首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 421 毫秒
1.
Number matters: control of mammalian mitochondrial DNA copy number   总被引:1,自引:0,他引:1  
Regulation of mitochondrial biogenesis is essential for proper cellular functioning. Mitochondrial DNA (mtDNA) depletion and the resulting mitochondrial malfunction have been implicated in cancer, neurodegeneration, diabetes, aging, and many other human diseases. Although it is known that the dynamics of the mammalian mitochondrial genome are not linked with that of the nuclear genome, very little is known about the mechanism of mtDNA propagation. Nevertheless, our understanding of the mode of mtDNA replication has ad- vanced in recent years, though not without some controversies. This review summarizes our current knowledge of mtDNA copy number control in mammalian cells, while focusing on both mtDNA replication and turnover. Although mtDNA copy number is seemingly in excess, we reason that mtDNA copy number control is an important aspect of mitochondrial genetics and biogenesis and is essential for normal cellular function.  相似文献   

2.
Sperm Mitochondria in Reproduction: Good or Bad and Where Do They Go?   总被引:1,自引:0,他引:1  
The mitochondrion is the major energy provider to power sperm motility. In mammals, aside from the nuclear genome, mitochondrial DNA (mtDNA) also contributes to oxidative phosphorylation to impact production of ATP by coding 13 polypeptides. However, the role of sperm mitochondria in fertilization and its final fate after fertilization are still controversial. The viewpoints that sperm bearing more mtDNA will have a better fertilizing capability and that sperm mtDNA is actively eliminated during early embryogenesis are widely accepted. However, this may be not true for several mammalian species, including mice and humans. Here, we review the sperm mitochondria and their mtDNA in sperm functions, and the mechanisms of maternal mitochondrial inheritance in mammals.  相似文献   

3.
Zhe Chen  Fan Zhang  Hong Xu 《遗传学报》2019,46(4):201-212
Mutations that disrupt the mitochondrial genome cause a number of human diseases whose phenotypic presentation varies widely among tissues and individuals. This variability owes in part to the unconventional genetics of mitochondrial DNA(mtDNA), which includes polyploidy, maternal inheritance and dependence on nuclear-encoded factors. The recent development of genetic tools for manipulating mitochondrial genome in Drosophila melanogaster renders this powerful model organism an attractive alternative to mammalian systems for understanding mtDNA-related diseases. In this review, we summarize mtDNA genetics and human mtDNA-related diseases. We highlight existing Drosophila models of mtDNA mutations and discuss their potential use in advancing our knowledge of mitochondrial biology and in modeling human mitochondrial disorders. We also discuss the potential and present challenges of gene therapy for the future treatment of mtDNA diseases.  相似文献   

4.
Mitochondrial rRNA and tRNA and hearing function   总被引:2,自引:0,他引:2  
Xing G  Chen Z  Cao X 《Cell research》2007,17(3):227-239
  相似文献   

5.
Little is known about the inheritance of very low heteroplasmy mitochondria DNA (mtDNA) variations. Even with the development of new next-generation sequencing methods, the practical lower limit of measured heteroplasmy is still about 1% due to the inherent noise level of the sequencing. In this study, we sequenced the mitochondrial genome of 44 individuals using Illumina high-throughput sequencing technology and obtained high-coverage mitochondria sequencing data. Our study population contains many mother-offspring pairs. This unique study design allows us to bypass the usual heteroplasmy limitation by analyzing the correlation of mutation levels at each position in the mtDNA sequence between maternally related pairs and non-related pairs. The study showed that very low heteroplasmy variants, down to almost 0.1%, are inherited maternally and that this inheritance begins to decrease at about 0.5%, cor- resnondin to abottleneck of about 200 mtDNA.  相似文献   

6.
鸟类线粒体DNA研究概述   总被引:8,自引:0,他引:8  
陈晓芳  李爽  王黎  袁晓东  汤敏谦  李庆伟 《遗传》2002,24(3):371-375
线粒体DNA作为理想的分子标记已被广泛用于鸟类种群遗传学和进化遗传学的研究,并取得了许多有意义的结果。本文介绍鸟类线粒体DNA的组成、结构特点及多态性的研究,综述近年来有关鸟类分子进化研究的进展情况,对今后的发展进行了初步的探讨。 Abstract:Mitochondrial DNA as a genetic marker has been successfully applied to the study of molecular evolution of birds.The apparently maternal inheritance of mitochondrial DNA and its fast evolution in primary sequence has made it attractive in population and evolutionary genetics.Mitochondrial DNA of birds displays two characteristics not seen in other vertebrates mtDNA,that is,a novel gene order and the absence of an equivalent to the light-strand replication origin.The research on polymorphism of mtDNA can resolve phylogenies of birds both at lower and higher taxonomic levels.Here we review progress on avian molecular evolution in recent years,and make preliminary studies of the development in this field.  相似文献   

7.
I completed my medical studies at the Karolinska Institute in Stockholm but have always been devoted to basic research. My longstanding interest is to understand fundamental DNA repair mechanisms in the fields of cancer therapy, inherited human genetic disorders and ancient DNA. I initially measured DNA decay, including rates of base loss and cytosine deamination. I have discovered several important DNA repair proteins and determined their mechanisms of action. The discovery of uracil-DNA glycosylase defined a new category of repair enzymes with each specialized for different types of DNA damage. The base excision repair pathway was first reconstituted with human proteins in my group. Cell-free analysis for mammalian nucleotide excision repair of DNA was also developed in my laboratory. I found multiple distinct DNA ligases in mammalian cells, and led the first genetic and biochemical work on DNA ligases Ⅰ, and Ⅳ. I discovered the mammalian exonucleases DNase Ⅲ (TREX1) and IV (FEN1). Interestingly, expression of TREX1 was altered in some human autoimmune diseases. I also showed that the mutagenic DNA adduct O6-methylguanine (O6 mG) is repaired without removing the guanine from DNA, identifying a surprising mechanism by which the methyl group is transferred to a residue in the repair protein itself. A further novel process of DNA repair discovered by my research group is the action of AlkB as an iron-dependent enzyme carrying out oxidative demethylation.  相似文献   

8.
The RecFOR DNA repair pathway is one of the major RecA-dependent recombinatorial repair pathways in bacteria and plays an important role in double-strand breaks repair. RecO, one of the major recombination mediator proteins in the RecFOR pathway, has been shown to assist RecA loading onto single-stranded binding protein (SSB) coated single-stranded DNA (ssDNA). However, it has not been characterized whether the protein-protein interaction between RecO and SSB contributes to that process in vivo. Here, we identified the residue arginine-121 of Deinococcus radiodurans RecO (drRecO-R121) as the key residue for RecO-SSB interaction. The substitution of drRecO-R121 with alanine greatly abolished the binding of RecO to SSB but not the binding to RecR. Meanwhile, SSB-coated ssDNA annealing activity was also compromised by the mutation of the residue of drRecO. However, the drRecO-R121A strain showed only modest sensitivity to DNA damaging agents. Taking these data together, arginine-121 of drRecO is the key residue for SSB-RecO interaction, which may not play a vital role in the SSB displacement and RecA loading process of RecFOR DNA repair pathway in vivo.  相似文献   

9.
通过NovoZym234酶溶壁和低渗机械振荡破壁相结合,应用差速离心法分离并纯化了对数生长期的新生隐球菌线粒体,然后从经DNaseI处理的线粒体制备液中分离纯化线粒体DNA;并对差速离心中所获得的菌体、原生质体、线粒体三部分沉淀进行了透射电镜观察,结果均证明了我们所抽提的DNA是纯净的,适用于酶切分析和PCR分析研究,由此成功地建立了快速有效分离和纯化线粒体DNA的方法。 Abstract:Cryptococcus neoformans may be grown to the exponential phase,are broken by a combination of NovoZym234 and mechanical means,and mitochondrial DNA was extracted from DNaseI-treated mitrochondrial preparetion by differential centrifugation.Three pellets,including yeast cell,protoplasts,mitochondrial,were examined by transmission electronic microscopy.The resulting mtDNA is sufficicently pure for restriction endonucleases analysis and PCR in further studying.A rapid and effective method for the preparation of the mtDNA of C.neoformans was established.  相似文献   

10.
DNA polymerase zeta (pol ζ) in higher eukaryotes   总被引:1,自引:0,他引:1  
Most current knowledge about DNA polymerase zeta (pol ζ) comes from studies of the enzyme in the budding yeast Saccharomyces cerevisiae, where pol ζ consists of a complex of the catalytic subunit Rev3 with Rev7, which associates with Revl. Most spontaneous and induced mutagenesis in yeast is dependent on these gene products, and yeast pol can mediate translesion DNA synthesis past some adducts in DNA templates. Study of the homologous gene products in higher eukaryotes is in a relatively early stage, but additional functions for the eukaryotic proteins are already apparent. Suppression of vertebrate REV3L function not only reduces induced point mutagenesis but also causes larger-scale genome instability by raising the frequency of spontaneous chromosome translocations. Disruption of Rev3L function is tolerated in Drosophila, Arabidopsis, and in vertebrate cell lines under some conditions, but is incompatible with mouse embryonic development. Functions for REV3L and REV7(MAD2B) in higher eukaryotes have been suggested not only in translesion DNA synthesis but also in some forms of homologous recombination, repair of interstrand DNA crosslinks, somatic hypermutation of immunoglobulin genes and cell-cycle control. This review discusses recent developments in these areas.  相似文献   

11.
线粒体DNA复制及其调控   总被引:1,自引:0,他引:1  
从线粒体DNA复制的模型与机制、复制的调控、复制忠实性及其损伤修复3个方面对近年来的研究文献进行了总结.在复制的模型与机制方面,对传统的D环复制的细节有了更深入的了解,新的实验方法的结果显示,在哺乳动物中还存在着链结合单向复制和链结合双向复制2种模型.在线粒体DNA复制的调控方面,近年来研究较多的调控因子主要包括mtDNA聚合酶γ、线粒体单链结合蛋白(mtSSB)、引物酶、解旋酶、连接酶、拓扑异构酶、转录因子mtTFA等,介绍了这些因子的最新研究进展及调控机制;对mtDNA复制时期和拷贝数量调控机制的研究也有突破,确定了Abf2p是mtDNA复制时期与拷贝数目的调控因子.在mtDNA复制的忠实性及其损伤修复研究方面,主要涉及到DNA Polγ的校正功能、错配修复、重组修复、DNA切除修复等,在mtDNA损伤修复中仅存在碱基切除修复机制,缺少核苷酸切除修复机制.  相似文献   

12.
Mitochondria are highly specialised organelles required for key cellular processes including ATP production through cellular respiration and controlling cell death via apoptosis. Unlike other organelles, mitochondria contain their own DNA genome which encodes both protein and RNA required for cellular respiration. Each cell may contain hundreds to thousands of copies of the mitochondrial genome, which is essential for normal cellular function – deviation of mitochondrial DNA (mtDNA) copy number is associated with cellular ageing and disease. Furthermore, mtDNA lesions can arise from both endogenous or exogenous sources and must either be tolerated or corrected to preserve mitochondrial function. Importantly, replication of damaged mtDNA can lead to stalling and introduction of mutations or genetic loss, mitochondria have adapted mechanisms to repair damaged DNA. These mechanisms rely on nuclear-encoded DNA repair proteins that are translocated into the mitochondria.Despite the presence of many known nuclear DNA repair proteins being found in the mitochondrial proteome, it remains to be established which DNA repair mechanisms are functional in mammalian mitochondria. Here, we summarise the existing and emerging research, alongside examining proteomic evidence, demonstrating that mtDNA damage can be repaired using Base Excision Repair (BER), Homologous Recombination (HR) and Microhomology-mediated End Joining (MMEJ). Critically, these repair mechanisms do not operate in isolation and evidence for interplay between pathways and repair associated with replication is discussed. Importantly, characterising non-canonical functions of key proteins and understanding the bespoke pathways used to tolerate, repair or bypass DNA damage will be fundamental in fully understanding the causes of mitochondrial genome mutations and mitochondrial dysfunction.  相似文献   

13.
Maintenance of mitochondrial DNA (mtDNA) during cell division is required for progeny to be respiratory competent. Maintenance involves the replication, repair, assembly, segregation, and partitioning of the mitochondrial nucleoid. MGM101 has been identified as a gene essential for mtDNA maintenance in S. cerevisiae, but its role is unknown. Using liquid chromatography coupled with tandem mass spectrometry, we identified Mgm101p as a component of highly enriched nucleoids, suggesting that it plays a nucleoid-specific role in maintenance. Subcellular fractionation, indirect immunofluorescence and GFP tagging show that Mgm101p is exclusively associated with the mitochondrial nucleoid structure in cells. Furthermore, DNA affinity chromatography of nucleoid extracts indicates that Mgm101p binds to DNA, suggesting that its nucleoid localization is in part due to this activity. Phenotypic analysis of cells containing a temperature sensitive mgm101 allele suggests that Mgm101p is not involved in mtDNA packaging, segregation, partitioning or required for ongoing mtDNA replication. We examined Mgm101p's role in mtDNA repair. As compared with wild-type cells, mgm101 cells were more sensitive to mtDNA damage induced by UV irradiation and were hypersensitive to mtDNA damage induced by gamma rays and H2O2 treatment. Thus, we propose that Mgm101p performs an essential function in the repair of oxidatively damaged mtDNA that is required for the maintenance of the mitochondrial genome.  相似文献   

14.
Trapp C  McCullough AK  Epe B 《Mutation research》2007,625(1-2):155-163
Mitochondrial DNA (mtDNA) is assumed to be highly prone to damage by reactive oxygen species (ROS) because of its location in close proximity to the mitochondrial electron transport chain. Accordingly, mitochondrial oxidative DNA damage has been hypothesized to be responsible for various neurological diseases, ageing and cancer. Since 7,8-dihydro-8-oxoguanine (8-oxoG), one of the most frequent oxidative base modifications, is removed from the mitochondrial genome by the glycosylase OGG1, the basal levels of this lesion are expected to be highly elevated in Ogg1−/− mice. To investigate this hypothesis, we have used a mtDNA relaxation assay in combination with various repair enzymes (Fpg, MutY, endonuclease III, endonuclease IV) to determine the average steady-state number of oxidative DNA modifications within intact (supercoiled) mtDNA from the livers of wild-type mice and those deficient in OGG1 and/or the Cockayne syndrome B (CSB) protein for mice aged up to 23 months. The levels of all types of oxidative modifications were found to be less than 12 per million base pairs, and the difference between wild-type and repair-deficient (Ogg1−/−/Csb−/−) mice was not significant. Thus, the increase of 8-oxoG caused by the repair deficiency in intact mtDNA is not much higher than in the nuclear DNA, i.e., not more than a few modifications per million base pairs. Based on these data, it is hypothesized that the load of oxidative base modifications in mtDNA is efficiently reduced during replication even in the absence of excision repair.  相似文献   

15.
真核DNA连接酶(DNA ligase)通过催化ATP依赖的双链DNA切口连接而在DNA复制、重组和修复过程中发挥了重要作用.DNA连接酶Ⅲ(Lig3)是一种独特性的连接酶,既可定位于细胞核,又可定位于线粒体.Lig3通过与DNA修复蛋白XRCC1作用而参与了碱基切除修复和其他单链断裂修复.但Lig3以XRCC1不依赖方式在线粒体DNA完整性保持方面发挥了更为重要的作用.这些研究为Lig3功能和DNA修复研究提供了新的视野.  相似文献   

16.
线粒体是除细胞核之外唯一携带遗传物质的细胞器,其线粒体DNA(mitochondrial DNA,mtDNA)控制着线粒体一些最基本的性质,对细胞功能有着重要影响.DNA甲基化是调节基因表达的重要方式之一.研究表明mtDNA存在CpG位点的低甲基化,并且mtDNA基因的表达受核DNA(nuclear DNA,nDNA)及线粒体自身DNA甲基化的调控,mtDNA和nDNA协同作用参与机体代谢调节和疾病发生发展过程.就近年来mtDNA与DNA甲基化的关系作一综述.  相似文献   

17.
Mitochondrial DNA damage and the aging process: facts and imaginations   总被引:5,自引:0,他引:5  
  相似文献   

18.
Homologous recombination (HR) plays a critical role in facilitating replication fork progression when the polymerase complex encounters a blocking DNA lesion, and it also serves as the primary mechanism for error-free repair of DNA double strand breaks. Rad51 is the central catalyst of HR in all eukaryotes, and to this point studies of human Rad51 have focused exclusively on events occurring within the nucleus. However, substantial amounts of HR proteins exist in the cytoplasm, yet the function of these protein pools has not been addressed. Here, we provide the first demonstration that Rad51 and the related HR proteins Rad51C and Xrcc3 exist in human mitochondria. We show stress-induced increases in both the mitochondrial levels of each protein and, importantly, the physical interaction between Rad51 and mitochondrial DNA (mtDNA). Depletion of Rad51, Rad51C, or Xrcc3 results in a dramatic decrease in mtDNA copy number as well as the complete suppression of a characteristic oxidative stress-induced copy number increase. Our results identify human mtDNA as a novel Rad51 substrate and reveal an important role for HR proteins in the maintenance of the human mitochondrial genome.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号