首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
核呼吸因子-1:细胞核调控线粒体功能的一种重要因子   总被引:3,自引:0,他引:3  
核基因组和线粒体基因组之间的相互作用,以及它们调控呼吸链亚基表达的机制,一直是国内外学研究的热点问题。核转录因子的发现,使细胞核调控线粒体呼吸链亚基表达机制的研究得到很大发展。核呼吸因子-1(nuclear respiratory factor 1,NRF-1)是一种由核基因组编码的,调控呼吸链亚基表达以及mtDNA转录和复制的核转录因子。该就NRF-1的发现、调控呼吸链亚基表达、在胚胎期维持mtDNA稳定等功能作一介绍。  相似文献   

2.
人mtDNA比核DNA更易受到自由基的氧化损伤,这些损伤可以被线粒体内的DNA修复机制所修复,损伤与修复是决定突变是否产生的两个重要因素.为了确定氧化损伤与损伤后修复对mtDNA突变的具体影响,采用四氧嘧啶处理LO2细胞,这种试剂进入细胞后,经氧化还原反应生成的自由基与线粒体自身代谢产生的自由基类似,然后观察自由基对细胞mtDNA的氧化损伤与损伤后DNA修复的动力学变化.由于线粒体的正常功能为修复机制所必需,采用MTT细胞活力实验检测不同浓度四氧嘧啶处理下线粒体酶活力,发现9 mmol/L四氧嘧啶培养细胞1h后,线粒体琥珀酸脱氢酶功能在撤去药物后0,2,8和24 h时间点均无明显变化.提取各组细胞的mtDNA,用EndoⅢ和Fgp两种酶切除受氧化损伤的核苷酸,然后用碱性琼脂糖凝胶电泳分离大小不等的mtDNA,进行DNA印迹实验,地高辛-抗体-碱性磷酸酶系统显色,检测完整与断裂的mtDNA量,利用Poisson公式(s=-lnP0/P,P0为未断裂链光密度值,P为所有链光密度值总和)计算一个mtDNA分子的平均损伤频率,结果显示,9 mmol/L四氧嘧啶处理细胞1 h,链平均损伤频率由对照的0.11个/分子增加至5.60个/分子,明显增加了mtDNA上核苷酸的氧化损伤,除去药物后8 h,绝大部分损伤可被修复,损伤频率减至0.40个/分子,除去药物后24h核苷酸的氧化损伤恢复至正常水平.采用接头介导PCR(LM-PCR)检测MTTL1基因区域内单个核苷酸的损伤与修复动力学.这种方法可以检测各组mtDNA上MTTL1基因75 bp区域内单个核苷酸损伤的部位及频率.结果显示,人MTTL1基因存在20个易受氧化损伤的核苷酸热点,经与相应区域内文献报道的16个突变热点比较,有12个热点部位重合,而修复未显示热点部位或区域.结果提示,自由基对核苷酸的选择性氧化损伤是决定mtDNA点突变发生及发生部位的主要原因.  相似文献   

3.
DNA聚合酶δ(Polδ)在真核细胞的DNA复制过程中具有核心酶的作用,同时还参与DNA的修复。Polδ是一种由多个亚基组成的复合体,目前已从哺乳动物、裂殖酵母和芽殖酵母等多种真核生物细胞中分离出,并对它们的亚基组成进行了分析,但还未得到确切一致的结果。Polδ在DNA复制中的具体作用已基本了解,它参与催化整个前导链的复制以及一些或大部分滞后链的复制。此外,Polδ还参与DNA的修复,此酶的这一功能可减少DNA的变异,但目前对其作用机理还知之较少。在Polδ活性调控方面,主要研究了一些相关蛋白因子对Polδ活性的调控作用以及转录因子对催化亚基表达的调控作用。  相似文献   

4.
5.
线粒体DNA(mtDNA)是研究环状DNA复制、转录及其调控的一个较好模型,而且mtDNA存在一些有别于细胞核DNA的特性。此外mtDNA与核DNA还表现协作效应。迄今为止哺乳类及真菌的mtDNA已研究较多,但对鸟类的mtDNA研究尚少。鸽肝mtDNA的研究,国内尚未见报道。本文就这方面的工作先作一初步的报道。  相似文献   

6.
线粒体是细胞能量和自由基代谢中心,并在细胞凋亡、钙调控、细胞周期和信号转导中发挥重要作用,维持线粒体功能正常对于细胞正常行使职能意义重大。线粒体的功能与线粒体DNA(mitochondrial DNA,mtDNA)的数量和质量紧密相关,mtDNA的数量即mtDNA拷贝数又受到mtDNA质量的影响,因此mtDNA拷贝数可作为线粒体功能的重要表征。mtDNA拷贝数变异引起线粒体功能紊乱,进而导致疾病发生。本文综述了mtDNA拷贝数变异与神经退行性疾病、心血管疾病、肿瘤等疾病的发生发展和个体衰老之间的关系,以及mtDNA复制转录相关因子、氧化应激、细胞自噬等因素介导mtDNA拷贝数变异的调控机制。以期为进一步深入探究mtDNA拷贝数调控的分子机制,以及未来治疗神经退行性疾病、肿瘤及延缓衰老等提供一定的理论基础。  相似文献   

7.
线粒体转录延伸因子(TEFM)最早是基于其氨基酸序列与真核细胞核转录因子Spt6具有同源性而被鉴定,其包括两个串联重复的螺旋-发夹-螺旋结构域(Helix-Hairpin-Helix,(HhH)2)和一个RNase H折叠。TEFM二聚化对于TEFM与线粒体RNA聚合酶的结合至关重要。近年的研究发现,TEFM是调控线粒体DNA(mtDNA)复制与转录相互转换的关键分子开关,参与人类线粒体基因转录延伸过程及其表达调控。本文首先介绍了TEFM蛋白的序列同源性、蛋白质结构特征,为后续功能研究奠定结构基础。其次,阐明了TEFM在线粒体转录延伸过程中的作用和抗转录终止功能,以及线粒体转录延伸复合体的功能。TEFM避免了mtDNA转录和复制过程发生冲突,使线粒体转录延伸复合体具有更高的稳定性和持续合成能力,体内和体外都能增强mtDNA转录延伸活性,在mtDNA的复制和转录调控中发挥重要作用。最后,阐述了TEFM参与线粒体RNA加工,以及在线粒体能量代谢和线粒体相关疾病的发生发展中的作用。TEFM的缺失严重损害氧化呼吸链,证明mtDNA转录延伸对于维持线粒体氧化磷酸化功能是必需的。1型神经纤维瘤、胰腺癌、脑胶质瘤等疾病的发生机制可能与TEFM基因缺失或表达异常有关,因此,本文进一步探讨和展望了TEFM对人类线粒体相关疾病研究的应用前景。  相似文献   

8.
线粒体DNA(mitochondrial DNA mtDNA)的异质性自从被发现以来,一直被遗传学、进化学、发育遗传学以及法医遗传学、分子生物学领域所重视。由于线粒体异质性的存在,使得很多涉及疾病、进化、系统发育线粒体基因组与核基因组的相互作用关系、线粒体DNA复制机制以及法医学运用线粒体DNA进行实际案件评估的问题变得复杂化。此外线粒体DNA异质性的发生原因以及对线粒体异质性的检测方法标准化问题还没有一个统一的答案。针对线粒体DNA异质性带来的种种问题,近年来国内外取得了不少研究进展。  相似文献   

9.
线粒体DNA(mtDNA)是研究环状DNA 复制、转录及其调控的一个较好模型,而且 mtDNA存在一些有别于细胞核DNA的特性。 此外mtDNA与核DNA还表现协作效应。 迄今为止哺乳类及真菌的mtDNA已研究较 多L6-131,但对鸟类的m tDNA研究尚少[II-a10鸽 肝mtDNA的研究,国内尚未见报道。本文就 这方面的工作先作一初步的报道。  相似文献   

10.
人mtDNA比核DNA更易受到自由基的氧化损伤,这些损伤可以被线粒体内的DNA修复机制所修复,损伤与修复是决定突变是否产生的两个重要因素.为了确定氧化损伤与损伤后修复对mtDNA突变的具体影响,采用四氧嘧啶处理LO2细胞,这种试剂进入细胞后,经氧化还原反应生成的自由基与线粒体自身代谢产生的自由基类似,然后观察自由基对细胞mtDNA的氧化损伤与损伤后DNA修复的动力学变化.由于线粒体的正常功能为修复机制所必需,采用MTT细胞活力实验检测不同浓度四氧嘧啶处理下线粒体酶活力,发现9 mmol/L四氧嘧啶培养细胞1h后,线粒体琥珀酸脱氢酶功能在撤去药物后0,2,8和24 h时间点均无明显变化.提取各组细胞的mtDNA,用EndoⅢ和Fgp两种酶切除受氧化损伤的核苷酸,然后用碱性琼脂糖凝胶电泳分离大小不等的mtDNA,进行DNA印迹实验,地高辛-抗体-碱性磷酸酶系统显色,检测完整与断裂的mtDNA量,利用Poisson公式(s=-lnP0/P,P0为未断裂链光密度值,P为所有链光密度值总和)计算一个mtDNA分子的平均损伤频率,结果显示,9 mmol/L四氧嘧啶处理细胞1 h,链平均损伤频率由对照的0.11个/分子增加至5.60个/分子,明显增加了mtDNA上核苷酸的氧化损伤,除去药物后8 h,绝大部分损伤可被修复,损伤频率减至0.40个/分子,除去药物后24 h核苷酸的氧化损伤恢复至正常水平.采用接头介导PCR(LM-PCR)检测MTTL1基因区域内单个核苷酸的损伤与修复动力学.这种方法可以检测各组mtDNA上MTTL1基因75 bp区域内单个核苷酸损伤的部位及频率.结果显示,人MTTL1基因存在20个易受氧化损伤的核苷酸热点,经与相应区域内文献报道的16个突变热点比较,有12个热点部位重合,而修复未显示热点部位或区域.结果提示,自由基对核苷酸的选择性氧化损伤是决定mtDNA点突变发生及发生部位的主要原因.  相似文献   

11.
Pol γ, the only DNA polymerase found in human mitochondria, functions in both mtDNA repair and replication. During mtDNA base-excision repair, gaps are created after damaged base excision. Here we show that Pol γ efficiently gap-fills except when the gap is only a single nucleotide. Although wild-type Pol γ has very limited ability for strand displacement DNA synthesis, exo? (3′–5′ exonuclease-deficient) Pol γ has significantly high activity and rapidly unwinds downstream DNA, synthesizing DNA at a rate comparable to that of the wild-type enzyme on a primer-template. The catalytic subunit Pol γA alone, even when exo?, is unable to synthesize by strand displacement, making this the only known reaction of Pol γ holoenzyme that has an absolute requirement for the accessory subunit Pol γB.  相似文献   

12.
Under the action of endogenous reactive oxygen species and exogenous chemical and physical agents, significantly more lesions occur in mitochondrial DNA (mtDNA) than in nuclear DNA (nDNA). However, the mechanisms of DNA repair in mitochondria are less efficient that in the nuclei. The mechanisms of nucleotide excision repair capable of removing UV-induced lesions or other complex adducts induced by chemical compounds are not operative in mitochondria at all. At the same time, mitochondria of some kinds contain a photoreactivation enzyme providing monomerization of cyclobutane pyrimidine dimers. Also, the enzyme system for DNA base excision repair (BER) and O6-alkylguanine-DNA alkyl transferase are functional in mitochondria. However, the rate of BER-controlled repair of lesions in mtDNA is lower than that in nDNA. The literature data suggest that the controlling system for the delay of DNA replication till the repair complexion (cell cycle checkpoint) cannot be provided in mitochontria. Besides, it remains unclear whether the mismatch repair mechanisms are operable in mammalian mitochondria. On the other hand, double-strand breaks in mammalian mtDNA are possibly repaired by involving the DNA-dependent protein kinase complex, and the process of BER is affected by poly(ADP-ribosyl)ation of proteins. Possible consequences of induction of the increased level of damage in mtDNA and the low efficiency of repair systems in mitochondria are discussed in this review.  相似文献   

13.
Mutations in mitochondrial DNA (mtDNA) are implicated in a broad range of human diseases and in aging. Compared to nuclear DNA, mtDNA is more highly exposed to oxidative damage due to its proximity to the respiratory chain and the lack of protection afforded by chromatin-associated proteins. While repair of oxidative damage to the bases in mtDNA through the base excision repair pathway has been well studied, the repair of oxidatively induced strand breaks in mtDNA has been less thoroughly examined. Polynucleotide kinase/phosphatase (PNKP) processes strand-break termini to render them chemically compatible for the subsequent action of DNA polymerases and ligases. Here, we demonstrate that functionally active full-length PNKP is present in mitochondria as well as nuclei. Downregulation of PNKP results in an accumulation of strand breaks in mtDNA of hydrogen peroxide-treated cells. Full restoration of repair of the H(2)O(2)-induced strand breaks in mitochondria requires both the kinase and phosphatase activities of PNKP. We also demonstrate that PNKP contains a mitochondrial-targeting signal close to the C-terminus of the protein. We further show that PNKP associates with the mitochondrial protein mitofilin. Interaction with mitofilin may serve to translocate PNKP into mitochondria.  相似文献   

14.
Mammalian mitochondria contain several 16.5 kb circular DNAs (mtDNA) encoding electron transport chain proteins. Reactive oxygen species formed as byproducts from oxidative phosphorylation in these organelles can cause oxidative deamination of cytosine and lead to uracil in mtDNA. Upon mtDNA replication, these lesions, if unrepaired, can lead to mutations. Until recently, it was thought that there was no DNA repair in mitochondria, but lately there is evidence that some lesions are efficiently repaired in these organelles. In the study of nuclear DNA repair, the in vitro repair measurements in cell extracts have provided major insights into the mechanisms. The use of whole-cell extract based DNA repair methods has revealed that mammalian nuclear base excision repair (BER) diverges into two pathways: the single-nucleotide replacement and long patch repair mechanisms. Similar in vitro methods have not been available for the study of mitochondrial BER. We have established an in vitro DNA repair system supported by rat liver mitochondrial protein extract and DNA substrates containing a single uracil opposite to a guanine. Using this approach, we examined the repair pathways and the identity of the DNA polymerase involved in mitochondrial BER (mtBER). Employing restriction analysis of in vitro repaired DNA to map the repair patch size, we demonstrate that only one nucleotide is incorporated during the repair process. Thus, in contrast to BER in the nucleus, mtBER of uracil in DNA is solely accomplished by single-nucleotide replacement.  相似文献   

15.
16.
17.
18.
19.
The mechanisms of mitochondrial DNA replication have been hotly debated for a decade. The strand‐displacement model states that lagging‐strand DNA synthesis is initiated from the origin of light‐strand DNA replication (OriL), whereas the strand‐coupled model implies that OriL is dispensable. Mammalian mitochondria cannot be transfected and the requirements of OriL in vivo have therefore not been addressed. We here use in vivo saturation mutagenesis to demonstrate that OriL is essential for mtDNA maintenance in the mouse. Biochemical and bioinformatic analyses show that OriL is functionally conserved in vertebrates. Our findings strongly support the strand‐displacement model for mtDNA replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号