制。敲除小鼠GRP受体的基因后,这种抑制作用消失,并导致另一与恐惧记忆有关的神经回路皮层长时程增强效应加强。这表明,缺乏GRP受体会导致杏仁核中间神经元对主要神经元活动抑制作用的缺失,并使皮层和杏仁核的神经元对长时程增强效应变得敏感,从而增强由恐惧刺激引起的记忆。GRP受体基因敲除的小鼠因此表现出更强和更长久的恐惧记忆行为。  相似文献   

10.
动物的恐惧体验是一种防御性情绪过程,具有重要的适应意义.然而,缺乏对恐惧情绪的有效抑制机制会导致恐惧情绪过度表达以及焦虑障碍的发生.恐惧消退是最简单的一种恐惧抑制(fear inhibition)范式.而γ-氨基丁酸(gamma-aminobutyric acid,GABA)是中枢神经系统最主要的抑制性神经介质.杏仁核内部大量GABA介质突触传递在恐惧情绪表达、恐惧消退记忆(memory of fear extinction)的获得、存贮和提取过程中发挥了不可或缺的作用.  相似文献   

11.
Extinction learning in humans: role of the amygdala and vmPFC   总被引:20,自引:0,他引:20  
Understanding how fears are acquired is an important step in translating basic research to the treatment of fear-related disorders. However, understanding how learned fears are diminished may be even more valuable. We explored the neural mechanisms of fear extinction in humans. Studies of extinction in nonhuman animals have focused on two interconnected brain regions: the amygdala and the ventral medial prefrontal cortex (vmPFC). Consistent with animal models suggesting that the amygdala is important for both the acquisition and extinction of conditioned fear, amygdala activation was correlated across subjects with the conditioned response in both acquisition and early extinction. Activation in the vmPFC (subgenual anterior cingulate) was primarily linked to the expression of fear learning during a delayed test of extinction, as might have been expected from studies demonstrating this region is critical for the retention of extinction. These results provide evidence that the mechanisms of extinction learning may be preserved across species.  相似文献   

12.
Throughout the past several decades, studies have uncovered a wealth of information about the neural circuitry underlying fear learning and extinction that has helped to inform treatments for fear-related disorders such as post-traumatic stress and anxiety. Yet, up to 40% of people do not respond to such treatments. Adolescence, in particular, is a developmental stage during which anxiety disorders peak, yet little is known about the development of fear-related neural circuitry during this period. Moreover, pharmacological and behavioral therapies that have been developed are based on mature circuitry and function. Here, we review neural circuitry implicated in fear learning and data from adolescent mouse and human fear learning studies. In addition, we propose a developmental model of fear neural circuitry that may optimize current treatments and inform when, during development, specific treatments for anxiety may be most effective.  相似文献   

13.
Emotions, such as fear and anxiety, can be modulated by both environmental and genetic factors. One genetic factor is for example the genetically encoded variation of the serotonin transporter (5-HTT) expression. In this context, the 5-HTT plays a key role in the regulation of central 5-HT neurotransmission, which is critically involved in the physiological regulation of emotions including fear and anxiety. However, a systematic study which examines the combined influence of environmental and genetic factors on fear-related behavior and the underlying neurophysiological basis is missing. Therefore, in this study we used the 5-HTT-deficient mouse model for studying emotional dysregulation to evaluate consequences of genotype specific disruption of 5-HTT function and repeated social defeat for fear-related behaviors and corresponding neurophysiological activities in the lateral amygdala (LA) and infralimbic region of the medial prefrontal cortex (mPFC) in male 5-HTT wild-type (+/+), homo- (-/-) and heterozygous (+/-) mice. Naive males and experienced losers (generated in a resident-intruder paradigm) of all three genotypes, unilaterally equipped with recording electrodes in LA and mPFC, underwent a Pavlovian fear conditioning. Fear memory and extinction of conditioned fear was examined while recording neuronal activity simultaneously with fear-related behavior. Compared to naive 5-HTT+/+ and +/- mice, 5-HTT-/- mice showed impaired recall of extinction. In addition, 5-HTT-/- and +/- experienced losers showed delayed extinction learning and impaired recall of extinction. Impaired behavioral responses were accompanied by increased theta synchronization between the LA and mPFC during extinction learning in 5-HTT-/- and +/- losers. Furthermore, impaired extinction recall was accompanied with increased theta synchronization in 5-HTT-/- naive and in 5-HTT-/- and +/- loser mice. In conclusion, extinction learning and memory of conditioned fear can be modulated by both the 5-HTT gene activity and social experiences in adulthood, accompanied by corresponding alterations of the theta activity in the amygdala-prefrontal cortex network.  相似文献   

14.
Extinction learning refers to the phenomenon that a previously learned response to an environmental stimulus, for example, the expression of an aversive behaviour upon exposure to a specific context, is reduced when the stimulus is repeatedly presented in the absence of a previously paired aversive event. Extinction of fear memories has been implicated with the treatment of anxiety disease but the molecular processes that underlie fear extinction are only beginning to emerge. Here, we show that fear extinction initiates upregulation of hippocampal insulin-growth factor 2 (Igf2) and downregulation of insulin-growth factor binding protein 7 (Igfbp7). In line with this observation, we demonstrate that IGF2 facilitates fear extinction, while IGFBP7 impairs fear extinction in an IGF2-dependent manner. Furthermore, we identify one cellular substrate of altered IGF2 signalling during fear extinction. To this end, we show that fear extinction-induced IGF2/IGFBP7 signalling promotes the survival of 17-19-day-old newborn hippocampal neurons. In conclusion, our data suggest that therapeutic strategies that enhance IGF2 signalling and adult neurogenesis might be suitable to treat disease linked to excessive fear memory.  相似文献   

15.
16.
The molecular processes that establish fear memory are complex and involve a combination of genetic and epigenetic influences. Dysregulation of these processes can manifest in humans as a range of fear-related anxiety disorders like post-traumatic stress disorders (PTSD). In the present study, immunohistochemistry for acetyl H3, H4, c-fos, CBP (CREB-binding protein) in the infralimbic prefrontal cortex (IL-PFC) and prelimbic prefrontal cortex (PL-PFC) of mPFC (medial prefrontal cortex) and basal amygdala (BA), lateral amygdala (LA), centrolateral amygdala (CeL), centromedial amygdala (CeM) of the amygdala was performed to link region-specific histone acetylation to fear and extinction learning. It was found that the PL-PFC and IL-PFC along with the sub-regions of the amygdala responded differentially to the fear learning and extinction. Following fear learning, c-fos and CBP expression and acetylation of H3 and H4 increased in the BA, LA, CeM, and CeL and the PL-PFC but not in the IL-PFC as compared to the naive control. Similarly, following extinction learning, c-fos and CBP expression increased in BA, LA, CeL, and IL-PFC but not in PL-PFC and CeM as compared to the naive control and conditioned group. However, the acetylation of H3 increased in both IL and PL as opposed to H4 which increased only in the IL-PFC following extinction learning. Overall, region-specific activation in amygdala and PFC following fear and extinction learning as evident by the c-fos activation paralleled the H3/H4 acetylation in these regions. These results suggest that the differential histone acetylation in the PFC and amygdala subnuclei following fear learning and extinction may be associated with the region-specific changes in the neuronal activation pattern resulting in more fear/less fear.  相似文献   

17.
Fear memory underlies anxiety-related disorders, including posttraumatic stress disorder(PTSD). PTSD is a fear-based disorder,characterized by difficulties in extinguishing the learned fear response and maintaining extinction. Currently, the first-line treatment for PTSD is exposure therapy, which forms an extinction memory to compete with the original fear memory. However,the extinguished fear often returns under numerous circumstances, suggesting that novel methods are needed to eliminate fear memory or facilitate extinction memory. This review discusses research that targeted extinction and reconsolidation to manipulate fear memory. Recent studies indicate that sleep is an active state that can regulate memory processes. We also discuss the influence of sleep on fear memory. For each manipulation, we briefly summarize the neural mechanisms that have been identified in human studies. Finally, we highlight potential limitations and future directions in the field to better translate existing interventions to clinical settings.  相似文献   

18.
Theta oscillations are considered crucial mechanisms in neuronal communication across brain areas, required for consolidation and retrieval of fear memories. One form of inhibitory learning allowing adaptive control of fear memory is extinction, a deficit of which leads to maladaptive fear expression potentially leading to anxiety disorders. Behavioral responses after extinction training are thought to reflect a balance of recall from extinction memory and initial fear memory traces. Therefore, we hypothesized that the initial fear memory circuits impact behavioral fear after extinction, and more specifically, that the dynamics of theta synchrony in these pathways signal the individual fear response. Simultaneous multi-channel local field and unit recordings were obtained from the infralimbic prefrontal cortex, the hippocampal CA1 and the lateral amygdala in mice. Data revealed that the pattern of theta coherence and directionality within and across regions correlated with individual behavioral responses. Upon conditioned freezing, units were phase-locked to synchronized theta oscillations in these pathways, characterizing states of fear memory retrieval. When the conditioned stimulus evoked no fear during extinction recall, theta interactions were directional with prefrontal cortical spike firing leading hippocampal and amygdalar theta oscillations. These results indicate that the directional dynamics of theta-entrained activity across these areas guide changes in appraisal of threatening stimuli during fear memory and extinction retrieval. Given that exposure therapy involves procedures and pathways similar to those during extinction of conditioned fear, one therapeutical extension might be useful that imposes artificial theta activity to prefrontal cortical-amygdalo-hippocampal pathways that mimics the directionality signaling successful extinction recall.  相似文献   

19.
Hong I  Kim J  Lee J  Park S  Song B  Kim J  An B  Park K  Lee HW  Lee S  Kim H  Park SH  Eom KD  Lee S  Choi S 《PloS one》2011,6(9):e24260
It is generally believed that after memory consolidation, memory-encoding synaptic circuits are persistently modified and become less plastic. This, however, may hinder the remaining capacity of information storage in a given neural circuit. Here we consider the hypothesis that memory-encoding synaptic circuits still retain reversible plasticity even after memory consolidation. To test this, we employed a protocol of auditory fear conditioning which recruited the vast majority of the thalamic input synaptic circuit to the lateral amygdala (T-LA synaptic circuit; a storage site for fear memory) with fear conditioning-induced synaptic plasticity. Subsequently the fear memory-encoding synaptic circuits were challenged with fear extinction and re-conditioning to determine whether these circuits exhibit reversible plasticity. We found that fear memory-encoding T-LA synaptic circuit exhibited dynamic efficacy changes in tight correlation with fear memory strength even after fear memory consolidation. Initial conditioning or re-conditioning brought T-LA synaptic circuit near the ceiling of their modification range (occluding LTP and enhancing depotentiation in brain slices prepared from conditioned or re-conditioned rats), while extinction reversed this change (reinstating LTP and occluding depotentiation in brain slices prepared from extinguished rats). Consistently, fear conditioning-induced synaptic potentiation at T-LA synapses was functionally reversed by extinction and reinstated by subsequent re-conditioning. These results suggest reversible plasticity of fear memory-encoding circuits even after fear memory consolidation. This reversible plasticity of memory-encoding synapses may be involved in updating the contents of original memory even after memory consolidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号