首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We hypothesised that increasing winter affluence and summer temperatures, anticipated in southern Europe with climate change, will deteriorate the ecological status of lakes, especially in those with shorter retention time. We tested these hypotheses analysing weekly phytoplankton and chemistry data collected over 2 years of contrasting weather from two adjacent stratified lakes in North Italy, differing from each other by trophic state and water retention time. Dissolved oxygen concentrations were higher in colder hypolimnia of both lakes in the second year following the cold winter, despite the second summer was warmer and the lakes more strongly stratified. Higher loading during the rainy winter and spring increased nutrient (N, P, Si) concentrations, and a phytoplankton based trophic state index, whilst the N/P ratio decreased in both lakes. The weakened Si limitation in the second year enabled an increase of diatom biovolumes in spring in both lakes. Chlorophyll a concentration increased in the oligo-mesotrophic lake, but dropped markedly in the eutrophic lake where the series of commonly occurring cyanobacteria blooms was interrupted. The projected increase of winter precipitation in southern Europe is likely to increase the nutrient loadings to lakes and contribute to their eutrophication. The impact is proportional to the runoff/in-lake concentration ratio of nutrients rather than to the retention time, and is more pronounced in lakes with lower trophy.  相似文献   

2.
1. Field data from five unproductive Swedish lakes were used to investigate the occurrence of mixotrophic flagellates in relation to bacterioplankton, autotrophic phytoplankton, heterotrophic flagellates and abiotic environmental factors. Three different sources of data were used: (i) a 3‐year study (1995–97) of the humic Lake Örträsket, (ii) seasonal measurements from five lakes with widely varying dissolved organic carbon (DOC) concentrations, and (iii) whole lake enrichment experiments with inorganic nutrients and organic carbon. 2. Mixotrophic flagellates usually dominated over autotrophic phytoplankton in Lake Örträsket in early summer, when both bacterial production and light levels were high. Comparative data from the five lakes demonstrated that the ratio between the biomasses of mixotrophic flagellates and autotrophic phytoplankton (the M/A‐ratio) was positively correlated to bacterioplankton production, but not to the light regime. Whole lake carbon addition (white sugar) increased bacterial biomass, and production, reduced the biomass of autotrophs by a factor of 16, and increased the M/A‐ratio from 0.03 to 3.4. Collectively, the results indicate that the dominance of mixotrophs among phytoplankton was positively related to bacterioplankton production. 3. Whole lake fertilisation with nitrogen (N) and phosphorus (P) demonstrated that the obligate autotrophic phytoplankton was limited by N. N‐addition increased the biomass of the autotrophic phytoplankton but had no effect on mixotrophic flagellates or bacteria, and the M/A‐ratio decreased from 1.2 to 0.6 after N‐enrichment. Therefore, we suggest that bacteria under natural conditions, by utilising allochthonous DOC as an energy and carbon source, are able to outcompete autotrophs for available inorganic nutrients. Consequently, mixotrophic flagellates can become the dominant phytoplankters when phagotrophy permits them to use nutrients stored in bacterial biomass. 4. In Lake Örträsket, the biomass of mixotrophs was usually higher than the biomass of heterotrophs during the summer. This dominance could not be explained by higher grazing rates among the mixotrophs. Instead, ratios between mixotrophic and heterotrophic biomass (the M/H‐ratio) were positively related to light availability. Therefore, we suggest that photosynthesis can enable mixotrophic flagellates to outcompete heterotrophic flagellates.  相似文献   

3.
Lake Inba is one of the most eutrophic lakes in Japan. In this study, field sampling and nutrient enrichment bioassays were conducted to determine the seasonal patterns of nutrient limitation for phytoplankton growth in this lake. Phytoplankton biomass increased significantly with the additions of phosphorus (P) on almost all sampling dates, indicating P limitation of phytoplankton growth from spring to autumn. However, nitrogen (N) limitation was also observed during summer (i.e., 19 August). On 10 August, a typhoon struck Lake Inba. After this event, dissolved inorganic nitrogen (DIN) and phosphorus concentrations increased, probably because of increased river discharge. At the same time, phytoplankton growth in the control treatment became relatively high, with the addition of neither P nor N stimulating the growth. However, 10 days after the typhoon, the phytoplankton growth rate in the control treatment decreased, with only the addition of N having a significant positive effect on phytoplankton growth. N limitation during summer is caused by the low concentrations of DIN, as well as changes in the N:P ratio due to allochthonous nutrient loads. These results indicate that a reduction of both P and N input is necessary to control phytoplankton blooms in Lake Inba.  相似文献   

4.
1. The variable ecological response of lakes to reduced nutrient loading (oligotrophication) at sites in Europe and North America was discussed at a workshop held in Silkeborg (Denmark) in January 2003. Studies of lake oligotrophication were presented based on both long‐term monitoring and data generated by palaeolimnological methods. 2. This introduction to the special issue provides short summaries of a series of the papers presented and their limnological context. Results show that the majority of lakes had approached a new equilibrium of phosphorus (P) and nitrogen (N) concentrations 10–15 years (P) and 0–5 years (N) after a major reduction in loading, irrespective of hydraulic retention time. Phytoplankton biomass decreased and a shift towards meso‐oligotrophic species dominance occurred. The fish responded surprisingly fast to the loading reduction in most lakes. As a result, the percentage of piscivores increased and total fish biomass declined markedly, which may explain an increase in the body size of cladocerans and an increase in the zooplankton to phytoplankton biomass ratio seen in many of the lakes. 3. Monitoring has in general been initiated after the effects of eutrophication became apparent. In this context palaeolimnological techniques become very useful because they allow limnologists to extend time scales of coverage and to define restoration targets and baseline conditions. Moreover, lake sediments pre‐dating anthropogenic disturbance can be used to examine ecological response to, for instance, climate variability, allowing problems associated with multiple stressors to be addressed. 4. It is concluded that there is a great need for a synthetic, holistic approach to studying lake oligotrophication, combining multiple techniques of palaeolimnological sediment analysis with detailed but temporally limited long‐term monitoring of chemical and biological variables. This is important, not least to assess future responses to nutrient loading reductions, as global warming will interact with a range of external stressors and ultimately affect lake management strategies to deal with the resultant feedbacks.  相似文献   

5.
Here, we present data that for the first time suggests that the effects of atmospheric nitrogen (N) deposition on nutrient limitation extend into the food web. We used a novel and sensitive assay for an enzyme that is over‐expressed in animals growing under dietary phosphorus (P) deficiency (alkaline phosphatase activity, APA) to assess the nutritional status of major crustacean zooplankton taxa in lakes across a gradient of atmospheric N deposition in Norway. Lakes receiving high N deposition had suspended organic matter (seston) with significantly elevated carbon:P and N:P ratios, indicative of amplified phytoplankton P limitation. This P limitation appeared to be transferred up the food chain, as the cosmopolitan seston‐feeding zooplankton taxa Daphnia and Holopedium had significantly increased APA. These results indicate that N deposition can impair the efficiency of trophic interactions by accentuating stoichiometric food quality constraints in lake food webs.  相似文献   

6.
Picophytoplankton biomass and its contribution to total phytoplankton biomass were investigated in relation to the nutrient concentration and total N: total P ratio of the epilimnetic waters of 42 Japanese lakes during the warm season in 1991 (April–October). Picophytoplankton biomass (as chlorophyll a) in meso-, eu-, and hypertrophic lakes was significantly higher than those observed in oligotrophic lakes. However, picophytoplankton biomass increased significantly with increased total P concentrations in all systems excluding hypertrophic lakes. Picophytoplankton contribution to total chlorophyll a content was significantly higher in oligo- and mesotrophic lakes than in eu- and hypertrophic lakes and was inversely correlated with total P concentrations in lake water. Picophytoplankton contribution to the total phytoplankton biomass was positively (r = 0.54, n = 42, P = 0.0003) correlated with the total N: total P ratio of lake waters. Each lake trophic type, with the exception of hypertrophic lakes, showed this trend, although the correlation was not significant. We suggest that picophytoplankton contribution is influenced by the total N: total P ratio rather than lake trophic state; however, picophytoplankton were of little importance in hypertrophic lakes.  相似文献   

7.
We compared nitrate concentrations, phytoplankton biomass, and phytoplankton community structure in lakes fed by glacier melt and snowmelt (GSF lakes) and by snowmelt only (SF lakes) within North Cascades National Park (NOCA) in Washington State, USA. In the U.S. Rocky Mountains, glacier melting has greatly increased nitrate concentrations in GSF lakes (52–236 µg NO3–N L?1) relative to SF lakes (1–14 µg NO3–N L?1) and thereby stimulated phytoplankton changes in GSF lakes. Considering NOCA contains approximately one-third of the glaciers in the continental U.S., and many mountain lakes that receive glacier meltwater inputs, we hypothesized that NOCA GSF lakes would have greater nitrate concentrations, greater phytoplankton biomass, and greater abundance of nitrogen-sensitive diatom species than NOCA SF lakes. However, at NOCA nitrate concentrations were much lower and differences between lake types were small compared to the Rockies. At NOCA, nitrate concentrations averaged 13 and 5 µg NO3–N L?1 in GSF and SF lakes, respectively, and a nitrate difference was not detectable in several individual years. There also was no difference in phytoplankton biomass or abundance of nitrogen-sensitive diatoms between lake types at NOCA. In contrast to the Rockies, there also was not a significant positive relationship between watershed percent glacier area and lake nitrate at NOCA. Results demonstrate that biogeochemical responses to global change in Western U.S. mountain lake watersheds may vary regionally. Regional differences may be affected by differing nitrogen deposition, climate, geology, or microbial processes within glacier environments, and merit further investigation.  相似文献   

8.
Shallow lakes respond to nutrient loading reductions. Major findings in a recent multi-lake comparison of data from lakes with long time series revealed: that a new state of equilibrium was typically reached for phosphorus (P) after 10–15 years and for nitrogen (N) after <5–10 years; that the in-lake Total N:Total P and inorganic N:P ratios increased; that the phytoplankton and fish biomass often decreased; that the percentage of piscivores often increased as did the zooplankton:phytoplankton biomass ratio, the contribution of Daphnia to zooplankton biomass, and cladoceran size. This indicates that enhanced resource and predator control often interact during recovery from eutrophication. So far, focus has been directed at reducing external loading of P. However, one experimental study and cross-system analyses of data from many lakes in north temperate lakes indicate that nitrogen may play a more significant role for abundance and species richness of submerged plants than usually anticipated when total phosphorus is moderate high. According to the alternative states hypothesis we should expect ecological resistance to nutrient loading reduction and P hysteresis. We present results suggesting that the two alternative states are less stable than originally anticipated. How global warming affects the water clarity of shallow lakes is debatable. We suggest that water clarity often will decrease due to either enhanced growth of phytoplankton or, if submerged macrophytes are stimulated, by reduced capacity of these plants to maintain clear-water conditions. The latter is supported by a cross-system comparison of lakes in Florida and Denmark. The proportion of small fish might increase and we might see higher aggregation of fish within the vegetation (leading to loss of zooplankton refuges), more annual fish cohorts, more omnivorous feeding by fish and less specialist piscivory. Moreover, lakes may have prolonged growth seasons with a higher risk of long-lasting algal blooms and at places dense floating plant communities. The effects of global warming need to be taken into consideration by lake managers when setting future targets for critical loading, as these may well have to be adjusted in the future. Finally, we highlight some of the future challenges we see in lake restoration research.  相似文献   

9.
The aim of this study was to predict the combined effects of enhanced nitrogen (N) deposition and warming on phytoplankton development in high latitude and mountain lakes. Consequently, we assessed, in a series of enclosure experiments, how lake water nutrient stoichiometry and phytoplankton nutrient limitation varied over the growing season in 11 lakes situated along an altitudinal/climate gradient with low N‐deposition (<1 kg N ha?1 yr?1) in northern subarctic Sweden. Short‐term bioassay experiments with N‐ and P‐additions revealed that phytoplankton in high‐alpine lakes were more prone to P‐limitation, and with decreasing altitude became increasingly N‐ and NP‐colimited. Nutrient limitation was additionally most obvious in midsummer. There was also a strong positive correlation between phytoplankton growth and water temperature in the bioassays. Although excess nutrients were available in spring and autumn, on these occasions growth was likely constrained by low water temperatures. These results imply that enhanced N‐deposition over the Swedish mountain areas will, with the exception of high‐alpine lakes, enhance biomass and drive phytoplankton from N‐ to P‐limitation. However, if not accompanied by warming, N‐input from deposition will stimulate limited phytoplankton growth due to low water temperatures during large parts of the growing season. Direct effects of warming, allowing increased metabolic rates and an extension of the growing season, seem equally crucial to synergistically enhance phytoplankton development in these lakes.  相似文献   

10.
11.
Bergström  A.-K.  Deininger  A.  Jonsson  A.  Karlsson  J.  Vrede  T. 《Hydrobiologia》2021,848(21):4991-5010

We used data from whole-lake studies to assess how changes in food quantity (phytoplankton biomass) and quality (phytoplankton community composition, seston C:P and N:P) with N fertilization affect zooplankton biomass, community composition and C:N:P stoichiometry, and their N:P recycling ratio along a gradient in lake DOC concentrations. We found that despite major differences in phytoplankton biomass with DOC (unimodal distributions, especially with N fertilization), no major differences in zooplankton biomass were detectable. Instead, phytoplankton to zooplankton biomass ratios were high, especially at intermediate DOC and after N fertilization, implying low trophic transfer efficiencies. An explanation for the observed low phytoplankton resource use, and biomass responses in zooplankton, was dominance of colony forming chlorophytes of reduced edibility at intermediate lake DOC, combined with reduced phytoplankton mineral quality (enhanced seston N:P) with N fertilization. N fertilization, however, increased zooplankton N:P recycling ratios, with largest impact at low DOC where phytoplankton benefitted from light sufficiently to cause enhanced seston N:P. Our results suggest that although N enrichment and increased phytoplankton biomass do not necessarily increase zooplankton biomass, bottom-up effects may still impact zooplankton and their N:P recycling ratio through promotion of phytoplankton species of low edibility and altered mineral quality.

  相似文献   

12.
1. Shallow lakes may switch from a state dominated by submerged macrophytes to a phytoplankton‐dominated state when a critical nutrient concentration is exceeded. We explore how climate change may affect this critical nutrient concentration by linking a graphical model to data from 83 lakes along a large climate gradient in South America. 2. The data indicate that in warmer climates, submerged macrophytes may tolerate more underwater shade than in cooler lakes. By contrast, the relationship between phytoplankton biomass [approximated by chlorophyll‐a (chl‐a) or biovolume] and nutrient concentrations did not change consistently along the climate gradient. In warmer climates, the correlation between phytoplankton biomass and nutrient concentrations was overall weak, especially at low total phosphorus (TP) concentrations where the chl‐a/ TP ratio could be either low or high. 3. Although the enhanced shade tolerance of submerged plants in warmer lakes might promote the stability of their dominance, the potentially high phytoplankton biomass at low nutrient concentrations suggests an overall low predictability of climate effects. 4. We found that near‐bottom oxygen concentrations are lower in warm lakes than in cooler lakes, implying that anoxic P release from eutrophic sediment in warm lakes likely causes higher TP concentrations in the water column. Subsequently, this may lead to a higher phytoplankton biomass in warmer lakes than in cooler lakes with similar external nutrient loadings. 5. Our results indicate that climate effects on the competitive balance between submerged macrophytes and phytoplankton are not straightforward.  相似文献   

13.
太湖浮游植物优势种长期演化与富营养化进程的关系   总被引:12,自引:0,他引:12  
利用1991年至2002年每月一次的监测资料,系统分析了浮游植物优势种和生物量的周年变化情况。同时,总氮、总磷和浮游植物叶绿素a含量等相关资料也被用于解释太湖富营养化演化与浮游植物的关系。结果显示,太湖总氮、总磷、叶绿素a和生物量均呈自梅梁湾底至湖心的逐步递减趋势。在20世纪80年代末太湖刚开始富营养化时,浮游植物优势种群从硅藻转变为蓝藻。之后,浮游植物优势种群一直是蓝藻,但各年的浮游植物总生物量有变化。总氮、总磷、叶绿素a和生物量的年均值持续增长至1996年,其后有逐步下降的趋势,究其原因可能和当地政府在太湖流域的控制排污行动有关。微囊藻在太湖的占优是太湖富营养化的标志之一。研究结果说明浮游植物在大型浅水湖泊中可以作为反映富营养化进程的生态指标。  相似文献   

14.
Climate change might have profound effects on the nitrogen (N) dynamics in the cultivated landscape as well as on N transport in streams and the eutrophication of lakes. N loading from land to streams is expected to increase in North European temperate lakes due to higher winter rainfall and changes in cropping patterns. Scenario (IPCC, A2) analyses using a number of models of various complexity for Danish streams and lakes suggest an increase in runoff and N transport on an annual basis (higher during winter and typically lower during summer) in streams, a slight increase in N concentrations in streams despite higher losses in riparian wetlands, higher absolute retention of N in lakes (but not as percentage of loading), but only minor changes in lake water concentrations. However, when taking into account also a predicted higher temperature there is a risk of higher frequency and abundance of potentially toxic cyanobacteria in lakes and they may stay longer during the season. Somewhat higher risk of loss of submerged macrophytes at increased N and phosphorus (P) loading and a shift to dominance of small-sized fish preying upon the key grazers on phytoplankton may also enhance the risk of lake shifts from clear to turbid in a warmer North European temperate climate. However, it must be emphasised that the prediction of N transport and thus effects is uncertain as the prediction of regional precipitation and changes in land-use is uncertain. By contrast, N loading is expected to decline in warm temperate and arid climates. However, in warm arid lakes much higher N concentrations are currently observed despite reduced external loading. This is due to increased evapotranspiration leading to higher nutrient concentrations in the remaining water, but may also reflect a low-oxygen induced reduction of nitrification. Therefore, the critical N as well as P loading for good ecological state in lakes likely has to be lower in a future warmer climate in both north temperate and Mediterranean lakes. To obtain this objective, adaptation measures are required. In both climate zones the obvious methods are to change agricultural practices for reducing the loss of nutrients to surface waters, to improve sewage treatment and to reduce the storm-water nutrient runoff. In north temperate zones adaptations may also include re-establishment of artificial and natural wetlands, introduction of riparian buffer zones and re-meandering of channelised streams, which may all have a large impact on, not least, the N loading of lakes. In the arid zone, also restrictions on human use of water are urgently needed, not least on the quantity of water used for irrigation purposes.  相似文献   

15.
The Reeuwijk Lakes (The Netherlands) present a typical example of eutrophication in the lower Rhine catchment area. In 1986 restoration of these lakes started by reducing the external P-loading. Two lakes, Lake Elfhoeven and Lake Nieuwenbroek, differing in P-load and residence time were selected for monitoring water quality parameters before (1983–1985) and after (1986–1987) these restoration measures. Reduction of the external P-loading did not result in lower P-concentrations in both lakes. In contrast, P and N increased. This may have been caused by an increase in diffuse discharges. However, seasonal cycles of P and N point to a strong internal loading of nutrients. The concentrations of chlorophyll a and carotene decreased, indicating a lower phytoplankton biomass. However, as C-phycocyanine concentrations increased the relative abundance of cyanobacteria became higher. Seston concentrations and zooplankton densities did not change. Transparency in the lakes slightly decreased after P-reduction and is far too low for the development of any vegetation of submerged waterplants. The typical differences between both lakes remained after restoration measures. The inverse relationship between the concentrations of chlorophyll a and total phosphorus at the two sampled stations remained constant. The differences in phytoplankton composition and the zooplankton biomass give a plausible explanation for this inverse relationship, between the two stations. Restoring the lakes after four decades of P-loading can presumably, not simply be done by lowering the external P-load alone. Supplementary in-lake measures may accelerate the restoration process.  相似文献   

16.
To demonstrate the sensitivity of aquatic ecosystems to forecasted increases in nitrogen deposition along the eastern ranges of the Canadian Rocky Mountains, we conducted midsummer limnological surveys of 29 remote alpine lakes and ponds via helicopter in 2007. Chemical analysis of water and in vitro nitrogen-enrichment bioassays of phytoplankton collected from each site were performed to estimate nutrient limitation. Use of a common chemical index for nutrient limitation (total dissolved inorganic nitrogen: total phosphorus; DIN:TP) together with supportive experimental evidence revealed nitrogen limitation in only 14% of the cases. Shallow (≤1 m maximum depth) ponds were more likely to be nitrogen-limited than lakes, especially as the former exhibited a significantly lower mean DIN:TP ratio of 7.4 during the late summer. Chemical and bioassay-based inferences of nitrogen limitation agreed in 74.5% of the cases, owing mainly to evidence of phosphorus limitation of the surveyed lake ecosystems (mean DIN:TP = 18) being supported by nonsignificant responses of their phytoplankton to nitrogen amendment. Our findings reveal that increased nitrogen deposition should not result in immediate widespread eutrophication of the Canadian Rockies; however, certain alpine ponds appeared nitrogen-limited, making them sensitive early indicators of the potential effects of anthropogenic nitrogen deposition in remote mountainous regions.  相似文献   

17.
In tropical lakes relatively little is known about the general relationship between nutrient concentration and phytoplankton biomass. Using data from 192 lakes from tropical and subtropical regions we examine the relationship between total P (TP) and chlorophyll (Chl). The lakes are all located between 30° S to 31° N include systems in Asia, Africa, and North and South America but are dominated by Brazilian (n=79) and subtropical N. American (n=67) systems. The systems vary in morphometry (mean depth and lake area), trophic state as well total N (TN) to␣total P (TP) ratios and light extinction. Despite a nearly 500-fold range in TP concentrations (2–970 μg P l−1), there was a poorer relationship between log TP and log Chl (r 2=0.42) than is generally observed for temperate systems from either narrow or broad geographic regions. N limitation is not a likely explanation for the relatively weak TP–Chl relationship in the tropical–subtropical systems. Systems had high average TN:TP ratios and neither a multiple regression with log TP and log TN nor separating systems with high TN:TP (>17 by weight) improved the predictive power of the log TP–log Chl relationship.  相似文献   

18.
王春忠  陈晓  郑建峰 《生态科学》2011,30(6):581-585
根据2007年3月至12月福建省兴化湾海域的水质监测结果,重点分析了该海域溶解无机氮(DIN)、溶解无机磷(DIP)的分布特征及其影响因素,并采用有机污染指数和富营养化指数对兴化湾海域的富营化水平进行了评价。结果表明:兴化湾海域富营养化主要污染物是DIN、DIP,其含量主要受径流排放和海洋浮游植物生长等因素的影响。春夏季节浮游植物生长繁殖旺盛,但雨水增多,最终导致了DIP、DIN含量的升高。秋季水温下降,浮游植物生长繁殖逐渐减弱,DIP、DIN的含量也逐渐升高。兴化湾富营养化水平加重,2007年的富营养化指数是2000年的5.7倍,主要体现在DIN、DIP等指标的升高。  相似文献   

19.
Global environmental change has altered the nitrogen (N) cycle and enhanced terrestrial dissolved organic carbon (DOC) loadings to northern boreal lakes. However, it is still unclear how enhanced N availability affects pelagic food web efficiency (FWE) and crustacean zooplankton growth in N limited boreal lakes. Here, we performed in situ mesocosm experiments in six unproductive boreal Swedish lakes, paired across a DOC gradient, with one lake in each pair fertilized with N (2011: reference year; 2012, 2013: impact years). We assessed how zooplankton growth and FWE were affected by changes in pelagic energy mobilization (PEM), food chain length (phytoplankton versus bacterial production based food chain, i.e. PP:BP), and food quality (seston stoichiometry) in response to N fertilization. Although PP, PEM and PP:BP increased in low and medium DOC lakes after N fertilization, consumer growth and FWE were reduced, especially at low DOC—potentially due to reduced phytoplankton food quality [increased C: phosphorus (P); N:P]. At high DOC, N fertilization caused modest increases in PP and PEM, with marginal changes in PP:BP and phytoplankton food quality, which, combined, led to a slight increase in zooplankton growth and FWE. Consequently, at low DOC (<12 mg L?1), increased N availability lowers FWE due to mismatches in food quality demand and supply, whereas at high DOC this mismatch does not occur, and zooplankton production and FWE may increase. We conclude that the lake DOC level is critical for predicting the effects of enhanced inorganic N availability on pelagic productivity in boreal lakes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号