首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large-scale climatic signatures in lakes across Europe: a meta-analysis   总被引:3,自引:0,他引:3  
Recent studies have highlighted the impact of the winter North Atlantic Oscillation (NAO) on water temperature, ice conditions, and spring plankton phenology in specific lakes and regions in Europe. Here, we use meta-analysis techniques to test whether 18 lakes in northern, western, and central Europe respond coherently to winter climate forcing, and to assess the persistence of the winter climate signal in physical, chemical, and biological variables during the year. A meta-analysis approach was chosen because we wished to emphasize the overall coherence pattern rather than individual lake responses. A particular strength of our approach is that time-series from each of the 18 lakes were subjected to the same robust statistical analysis covering the same 23-year period. Although the strongest overall coherence in response to the winter NAO was exhibited by lake water temperatures, a strong, coherent response was also exhibited by concentrations of soluble reactive phosphorus and soluble reactive silicate, most likely as a result of the coherent response exhibited by the spring phytoplankton bloom. Lake nitrate concentrations showed significant coherence in winter. With the exception of the cyanobacterial biomass in summer, phytoplankton biomass in all seasons was unrelated to the winter NAO. A strong coherence in the abundance of daphnids during spring can most likely be attributed to coherence in daphnid phenology. A strong coherence in the summer abundance of the cyclopoid copepods may have been related to a coherent change in their emergence from resting stages. We discuss the complex nature of the potential mechanisms that drive the observed changes.  相似文献   

2.
1. The distributions of subfossil remains of chironomid larvae in 28 large, deep and stratified lakes in Europe were examined in surface sediments along a latitudinal transect ranging from northern Sweden to southern Italy. 2. Canonical correspondence analysis (CCA) showed that summer surface water and July air temperature, as well as total phosphorus (TP) concentrations, hypolimnetic oxygen availability and conductivity were statistically significant (P < 0.05) explanatory variables explaining between 11 and 14% of the variance in the chironomid data. 3. Owing to the spatial scale covered by our study, many environmental variables were covarying. Temperature, TP concentration and oxygen availability were positively or negatively correlated with the first axis of a detrended correspondence analysis (DCA) of chironomid assemblages, suggesting that climatic and trophic conditions influenced profundal chironomid assemblages either in a direct (food and oxygen) or in an indirect (temperature) way. Parameters related to local environmental conditions, lake morphology and bedrock geology, such as organic matter content of the sediment, maximum lake depth, Secchi depth and pH, were not significant in explaining the distribution of chironomid assemblages in our study lakes. 4. The strong relationship between chironomid assemblages and summer temperature may be related to the covariation of temperature with parameters, such as nutrient and oxygen availability, known to affect chironomid assemblages in deep, stratified lakes. However, summer temperature explained a statistically significant proportion of the variance in the chironomid assemblages even when effects of oxygen availability and TP concentrations were partialled out. This suggests that summer temperature has an effect on chironomid assemblages in deep lakes, which is not related to its covariation with trophic state. 5. The potential of fossil chironomid analysis for quantitatively reconstructing past nutrient conditions in deep, stratified lakes was examined by calculating the Benthic Quality Index (BQI) based on subfossil chironomids and by comparing BQI values with observed TP concentrations. BQI was linearly related to log‐transformed TP. Applying this relationship to fossil chironomid assemblages from Lake Päijänne (Finland) produced a TP reconstruction in agreement with measured TP during the period 1970–1990, demonstrating that this approach can provide quantitative estimates of past nutrient concentrations in deep, stratified lakes.  相似文献   

3.
Phytoplankton is one of the four key biological quality elements to be used in the ecological classification of lakes in Europe according to the Water Framework Directive (WFD). Chlorophyll a (Chla) has so far been used as the main – and sometimes only – metric to define class boundaries. Chla is often a key metric for lake managers and is used to determine whether and how much action should be taken to reduce the external nutrient loading. In this paper we present the analyses of empirical relationships between nutrient (total phosphorus, TP, total nitrogen, TN) concentrations versus Chla and the proportion of cyanobacteria of total phytoplankton biomass based on data from 440 Danish lakes (1800 lake years). These data represent one eco-region sampled using standardised methodology, thereby minimising the heterogeneity often seen in large datasets. Sampling frequency is important for the precision by which Chla can be determined and the precision is always low with less than 15 summer measurements. As expected Chla was related significantly to TP, but the variability was high, with R2 reaching only 0.47, 0.59 and 0.61 in shallow, stratified and siliceous lakes, respectively, based on summer averages. The correlation was strongest in late summer (R2 up to 0.80) and weak in winter. Chla is also related to TN, but the correlation coefficients were low throughout the year, and in a multiple regression with TP included, TN only added little to the total variability. Similarly, the proportion of cyanobacteria increased significantly with TP, but the correlation was weak. Seasonal and yearly data from five lakes with relatively stable TP show considerable variations in Chla and cyanobacteria abundance during a 20-year monitoring period. It is concluded that despite clear nutrient phytoplankton relationships it will be difficult to define the proposed WFD ecological classes – particularly regarding cyanobacteria. To ensure a high degree of certainty for meeting a specific water quality threshold, lake managers must reduce the external phosphorus loading more strongly than expected from existing simple empirical external loading-inlake TP–Chla relationships.  相似文献   

4.
1. It is well accepted that fish, if abundant, can have a major impact on the zooplankton community structure during summer, which, particularly in eutrophic lakes, may cascade to phytoplankton and ultimately influence water clarity. Fish predation affects mean size of cladocerans and the zooplankton grazing pressure on phytoplankton. Little is, however, known about the role of fish during winter. 2. We analysed data from 34 lakes studied for 8–9 years divided into three seasons: summer, autumn/spring and winter, and four lake classes: all lakes, shallow lakes without submerged plants, shallow lakes with submerged plants and deep lakes. We recorded how body weight of Daphnia and then cladocerans varied among the three seasons. For all lake types there was a significant positive correlation in the mean body weight of Daphnia and all cladocerans between the different seasons, and only in lakes with macrophytes did the slope differ significantly from one (winter versus summer for Daphnia). 3. These results suggest that the fish predation pressure during autumn/spring and winter is as high as during summer, and maybe even higher during winter in macrophyte‐rich lakes. It could be argued that the winter zooplankton community structure resembles that of the summer community because of low specimen turnover during winter mediated by low fecundity, which, in turn, reflects food shortage, low temperatures and low winter hatching from resting eggs. However, we found frequent major changes in mean body weight of Daphnia and cladocerans in three fish‐biomanipulated lakes during the winter season. 4. The seasonal pattern of zooplankton : phytoplankton biomass ratio showed no correlation between summer and winter for shallow lakes with abundant vegetation or for deep lakes. For the shallow lakes, the ratio was substantially higher during summer than in winter and autumn/spring, suggesting a higher zooplankton grazing potential during summer, while the ratio was often higher in winter in deep lakes. Direct and indirect effects of macrophytes, and internal P loading and mixing, all varying over the season, might weaken the fish signal on this ratio. 5. Overall, our data indicate that release of fish predation may have strong cascading effects on zooplankton grazing on phytoplankton and water clarity in temperate, coastal situated eutrophic lakes, not only during summer but also during winter.  相似文献   

5.
  1. Daphnia are key organisms in pelagic food webs, acting as a food resource for fish and predatory zooplankton and regulating phytoplankton through grazing. Its population dynamic follows regular seasonal patterns, with spring peaks followed by summer population declines (midsummer declines, MSDs). Midsummer declines show high inter-annual variation, which has been attributed to different causes. However, the mechanisms controlling the MSD remain poorly understood, especially in deep stratified lakes.
  2. We tried to disentangle the factors causing Daphnia MSDs in Lake Lugano and Lake Iseo (in Switzerland and Italy), two deep peri-alpine lakes with similar trophic status and vertical mixing dynamics, characterised by phosphorus accumulation in the hypolimnion and variable mixing during late-winter turnovers.
  3. Specifically, we assessed the effects of three different hypothetical pathways according to which: (1) winter air temperature controls MSDs by influencing mixing depth during turnovers and epilimnetic phosphorus replenishment; (2) vernal air temperature influences MSD by accelerating the timing of spring population peak; and (3) summer temperature influences MSDs by increasing fish predation. We assessed the relative strength of these pathways using structural equation modelling on long-term datasets for the two lakes (29 years for Lake Lugano and 19 years for Lake Iseo).
  4. Between the hypothesised pathways, the one driven by winter air temperature (through P replenishment) influenced Daphnia abundance in spring in both lakes, but the effects propagated to summer Daphnia abundance only in Lake Lugano. Additionally, summer Daphnia abundance was influenced by the summer air temperature through a positive (although weak) effect. By comparison, vernal air temperature had no detectable effects on summer Daphnia abundance.
  5. The results revealed marked differences between the meromictic study lakes and the shallow hypertrophic water bodies that were the focus of previous research on Daphnia MSD, and also between the two study lakes. The influence of epilimnetic P replenishment on the summer Daphnia abundance in Lake Lugano, which was recovering from past eutrophication, may have reflected the greater susceptibility of deep, stratified lakes to P depletion after spring compared to shallow hypertrophic lakes or reservoirs. This effect might not have been detected in Lake Iseo because P was more consistently depleted during the study period (i.e. variance in the predictor was too low to detect an effect).
  6. This study highlighted the complexity of the effects of climate variability on Daphnia MSD in deep lakes, showing that the responses can differ even between two neighbouring lakes with similar vertical mixing dynamics and trophic status. At the same time, the results suggest that future increases in winter air temperature, caused by global warming, may cause critically low densities of Daphnia during spring and summer and compromise the ability of zooplankton to control phytoplankton biomass.
  相似文献   

6.
易齐涛  陈求稳  赵德慧  徐鑫 《生态学报》2016,36(15):4843-4854
在淮南矿区设置潘谢潘集站(PXPJ)、潘谢顾桥站(PXGQ)和潘谢谢桥站(PXXQ)等3个塌陷湖泊站点,分别代表3种典型矿区湖泊水文生态条件,于2013—2014年分4个季度采样并分析了3个湖泊浮游植物功能群组成、季节演替规律及其与环境和生物因子的关系。结果显示,3个湖泊的浮游植物种类可归入16个功能群,其主要优势功能群反映了小型富营养化湖泊水体的生境特征。PXPJ春季S1、X2和Y为主要优势功能群,分别以伪鱼腥藻(Pseudanabaena sp.)、具尾蓝隐藻(Chroomonas caudata Geitler)和卵形隐藻(Cryptomonas ovata Ehr.)为代表种属,随后3个季节C为第1优势功能群,以链形小环藻(Cyclotella catenata)为代表物种。PXGQ春夏秋3个季节中均以伪鱼腥藻为代表的S1功能群占绝对优势地位,冬季向C(以链形小环藻为代表)和D(以尖针杆藻为代表)为主的功能群演替。PXXQ春季X2和Y为主要优势功能群,分别以具尾蓝隐藻和卵形隐藻为代表,夏秋季以伪鱼腥藻为代表的S1功能群占据优势地位,冬季向C(链形小环藻为代表)和E(长锥形锥囊藻为代表)功能群为主的群落结构演替。水温和光照条件是驱动淮南采煤塌陷湖泊浮游植物功能群季节演替的关键环境因子,而营养盐和生物因素是导致3个湖泊功能群组成差异的重要原因。  相似文献   

7.
Some aspects of the seasonal distribution of flagellates in mountain lakes   总被引:2,自引:2,他引:0  
E. Rott 《Hydrobiologia》1988,161(1):159-170
In a larger regional survey in Tyrol, phytoplankton species composition and biovolume of mid-altitude and high-mountain lakes was studied. Results from eight lakes showed that flagellates (mainly Chrysophyceae, Dinophyceae, and Cryptophyceae) are important components of the phytoplankton.In the mid-altitude lakes a spring and an autumn maximum of Chrysophyceae as well as a summer maximum of large dinoflagellates are observed, whereas Cryptophyceae and Dinophyceae show irregular distributions. In the high-mountain lakes the seasonal variations of phytoplankton, including flagellates, are limited by the long duration of the winter situation. However similar sequences of phytoplankton assemblages as in the midaltitude lakes can be observed. Flagellates in high-mountain lakes are important to sustain phytoplankton standing crop under the winter snow and ice cover.In order to show similarities and differences of high-mountain and mid-altitude lakes, vertical profiles of phytoplankton from three lakes and seasonal patterns of Gymnodinium uberrimum from two lakes are compared. In addition the patterns of cryptomonads differing in their ecological requirements (Cryptomonas spp. and Rhodomonas minuta) are shown for a meromictic mid-altitude lake.  相似文献   

8.
Summary The structure and seasonal dynamics of phytoplankton communities in the littoral zone were compared between oligotrophic and eutrophic lakes in the southeastern United States. Differences in diversity and species composition between lakes could be ascribed to long-term variation in nutrients corresponding to trophic status. However, significant within-lake variation could not be accounted for by microstratification of nutrients or other abiotic variables. Local biotic factors, perhaps dominated by the spawning activities of centrarchid fishes, resuspend periphyton and generate tychoplankton which becomes a persistent and integral part of the phytoplankton community in eutrophic systems. The patchy distribution of these biotic factors and resultant tychoplankton may lead to the observed variation. Grazing by herbivorous zooplankton was considered to be the major factor affecting the relative abundance of phytoplankton in the littoral zone, completely overriding the effects of nutrient concentration and biotic interactions between phytoplankton species during spring and summer.The relative importance of tychoplankton and grazing as regulatory factors operates independently of the trophic status or geographical location of a lake, making comparisons of different studies difficult and perhaps meaningless if traditional analyses based only on nutrients and interactions between species of phytoplankton are used. Limnetic as well as littoral components must be considered in future studies of phytoplankton communities in the littoral zone.  相似文献   

9.
1. To investigate the influence of elevated temperatures and nutrients on photosynthesis, respiration and growth of natural phytoplankton assemblages, water was collected from a eutrophic lake in spring, summer, autumn, winter and the following spring and exposed to ambient temperature and ambient +2, +4 and +6 °C for 2 weeks with and without addition of extra inorganic nutrients. 2. Rates of photosynthesis, respiration and growth generally increased with temperature, but this effect was strongly enhanced by high nutrient availability, and therefore was most evident for nutrient amended cultures in seasons of low ambient nutrient availability. 3. Temperature stimulation of growth and metabolism was higher at low than high ambient temperature showing that long‐term temperature acclimation of the phytoplankton community before the experiments was of great importance for the measured rates. 4. Although we found distinct responses to relatively small temperature increases, the interaction between nutrient availability, time of the year and, thus, ambient temperature was responsible for most of the observed variability in phytoplankton growth, photosynthesis and respiration. 5. Although an increase in global temperature will influence production and degradation of organic material in lakes, the documented importance of ambient temperatures and nutrient conditions suggests that effects will be most pronounced during winter and early spring, while the remaining part of the growth season will be practically unaffected by increasing temperatures.  相似文献   

10.
Jan Köhler 《Hydrobiologia》1994,289(1-3):73-83
The River Spree (Germany) flows through an impoundment and several shallow lakes in its middle and lower course. In this river-lake system, the seasonal and longitudinal dynamics of dominant phytoplankton populations were studied in relation to retention time of water, mixing conditions and nutrient supply from 1988–92. Some phytoplankton species populated the same river section for weeks or months each year at their season. Such stable populations have to origin from river zones functioning like mixed reactors. In the Spree system, centric diatoms originated from an impoundment and filamentous cyanobacteria from a flushed lake with longer retention time of water. Downstream, biomass and composition of phytoplankton altered nearly simultaneously along the system.The fate of planktonic organisms washed from mixed reactors into the flow depended on the conditions at the zones of origin. During spring, populations dominating phytoplankton communities of the well-mixed lakes grew further under river conditions. However the biomass of summer species, adapted to intermittent stratification, was halved along the river course. These seasonal differences were probably caused by lower maximum growth rates of summer species and enhanced losses (photorespiration, sedimentation or grazing of benthic filter feeders, but not of zooplankton) of algal populations under river conditions in summer.Phytoplankton assimilation, settlement of diatoms, or denitrification caused declining (probably growth limiting) concentrations of dissolved inorganic phosphorus (spring), silicon (early summer) or nitrogen (summer) along the river course, respectively. The minimum content of DRP was often followed by a clear-water phase. Reduced DSi supply selected against diatoms and additional DIN shortage favoured N2-fixing cyanobacteria in the last lake of the system.R-strategists (sensu Reynolds) were selected in both the flushed, shallow lakes and the lowland river. In general, the biomass of cyanobacteria increased within the lakes and declined along the river course. Some diatom populations grew in the river, but were grazed or settled down in the lakes. Beside this general picture, different populations from the same phylogenetic group did not necessarily perform in similar ways.  相似文献   

11.
Seasonal changes in freshwater phytoplankton communities have been extensively studied, but key drivers of phytoplankton in saline lakes are currently not well understood. Comparative lake studies of 19 prairie saline lakes in the northern Great Plains (USA) were conducted in spring and summer of 2004, with data gathered for a suite of limnological parameters. Nutrient enrichment assays for natural phytoplankton assemblages were also performed in spring and summer of 2006. Canonical correspondence analysis of 2004 data showed salinity (logCl), nitrogen, and phosphorus (N:P ratios) to be the main drivers of phytoplankton distribution in the spring, and phosphorus (C:P ratios), iron (logTFe), and nitrogen (logTN) as important factors in the summer. Despite major differences in nutrient limitation patterns (P-limitation in freshwater systems, N-limitation in saline systems), seasonal patterns of phytoplankton phyla changes in these saline lakes were similar to those of freshwater systems. Dominance shifted from diatoms in the spring to cyanobacteria in the summer. Nutrient enrichment assays (control, +Fe, +N, +P, +N+P) in 2006 indicated that nutrient limitation is generally more consistent within lakes than for individual taxa across systems, with widespread nitrogen and secondary phosphorus limitation. Understanding phytoplankton community structure provides insight into the overall ecology of saline lakes, and will assist in the future conservation and management of these valuable and climatically-sensitive systems.  相似文献   

12.
L. Arvola 《Ecography》1984,7(4):390-398
Vertical distribution of primary production and phytoplankton was studied in a polyhumic brownwater lake and in an oligo-mesohumic lake. During summer both lakes were thermally, chemically and biologically stratified. In the brownwater lake primary production was restricted to the uppermost layer of 1–1.5 m of epilimnion. In the oligo-mesohumic lake noticeable primary production was detected down to depths of 2–3 m. The ice-free period primary production was about 20% higher in the oligo-mesohumic lake, though occasionally the surface production was 2–3 times higher in the brownwater lake. Epilimnetic total phosphorus and total nitrogen concentrations were higher in the brownwater lake, while nitrate-nitrite, ammonium and phosphate concentrations were very low in both lakes.
Phytoplankton was confined to the uppermost productive layer in the brownwater lake. In the oligo-mesohumic lake phytoplankton was distributed more evenly, though the mean maximum biomass was at the depth of 3–4 m. Below the oxic water layer biomass decreased abruptly in both lakes. In the oligo-mesohumic lake chlorophyll concentration was extremely high (max. 320 mg chl a m−3) in the anoxic hypolimnion, due to green sulphus bacteria.
Flagellated chlorophytes and thrysophytes dominated in the brownwater lake; in spring Chlamydomonas species, followed by Mallomonas caudata . In the oligo-mesohumic lake small coccal green algae, such as Oocystis, Scenedesmus and Westella -like species, dominated in mid-summer, and chrysophytes and cryptomonads in autumn.  相似文献   

13.
Despite improvements in wastewater treatment systems, the impact of anthropogenic nutrient sources remains a key issue for the management of European lakes. The Water Framework Directive (WFD) provides a mechanism through which progress can be made on this issue. The Directive requires a classification of the ecological status of phytoplankton, which includes an assessment of taxonomic composition. In this paper, we present a composition metric, the plankton trophic index, that was developed in the WISER EU FP7 project and demonstrate how it has been used to compare national phytoplankton classification systems in Northern and Central Europe. The metric was derived from summer phytoplankton data summarised by genus from 1,795 lakes, covering 20 European countries. We show that it is significantly related to total phosphorus concentrations, but that it is also sensitive to alkalinity, lake size and climatic variables. Through the use of country-specific reference values for the index, we demonstrate that it is significantly related to other national phytoplankton assessment systems and illustrate for a single European (intercalibration) lake type how it was used to intercalibrate WFD boundaries from different countries.  相似文献   

14.
1. In view of the paucity of data on the response of warm shallow lakes to reductions in nutrient loading, this paper presents a long‐term limnological data set to document changes in the food‐web of a shallow Mediterranean lake (Lake Albufera, Valencia, Spain) that has experienced reductions in phosphorus (P) (77%) and nitrogen (N) (24%) loading following sewage diversion. 2. Nine years after sewage diversion, P concentration in the lake was reduced by 30% but remained high (TP = 0.34 mg L?1), although the mean water retention time in the lake was only 0.1 years. Nitrate concentrations did not significantly change, probably because the lake continued to receive untreated effluents from ricefields. 3. Chlorophyll a concentration was reduced by half (annual mean of 180 μg L?1). Cyanobacteria abundance remained high but its composition changed towards smaller species, both filamentous and chroococcal forms. 4. Cladocera abundance increased and reached peaks twice a year (December to March and July to September). After nutrient reduction, short‐term clear‐water phases (up to 5 weeks) occurred during February to March in several years, concomitant with annual flushing of the lake and lower fish densities. The abundance of Cladocera in winter contrasted with the spring peaks observed in northern restored shallow lakes. The zooplankton to phytoplankton biomass ratio remained lower than in northern temperate shallow lakes, probably because of fish predation on zooplankton. 5. Improvement of the water quality of Lake Albufera remained insufficient to counteract littoral reed regression or improve underwater light allowing submerged plants re‐colonise the lake. 6. Sewage diversion from Lake Albufera impacted the food web through the plankton, but higher trophic levels, such as fish and waterfowl, were affected to a lesser degree. Although the fish species present in the lake are mainly omnivorous, long‐term data on commercial fish captures indicated that fish communities changed in response to nutrient level and trophic structure as has been observed in restored shallow lakes at northern latitudes. 7. Phosphorus concentrations produced similar phytoplankton biomass in Lake Albufera as in more northern shallow lakes with abundant planktivorous fish and small zooplankton. However, in Lake Albufera, high average concentrations were maintained throughout the year. Overall, results suggest that nutrient control may be a greater priority in eutrophicated warm shallow lakes than in similar lakes at higher latitudes.  相似文献   

15.
Long‐term data on water temperature, phytoplankton biovolume, Bosmina and Daphnia abundance and the timing of the clear‐water phase were compared and analysed with respect to the influence of the North Atlantic Oscillation (NAO) in two strongly contrasting lakes in central Europe. In small, shallow, hypertrophic Müggelsee, spring water temperatures and Daphnia abundance both increased more rapidly than in large, deep, meso/oligotrophic Lake Constance. Because of this, the clear‐water phase commenced approximately three weeks earlier in Müggelsee than in Lake Constance. In Müggelsee, the phytoplankton biovolume during late winter/early spring was related to the NAO index. In Lake Constance, where phytoplankton growth was inhibited by intense downward mixing during all years studied, this was not the case. However, in both lakes, interannual variability in water temperature, in Daphnia spring population dynamics and in the timing of the clear‐water phase, were all related to the interannual variability of the NAO index. The Daphnia spring population dynamics and the timing of the clear‐water phase appear to be synchronized by the NAO despite large differences between the lakes in morphometry, trophic status and flushing and mixis regimes, and despite the great distance between the lakes (~700 km). This suggests that a great variety of lakes in central Europe may possibly have exhibited similar interannual variability during the last 20 years.  相似文献   

16.
1. The lakes in the Windermere catchment are all deep, glacial lakes but they differ in size, shape and general productivity. Here, we examine the extent to which year‐to‐year variations in the physical, chemical and biological characteristics of these lakes varied synchronously over a 30–40‐year period. 2. Coherence was estimated by correlating time‐series of the spring, summer, autumn and winter characteristics of five lakes: Esthwaite Water, Blelham Tarn, Grasmere and the North and South Basins of Windermere. Three physical, four chemical and two biological time‐series were analysed and related to year‐to‐year variations in a number of key driving variables. 3. The highest levels of coherence were recorded for the physical and chemical variables where the average coherence was 0.81. The average coherence for the biological variables was 0.11 and there were a number of significant negative relationships. The average coherence between all possible lake pairs was 0.59 and average values ranged from 0.50 to 0.74. A graphical analysis of these results demonstrated that the coherence between individual lake pairs was influenced by the relative size of the basins as well as their trophic status. 4. A series of examples is presented to demonstrate how a small number of driving variables influenced the observed levels of coherence. These range from a simple example where the winter temperature of the lakes was correlated with the climatic index known as the North Atlantic Oscillation, to a more complex example where the summer abundance of zooplankton was correlated with wind‐mixing. 5. The implications of these findings are discussed and a conceptual model developed to illustrate the principal factors influencing temporal coherence in lake systems. The model suggests that our ability to detect temporal coherence depends on the relative magnitude of three factors: (a) the amplitude of the year‐to‐year variations; (b) the spatial heterogeneity of the driving variables and (c) the error terms associated with any particular measurement.  相似文献   

17.
The winter dynamics of several chemical, physical, and biological variables of a shallow, polymictic lake (Opinicon) are compared to those of a deep, nearby dimictic lake (Upper Rock) during ice cover (January to early April) in 1990 and 1991. Both lakes were weakly inversely thermally stratified. Dissolved oxygen concentration was at saturation (11–15 mg l−1) in the top 3 m layer, but declined to near anoxic levels near the sediments. Dissolved oxygen concentrations in the deep lake were at saturation in most of the water column and approached anoxic levels near the sediments only. Nutrient concentrations in both lakes were fairly high, and similar in both lakes during ice cover. Total phosphorus concentrations generally ranged between 10–20 μg l−1, NH4-N between 16–100 μg l−1, and DSi between 0.9–1.9 mg l−1; these concentrations fell within summer ranges. NO3-N concentrations were between 51–135 μg l−1 during ice cover, but occurred at trace concentrations (<0.002 μg l−1) during the summer. The winter phytoplankton community of both lakes was dominated by flagellates (cryptophytes, chrysophytes) and occasionally diatoms. Dinoflagellates, Cyanobacteria and green algae were poorly represented. Cryptophytes often occurred in fairly high proportions (20–80%) throughout the water column, whereas chrysophytes were more abundant just beneath the ice. Zooplankton population densities were extremely low during ice cover (compared to maximum densities measured in spring or summer) in both lakes, and were comprised largely of copepods.  相似文献   

18.
Nutrient availability, in particular of phosphorus (P), is a key factor for the structure and functioning of shallow lakes, and not least the sediment plays an important role by acting as both a nutrient source and sink. We used 21 years of monthly mass balance and lake water data from six shallow (mean depth = 1.2–2.7 m) and fast flushed (mean hydraulic retention time = 0.6–2.6 months) eutrophic Danish lakes (mean summer P concentrations ranging from 0.09 to 0.61 mg/l) to investigate long-term trends in yearly and seasonal patterns of P retention. To one of the lakes, the external P input was reduced by 70% in the early 1990s, whereas none of the other lakes have experienced major changes in external P loading for more than 20 years. All lakes showed a distinct seasonal pattern with high P concentrations and typically negative P retention during summer (up to ?300% of the external loading from May to August). During winter, P retention was overall positive (up to 50% of the external loading from December to April). Internal P loading from the sediment delayed lake recovery by approximately 10 years in the lake with the most recently reduced external loading, but in all the lakes net release of P from the sediment occurred during summer. P release in the six lakes has not abated during the past decade, indicating that the sediment of eutrophic and turbid shallow lakes remains a net source of P during summer. The seasonal variations in P retention became more pronounced with increasing P levels, and retention decreased with increasing temperature, but increased if clear water conditions were established.  相似文献   

19.
1. Concentrations of phosphorus, nitrogen and silica and alkalinity were monitored in eight shallow and four deep Danish lakes for 13 years following a phosphorus loading reduction. The aim was to elucidate the seasonal changes in nutrient concentrations during recovery. Samples were taken biweekly during summer and monthly during winter. 2. Overall, the most substantive changes in lake water concentrations were seen in the early phase of recovery. However, phosphorus continued to decline during summer as long as 10 years after the loading reduction, indicating a significant, albeit slow, decline in internal loading. 3. Shallow and deep lakes responded differently to reduced loading. In shallow lakes the internal phosphorus release declined significantly in spring, early summer and autumn, and only non‐significantly so in July and August. In contrast, in deep lakes the largest reduction occurred from May to August. This difference may reflect the much stronger benthic pelagic‐coupling and the lack of stratification in shallow lakes. 4. Nitrogen only showed minor changes during the recovery period, while alkalinity increased in late summer, probably conditioned by the reduced primary production, as also indicated by the lower pH. Silica tended to decline in winter and spring during the study period, probably reflecting a reduced release of silica from the sediment because of enhanced uptake by benthic diatoms following the improved water transparency. 5. These results clearly indicate that internal loading of phosphorus can delay lake recovery for many years after phosphorus loading reduction, and that lake morphometry (i.e. deep versus shallow basins) influences the patterns of change in nutrient concentrations on both a seasonal and interannual basis.  相似文献   

20.
The epilimnetic phytoplankton and its relations to nutrient content in Lake Verevi through the whole vegetation period in 2000 were studied. Lake Verevi (surface 12.6 ha, mean depth 3.6 m, maximum depth 11 m) is a hypertrophic hard-water lake, where the so-called spring meromixis occurs due to an extremely warm spring. Most dissolved nutrients in the epilimnion were low already in spring, and their concentrations were quite stable during the study period. The concentration of total silicon was very low in spring but increased rapidly in summer. Total phosphorus followed the pattern for stratified eutrophic lakes, and total nitrogen was quite high. The stoichiometric N:P ratio fluctuated between 25 and 81. The dynamics of phytoplankton biomass with a spring peak from April to May and a late summer peak from July to August is typical of Estonian eutrophic lakes. Green algae and chrysophytes occurred in the phytoplankton throughout the vegetation period. The spring peak was dominated by diatoms (Synedra ulna and Synedra acus var. angustissima) and the summer peak was caused by Aphanizomenon klebahnii and Ceratium hirundinella. The study showed that in physically stratified systems, the total concentration of limiting resources and plain physical factors (light and temperature) may be more important in the determination of phytoplankton dominants than different resource ratios. A combination of light and temperature optimum, along with nutrient utilization and transport capacity, effectively segregates phytoplankton species and can be used for the explanation of seasonal succession pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号