首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The interaction of Fe(II) and Fe(III) with the novel Fe(II) chelator N,N′N″-tris(2-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane (referred to as tachpyr) gives rise to six-coordinate, low-spin, cationic complexes of Fe(II). Tachpyr also displays a cytotoxicity toward cultured bladder cancer cells that is believed to involve coordination of intracellular iron. The anaerobic reaction of tachpyr with Fe(II) salts affords the Fe(II)-tachpyr2+ complex, but in presence of oxygen, oxidative dehydrogenation of one or two of the aminomethylene group(s) of the ligand occurs, with formal loss of H2: R—N(H)—C(H)2—(2-py) → R—N=C(H)—(2-py)+H2. The resulting mono- and diimino Fe(II) complexes (denoted as [Fe(tachpyr-H2)]2+ and [Fe(tachpyr-2H2)]2+) are an inseparable mixture, but they may be fully oxidized by H2O2 to the known tris(imino) complex Fe(II)[cis,cis-1,3,5-tris(pyridine-2-carboxaldimino)cyclohexane]2+ (or [Fe(tachpyr-3H2)]2+). Cyclic voltammetry of the imino complex mixture reveals an irreversible anodic wave at +0.78 V vs. NHE. Tachpyr acts as a reducing agent toward Fe(IIII) salts, affording the same two Fe(II) imino complexes as products. Tachpyr also reductively removes Fe(III) from an Fe(III)(ATP)3 complex (which is a putative form of intracellular iron), producing the two Fe(II) imino complexes. Novel N-alkylated derivatives of tachpyr have been synthesized. N-Alkylation has two effects on tachpyr: lowering metal affinity through increased steric hindrance, and preventing Fe(III) reduction because oxidative dehydrogenation of nitrogen is blocked. The N-methyl tachpyr derivative binds Fe(II) only weakly as a high-spin complex, and no complexation or reduction of Fe(III) is observed. Corresponding to their inability to bind iron, the N-alkylated chelators are nontoxic to cultured bladder cancer cells. A tach-based chelator with three N-propyleneamino arms is also synthesized. Studies of the chemical and biochemical properties of this chelator further support a relationship between intracellular iron chelation, iron reduction, and cytotoxicity. Received: 23 March 1998 / Accepted: 1 June 1998  相似文献   

2.
Owing to the indiscriminate reactivity of the free NO radical, intricate control mechanisms are required for storage, transport and transfer of NO to its various biological targets. Among the proposed storage components are protein-bound thionitrosyls (Rprotein–SNO) and protein-bound dinitrosyl iron complexes. Current knowledge suggests the latter are derived from iron–sulfur cluster degradation in the presence of excess NO. Mobilization of protein-bound NO could involve NO or Fe(NO)2 unit transfer to small serum molecules such as glutathione, free cysteine, or iron-porphyrins. The study reported is of a reaction model which addresses the key steps in NO transfer from a prototypal iron dinitrosyl complex. While the N,N′-bis(2-mercaptoethyl)-N,N′-diazacyclooctane (bme-daco) ligand typically binds in square-planar N2S2 coordination, it also serves as a bidentate dithiolate donor for tetrahedral structures in the preparation of the (H+bme-daco)Fe(NO)2 derivative (Chiang et al., J. Am. Chem. Soc. 126:10867–10874, 2004). The removal of one NO produces the mononitrosyl complex, (bme-daco)Fe(NO), and simplifies studies of NO release mechanisms. We have used heme-type model complexes, Fe or Co porphyrins as NO acceptors, yielding (porphyrin)M(NO), where M is Fe or Co, and monitored reactions by ν(NO) Fourier transform IR spectroscopy. Reaction products were verified by electrospray ionization mass spectrometry. Rudimentary mechanistic studies suggest a role for HNO in the NO release from the dinitrosyl; the mononitrosyl benefits as well from acid catalysis. Other NO uptake complexes such as [(N2S2)Fe]2 [N2S2 is bme-daco or N,N’-bis(2-mercapto-2-methylpropyl)-daco] are shown to form Fe(NO) mononitrosyls with stability and spectroscopic signatures similar to those of the porphyrins.  相似文献   

3.
The bis(μ-oxo)/μ-η22-peroxo equilibria for seven supported Cu2O2 cores were studied with different hybrid and nonhybrid density functional theory models, namely, BLYP, mPWPW, TPSS, TPSSh, B3LYP, mPW1PW, and MPW1K. Supporting ligands 3,3′-iminobis(N,N-dimethylpropylamine), N,N,N′,N′,N″-pentamethyldipropylenetriamine, N-[2-(pyridin-2-yl)ethyl]-N,N,N′-trimethylpropane-1,3-diamine, bis[2-(2-pyridin-2-yl)ethyl]methylamine, bis[2-(4-methoxy-2-pyridin-2-yl)ethyl]methylamine, bis[2-(4-N,N-dimethylamino-2-pyridin-2-yl)ethyl]methylamine, and 1,4,7-triisopropyl-1,4,7-triazacyclononane were chosen on the basis of the availability of experimental data for comparison. Density functionals were examined with respect to their ability accurately to reproduce experimental properties, including, in particular, geometries and relative energies for the bis(μ-oxo) and side-on peroxo forms. While geometries from both hybrid and nonhybrid functionals were in good agreement with experiment, the incorporation of Hartree–Fock (HF) exchange in hybrid density functionals was found to have a large, degrading effect on predicted relative isomer energies. Specifically, hybrid functionals predicted the μ-η22-peroxo isomer to be too stable by roughly 5–10 kcal mol−1 for each 10% of HF exchange incorporated into the model. Continuum solvation calculations predict electrostatic effects to favor bis(μ-oxo) isomers by 1–4 kcal mol−1 depending on ligand size, with larger ligands having smaller differential solvation effects. Analysis of computed molecular partition functions suggests that nonzero measured entropies of isomerization are likely to be primarily associated with interactions between molecular solutes and their first solvation shell. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Epigallocatechin-3-gallate (EGCG) is the main polyphenolic constituent in green tea and is believed to function as an antioxidant. However, increasing evidence indicates that EGCG produces reactive oxygen species (ROS) and subsequent cell death. In this study, we investigated the prooxidative effects of EGCG on the HIT-T15 pancreatic beta cell line. Dose-dependent cell viability was monitored with the cell counting kit-8 assay, while the induction of apoptosis was analyzed by a cell death ELISA kit and comet assay. Extracellular H2O2 was determined using the Amplex Red Hydrogen Peroxide Assay Kit. Intracellular oxidative stress was measured by fluorometric analysis of 2′,7′-dichlorofluorescin (DCFH) oxidation using DCFH diacetate (DA) as the probe. Treatment with EGCG (5–100 μM) decreased the viability of pancreatic beta cells, caused concomitant increases in apoptotic cell death, and increased the production of H2O2 and ROS. Catalase, the iron-chelating agent diethylenetriaminepentaacetic acid, and the Fe(II)-specific chelator o-phenanthroline all suppressed the effects of EGCG, indicating the involvement of both H2O2 and Fe(II) in the mechanism of action of EGCG. The antioxidant N-acetyl-cysteine and alpha-lipoic acid also suppressed the effects of EGCG. Furthermore, EGCG did not scavenge exogenous H2O2, but rather, it synergistically increased H2O2-induced oxidative cell damage in pancreatic beta cells. Together, these findings suggest that in the HIT-T15 pancreatic beta cell line, EGCG mediated the generation of H2O2, triggering Fe(II)-dependent formation of a highly toxic radical that in turn induced oxidative cell damage.  相似文献   

5.
Li J  Wang X  Zhang Y  Jia H  Bi Y 《Planta》2011,234(4):709-722
3′,5′-cyclic guanosine monophosphate (cGMP) is an important second messenger in plants. In the present study, roles of cGMP in salt resistance in Arabidopsis roots were investigated. Arabidopsis roots were sensitive to 100 mM NaCl treatment, displaying a great increase in electrolyte leakage and Na+/K+ ratio and a decrease in gene expression of the plasma membrane (PM) H+-ATPase. However, application of exogenous 8Br-cGMP (an analog of cGMP), H2O2 or CaCl2 alleviated the NaCl-induced injury by maintaining a lower Na+/K+ ratio and increasing the PM H+-ATPase gene expression. In addition, the inhibition of root elongation and seed germination under salt stress was removed by 8Br-cGMP. Further study indicated that 8Br-cGMP-induced higher NADPH levels for PM NADPH oxidase to generate H2O2 by regulating glucose-6-phosphate dehydrogenase (G6PDH) activity. The effect of 8Br-cGMP and H2O2 on ionic homeostasis was abolished when Ca2+ was eliminated by glycol-bis-(2-amino ethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA, a Ca2+ chelator) in Arabidopsis roots under salt stress. Taken together, cGMP could regulate H2O2 accumulation in salt stress, and Ca2+ was necessary in the cGMP-mediated signaling pathway. H2O2, as the downstream component of cGMP signaling pathway, stimulated PM H+-ATPase gene expression. Thus, ion homeostasis was modulated for salt tolerance.  相似文献   

6.
The chelating agent pyridoxal isonicotinoyl hydrazone (PIH) has recently been shown to mobilize 59Fe from reticulocytes loaded with non-heme 59Fe. In this study, various chelating agents were tested for their ability to effect the mobilization of iron from reticulocytes by PIH. They fall into several groups. The largest group includes chelators such as citrate, ethylenediaminetetracetic acid and desferrioxamine, which fail to affect PIH-induced iron mobilization and do not mobilize iron per se. Either these chelators do not enter reticulocytes or they do not take up iron from PIH-Fe complexes. The second group includes chelators such as 2,2′-bipyridine, 1,10-phenanthroline, bathophenanthroline sulfonate and N,N′-ethylenebis(o-hydroxyphenylglycine) which inhibit PIH-induced iron mobilization from reticulocytes and, when added together with PIH, induce radioiron accumulation in an alcohol-soluble fraction of reticulocytes. It appears that these chelators enter the cell and compete with PIH for 59Fe(II), but having bound iron are unable to cross the cell membrane. Spectral analysis suggests that Fe(II) chelators such as 2,2′-bipyridine and 1,10-phenanthroline remove iron from Fe(II)PIH but are not able to do so from Fe(III)PIH. Then there are compounds such as 2,3-dihydroxybenzoic acid and catechol which potentiate PIH-induced iron mobilization although they are unable to mobilize iron from reticulocytes by themselves. Lastly, there is a group of miscellaneous compounds which include chelators that either potentiate the iron-mobilizing effect of PIH as well as mobilizing iron from reticulocytes by themselves (tropolone), or that reduce PIH-induced iron mobilization while themselves having an iron-mobilizing effect (N,N′-bis(2,3-dihydroxybenzoyl)-1,6-diaminohexane). In further experiments, heme was found to stimulate globin synthesis in reticulocytes, the heme synthesis of which was inhibited by PIH, suggesting that PIH is probably not toxic to the cells.  相似文献   

7.
Assembly of N,N′-bis(4-picolinoyl)hydrazine (H2L) with cadmium nitrate in the presence of dicyanamide anion (dca) affords a new coordination polymer {[Cd(HL)(dca)] · (H2O)0.5}n (1), in which the [Cd(HL)]n layers are extended by dca bridges to result in a three-dimensional (3-D) coordination framework. The network structure of 1 has unusual (3,5)-connectivity and represents a new type of (4·62)(4·66·83) topology. Two such identical and complementary networks are entangled to generate a twofold parallel interpenetrating supramolecular lattice.  相似文献   

8.
The role of ATP and its stable analogue ATPγS [adenosine-5′-o-(3-thio)triphosphate] was studied in rat hippocampal neurotransmission under normoxic conditions and during oxygen and glucose deprivation (OGD). Field excitatory postsynaptic potentials (fEPSPs) from the dendritic layer or population spikes (PSs) from the soma were extracellularly recorded in the CA1 area of the rat hippocampus. Exogenous application of ATP or ATPγS reduced fEPSP and PS amplitudes. In both cases the inhibitory effect was blocked by the selective A1 adenosine receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine) and was potentiated by different ecto-ATPase inhibitors: ARL 67156 (6-N,N-diethyl-D-β,γ-dibromomethylene), BGO 136 (1-hydroxynaphthalene-3,6-disulfonate) and PV4 [hexapotassium dihydrogen monotitanoundecatungstocobaltate(II) tridecahydrate, K6H2[TiW11CoO40]·13H2O]. ATPγS-mediated inhibition was reduced by the P2 antagonist suramin [8-(3-benzamido-4-methylbenzamido)naphthalene-1,3,5-trisulfonate] at the somatic level and by other P2 blockers, PPADS (pyridoxalphosphate-6-azophenyl-2′,4′-disulfonate) and MRS 2179 (2′-deoxy-N 6-methyladenosine 3′,5′-bisphosphate), at the dendritic level. After removal of both P2 agonists, a persistent increase in evoked synaptic responses was recorded both at the dendritic and somatic levels. This effect was prevented in the presence of different P2 antagonists. A 7-min OGD induced tissue anoxic depolarization and was invariably followed by irreversible loss of fEPSP. PPADS, suramin, MRS2179 or BBG (brilliant blue G) significantly prevented the irreversible failure of neurotransmission induced by 7-min OGD. Furthermore, in the presence of these P2 antagonists, the development of anoxic depolarization was blocked or significantly delayed. Our results indicate that P2 receptors modulate CA1 synaptic transmission under normoxic conditions by eliciting both inhibitory and excitatory effects. In the same brain region, P2 receptor stimulation plays a deleterious role during a severe OGD insult.  相似文献   

9.
Two chitinolytic fungal strains, Trichoderma aureoviride DY-59 and Rhizopus microsporus VS-9, were isolated from soil samples of Korea and Vietnam, respectively. DY-59 and VS-9 crude chitinases secreted by these fungi in the 0.5% swollen chitin culture medium had an optimal pH of 4 and the optimal temperatures of 40°C and 60°C, respectively. Enzymatic hydrolysis products from crab swollen chitin were N-acetyl-β-D-glucosamine (GlcNAc) by DY-59 chitinase, and GlcNAc and N, N′-diacetylchitobiose (GlcNAc)2 by VS-9 chitinases. The chitinases degraded the cell wall of Fusarium solani hyphae to produce oligosaccharides, among which GlcNAc, (GlcNAc)2, and pentamer (GlcNAc)5 were identified by high-pressure liquid chromatography. DY-59 and VS-9 chitinases inhibited F. solani microconidial germination by more than 70% and 60% at final protein concentrations of 5 and 27 μg mL−1, respectively, at 30°C for 20 h treatment.  相似文献   

10.
Adenosine-5′-methylphosphate (MepA) initiates the oligomerization of the 5′-phosphorimidazolide of uridine (ImpU) in the presence of montmorillonite clay. Longer oligomers form because the 5′-phosphate is blocked with a methyl group that prevents the formation of cyclic- and pyrophosphate-containing compounds. The MepA initiates 69–84% of the 5–9 charge oligomers, respectively. The montmorillonite catalyst also provides selectivity in the oligomerization reactions so that the main reaction pathway is MepA → MepA3′pU → MepA3′pU2′pU → MepA3′pU2′pU3′pU. MepA did not enhance the oligomerization of ImpA. The relative rates of the reactions were determined from an investigation of the products in competitive reactions. Selectivity was observed in the reaction of ImpU with equimolar amounts of MepA3′pU and MepA2′pU where the relative reaction rates are 10.3:1, respectively. In the reaction of ImpA with MepA3′pA and MepA2′pA the ImpA reacts 5.2 times faster with MepA3′pA. In the competitive reaction of ImpU and ImpA with MepA3′pA and MepA3′pU the elongation proceeds on MepA3′pA 5.6 times more rapidly than with MepA3′pU. There is no correlation between the extent of binding to the montmorillonite and reaction rates in the formation of longer oligomers. The formation of more than two sequential 2′,5′-linkages in the oligomer chain proceeds more slowly than the addition to a single 2′,5′-link or a 3′,5′-link and either chain termination or elongation by a 3′,5′-linage occurs. The central role that catalysis may have had in the prebiotic formation of biopolymers is discussed. Note added in proof: There are errors in the high resolution mass spectral data given in Section 4.2.1. The high resolution mass spectrum found for the cyclic dimer of UpUp (C-UpUp) was 657.02260. C18H21N4O16P2Na2 requires 657.02232. The high resolution mass spectrum found for the cyclic dimer of ApAp (C-ApAp) was 725.05850. C20H22N10O12P2Na3 requires 725.05839.  相似文献   

11.
Crystal structure analysis of the zinc complex establishes it as a distorted octahedral complex, bis(3-methylpicolinato-κ2 N,O)2(1,10-phenanthroline-κ2 N,N)-zinc(II) pentahydrate, [Zn(3-Me-pic)2(phen)]·5H2O. The trans-configuration of carbonyl oxygen atoms of the carboxylate moieties and orientation of the two planar picolinate ligands above and before the phen ligand plane seems to confer DNA sequence recognition to the complex. It cannot cleave DNA under hydrolytic condition but can slightly be activated by hydrogen peroxide or sodium ascorbate. Circular Dichroism and Fluorescence spectroscopic analysis of its interaction with various duplex polynucleotides reveals its binding mode as mainly intercalation. It shows distinct DNA sequence binding selectivity and the order of decreasing selectivity is ATAT > AATT > CGCG. Docking studies lead to the same conclusion on this sequence selectivity. It binds strongly with G-quadruplex with human tolemeric sequence 5′-AG3(T2AG3)3-3′, can inhibit topoisomerase I efficiently and is cytotoxic against MCF-7 cell line.  相似文献   

12.
Tetrahydropapaveroline (THP), a metabolite of dopamine, has been suspected to be associated with dopaminergic neurotoxicity of L-DOPA. THP induced apoptosis in human leukemia cell line HL-60 cells, but did not in its hydrogen peroxide (H2O2)-resistant clone HP100. THP-induced DNA ladder formation in HL-60 cells was inhibited by a metal chelator. THP induced damage to 32P-labeled DNA fragments in the presence of metals. In the presence of Fe(III)EDTA, THP caused DNA damage at every nucleotide. The DNA damage was inhibited by free hydroxy radical (·OH) scavengers and catalase, suggesting that the Fe(III)EDTA-mediated DNA damage is mainly due to ·OH generation. In the presence of Cu(II), THP caused DNA damage mainly at T and G of 5′-TG-3′ sequence. The inhibitive effect of catalase and bathocuproine on Cu(II)-mediated DNA damage suggested that H2O2 and Cu(I) participate in the DNA damage. This study demonstrated that THP-induced apoptosis via reactive oxygen species generated from reaction of H2O2 and metals plays an important role in cytotoxicity of L-DOPA.  相似文献   

13.
Theflavonoid 3′,5′-hydroxylase (F3′,5′H) gene, derived from petunia, was introduced into chrysanthemum tissues by Agrobacterium-mediated genetic transformation. Cotyledon expiants were co-cultured withA. tumefaciens LBA 4404 harboring the vector pMBP that carriesF3′,5′H under the control of the CaMV 35S promoter andnptll as a selectable marker gene. After 72 h of co-cultivation, the expiants were placed on an MS medium supplemented with 4 mg L-1 BA, 0.1 mg L-1 NAA, 400 mg L-1 carbenicillin, and 100 mg L-1; kanamycin. After 4 weeks, kanamycin-resistant adventitious shoots had developed at a frequency of 6.3%. These shoots were then rooted and acclimatized in potting soil. Integration ofF3′,5′H into the plant genome was confirmed by Southern blot analysis. Flower buds that had red petals did not differ between the transgenic and the wild-type plants. However, petal color did change from red to bright orange to yellow when the buds developed into fully opened flowers on the transgenics. Spectrometric analysis revealed that the content of flavonoid compounds was more rapidly reduced in the transgenic petals as floral development proceeded. RT-PCR analysis showed thatF3′,5′H andflavonoid 3′hydroxylase (F3′H) were expressed simultaneously in the transgenic plants. Therefore, we suggest that this more rapid change in petal color results from 1) competition between levels of transgenicF3′,5′H and endogenousF3′H, each of which uses the same substrate in the flavonoid biosynthetic pathway and 2) the intrinsic substrate specificity of chrysanthemumDFR (dihydroflavonol 4-reductase).  相似文献   

14.
Abstract From the carbolithiation of 6-bis-N,N-dimethylamino fulvene (3a) and different ortho-lithiated heterocycles (furan, thiophene and N-methylpyrrole), the corresponding lithium cyclopentadienide intermediate (4a–c) was formed. These three lithiated intermediates underwent a transmetallation reaction with TiCl4 resulting in bis-N,N-dimethylamino-functionalised titanocenes 5a–c. When these titanocenes were tested against LLC-PK cells, the IC50-values obtained were of 240, and 270 μM for titanocenes 5b and 5c, respectively. The most cytotoxic titanocene in this paper, 5a with an IC50-value of 36 μM was found to be approximately six times less cytotoxic than its mono-N,N-dimethylamino substituted analogue Titanocene C (IC50 = 5.5 μM) and almost ten times less cytotoxic than cisplatin, which showed an IC50-value of 3.3 μM, when tested on the LLC-PK cell line. Graphical abstract Bis-(bis- (N,N-dimethylamino)-2-(N′-methylpyrrolyl)methylcyclopentadienyl) titanium (IV) dichloride, {η5-C5H4-CH[N(CH3)2]2[C5H3NCH3]}2TiCl2 was synthesised starting from 6-bis-(N,N-dimethylamino) fulvene and 2-N-methylpyrrolyl lithium. Herein, we present the synthesis and DFT structure of the titanocene and two further derivatives followed by MTT-based cytotoxicity tests on pig kidney epithelial (LLC-PK) cells. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
The extracellular β-1,3-glucanases in the supernatant of cell culture of the marine yeast Williopsis saturnus WC91-2 was purified to homogeneity with a 115-fold increase in specific β-1,3-glucanase activity as compared to that in the supernatant by ultrafiltration, gel filtration chromatography, and anion-exchange chromatography. According to the data from sodium dodecyl sulfate polyacrylamide gel electrophoresis, the molecular mass of the purified enzyme was estimated to be 47.5 kDa. The purified enzyme could convert laminarin into monosaccharides and disaccharides, but had no killer toxin activity. The optimal pH and temperature of the purified enzyme were 4.0 and 40°C, respectively. The enzyme was significantly stimulated by Li+, Ni2+, and Ba2+. The enzyme was inhibited by phenylmethylsulfonyl fluoride, iodoacetic acid, ethylenediamine tetraacetic acid, ethylene glycol bis(2-aminoethyl ether)-N,N,N′,N′-tetraacetic acid, and 1,10-phenanthroline. The K m and V max values of the purified enzyme for laminarin were 3.07 mg/ml and 4.02 mg/min ml, respectively. Both matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectroscopy and DNA sequencing identified a peptide YIEAQLDAFEKR which is the conserved motif of the β-1,3-glucanases from other yeasts.  相似文献   

16.
Synthesis of 3-[4-(N-substituted sulfamoyl)phenyl]-3,4-dihydro-4-oxo-7,9-dimethylpyri-do[3′,2′:4,5]selenolo[3,2-d]pyrimidines,7-[4-(N-substituted sulfamoyl)phenyl]-7,8-dihydro-8-oxo-3,4-diphenylpyrimido[4′,5′:4,5]selenolo [2,3-c]pyridazines and 1-[4-(N-substituted sulfamoyl)phenyl]-1,11-dihydro 11-oxo-4-methylpyrimido[4′,5′:4,5]selenolo[2,3-b]quinolines is reported. 4-Amino-N-pyrimidine-2-ylbenzene sulfonamide (a), 4-amino-N-(2,6-dimethylpyrimidin-4-yl)benzene sulfonamide (b), N-[(4-aminophenyl)sulfonyl] acetamide (c) with N-ethoxymethyleneamino of selenolo pyridine, selenolo pyridazine and selenolo quinoline derivatives respectively were obtained starting from 1-amino-N 4-substituted sulfanilamides. Spectroscopic data (IR, 1H NMR, 13C NMR and Mass spectral) confirmed the structure of the newly synthesized compounds. Substituted pyrimidines, pyridazines and quinolines were screened for antibacterial activity against gram-positive and gram-negative bacteria. Selenolo derivative of N-[(4-aminophenyl)sulfonyl] acetamide (substitutent of sulfacetamide c) showed strong bactericidal effect against all the tested organisms. Selenolo[3,2-d]pyrimidin (substitutent a) showed a good bactericidal effect against Serratia marcescens, Staphylococcus aureus and Escherichia coli. Compounds selenolo[2,3-c]pyridazine (substitutent b), selenolo[2,3-b]quinoline(substitutents c)) exhibited a moderate bactericidal effect against Serratia marcescens. None of the synthesized seleno pyridazines has a considerable antimicrobial activity against the tested organisms. The minimum inhibitory concentration (MIC) of the most active compound-3-[4-(N-acetyl sulfamoyl)phenyl]-3,4-dihydro-4-oxo-7,9-dimethylpyrido[3′,2′:4,5]selenolo [3,2-d]pyrimidine was 10 mg ml−1.  相似文献   

17.
Antioxidative responses and proline accumulation induced by exogenous H2O2 were investigated in the callus from halophyte Nitraria tangutorum Bobr. H2O2-treated callus exhibited higher H2O2 content than untreated callus. The activities of catalase (CAT) and peroxidase (POD) significantly increased in the callus treated with H2O2, while ascorbate peroxidase (APX) activity decreased. In addition, significantly enhanced proline content was observed in the callus treated by H2O2, which could be alleviated by H2O2 scavenger dimethylthiourea and calcium (Ca) chelator ethylene glycol bis-(β-aminoethyl ether)-N,N,N′,N′-tetra-acetic acid (EGTA). Moreover, γ-glutamyl kinase (GK) activity increased in H2O2-treated callus, but proline dehydrogenase (PDH) activity decreased significantly, and the reduction was partly abolished by EGTA or Ca channel blocker verapamil. Assays using a scanning electron microscope showed significantly enhanced Ca content in H2O2-treated callus.  相似文献   

18.
Di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) and a range of its analogues comprise a series of monobasic acids that are capable of binding iron (Fe) as tridentate (N,N,O) ligands. Recently, we have shown that these chelators are highly cytotoxic, but show selective activity against cancer cells. Particularly interesting was the fact that cytotoxicity of the HPKIH analogues is maintained even after complexation with Fe. To understand the potent anti-tumor activity of these compounds, we have fully characterized their chemical properties. This included examination of the solution chemistry and X-ray crystal structures of both the ligands and Fe complexes from this class and the ability of these complexes to mediate redox reactions. Potentiometric titrations demonstrated that all chelators are present predominantly in their charge-neutral form at physiological pH (7.4), allowing access across biological membranes. Keto–enol tautomerism of the ligands was identified, with the tautomers exhibiting distinctly different protonation constants. Interestingly, the chelators form low-spin (diamagnetic) divalent Fe complexes in solution. The chelators form distorted octahedral complexes with FeII, with two tridentate ligands arranged in a meridional fashion. Electrochemistry of the Fe complexes in both aqueous and non-aqueous solutions revealed that the complexes are oxidized to their ferric form at relatively high potentials, but this oxidation is coupled to a rapid reaction with water to form a hydrated (carbinolamine) derivative, leading to irreversible electrochemistry. The Fe complexes of the HPKIH analogues caused marked DNA degradation in the presence of hydrogen peroxide. This observation confirms that Fe complexes from the HPKIH series mediate Fenton chemistry and do not repel DNA. Collectively, studies on the solution chemistry and structure of these HPKIH analogues indicate that they can bind cellular Fe and enhance its redox activity, resulting in oxidative damage to vital biomolecules.Electronic Supplementary Material Supplementary material is available in the online version of this article at .Abbreviations DFO desferrioxamine - HPKIH di-2-pyridyl ketone isonicotinoyl hydrazone - HNIH 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone - HPCIH 2-pyridinecarbaldehyde isonicotinoyl hydrazone - HPIH pyridoxal isonicotinoyl hydrazone - L linear DNA - OC open circular DNA - SC supercoiled DNA  相似文献   

19.
The toxicity of iron is believed to originate from the Fenton reaction which produces the hydroxyl radical and/or oxoiron(2+). The effect of nitrogen monoxide on the kinetics of the reaction of iron(II) bound to citrate, ethylenediamine-N,N′-diacetate (edda), ethylenediamine-N,N,N′,N′-tetraacetate (edta), (N-hydroxyethyl)amine-N,N′,N′-triacetate (hedta), and nitrilotriacetate (nta) with hydrogen peroxide was studied by stopped-flow spectrophotometry. Nitrogen monoxide inhibits the Fenton reaction to a large extent. For instance, hydrogen peroxide oxidizes iron(II) citrate with a rate constant of 5.8×103 M−1 s−1, but in the presence of nitrogen monoxide, the rate constant is 2.9×102 M−1 s−1 . Similar to hydrogen peroxide, the reaction of tert-butyl hydroperoxide with iron(II) complexes is also efficiently inhibited by nitrogen monoxide. Generally, nitrogen monoxide binds rapidly to a coordination site of iron(II) occupied by water. The rate of oxidation is influenced by the rate of dissociation of the nitrogen monoxide from iron(II). Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

20.
Taurine and zinc exert neurotrophic effects. Zinc modulates Na+/Cl-dependent transporters. This study examined the effect of zinc (ZnSO4) ex vivo and zinc chelator N,N,N′,N′-tetrakis-(2-pyridylmethyl) ethylenediamine (TPEN) in vivo on [3H]taurine transport in goldfish retina. The effect of TPEN in vivo on taurine and zinc levels was determined. Isolated cells were incubated in Ringer with zinc (0.1–100 μM). Taurine transport was done with taurine (0.001–1 mM) and 50 nM [3H]taurine. Zinc (100 μM) noncompetitively inhibited taurine transport. TPEN was administered intraocularly and retinas extracted 3, 5 and 10 days later. Taurine was determined by HPLC (nmol/mg protein) and zinc by spectrophotometry ICP (mg/mg protein). Taurine and zinc levels decreased at 3 days and increased at 10 days after TPEN administration. At 10 days after intraocular TPEN, taurine transport affinity increased (K s = 0.018 ± 0.006 vs. 0.028 ± 0.008 mM). Apparently, zinc deficiency affects the taurine–zinc complex and taurine availability. The increased taurine uptake affinity by TPEN was possibly associated with a response to maximize retinal taurine content at low zinc concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号