首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2-Pyridinecarbaldehyde isonicotinoyl hydrazone (HPCIH) and di-2-pyridylketone isonicotinoyl hydrazone (HPKIH) are two Fe chelators with contrasting biological behavior. HPCIH is a well-tolerated Fe chelator with limited antiproliferative activity that has potential applications in the treatment of Fe-overload disease. In contrast, the structurally related HPKIH ligand possesses significant antiproliferative activity against cancer cells. The current work has focused on understanding the mechanisms of the Fe mobilization and antiproliferative activity of these hydrazone chelators by synthesizing new analogs (based on 2-acetylpyridine and 2-benzoylpyridine) that resemble both series and examining their Fe coordination and redox chemistry. The Fe mobilization activity of these compounds is strongly dependent on the hydrophobicity and solution isomeric form of the hydrazone (E or Z). Also, the antiproliferative activity of the hydrazone ligands was shown to be influenced by the redox properties of the Fe complexes. This indicated that toxic Fenton-derived free radicals are important for the antiproliferative activity for some hydrazone chelators. In fact, we show that any substitution of the H atom present at the imine C atom of the parent HPCIH analogs leads to an increase in antiproliferative efficacy owing to an increase in redox activity. These substituents may deactivate the imine R–C=N–Fe (R is Me, Ph, pyridyl) bond relative to when a H atom is present at this position preventing nucleophilic attack of hydroxide anion, leading to a reversible redox couple. This investigation describes novel structure–activity relationships of aroylhydrazone chelators that will be useful in designing new ligands or fine-tuning the activity of others. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Pyridoxal isonicotinoyl hydrazone and its analogs are orally effective Fe(III) chelators which show potential as drugs to treat iron overload disease. The present investigation describes the measurement of the partition coefficient of the apochelator and Fe(III) complex of 20 of these ligands. These measurements have been done to investigate the relationship between lipophilicity and the efficacy of iron chelation in rabbit reticulocytes loaded with non-heme 59Fe. The results demonstrate a linear relationship between the partition coefficient (P) of the apochelator and its Fe(III) complex, and a simple equation has been derived relating these two parameters. Experimental data in the literature are in agreement with the equation. The relationship of the partition coefficients of the iron chelators and of their Fe(III) complexes to the effectiveness of the ligands in mobilizing iron in vitro and in vivo is also discussed.  相似文献   

3.
Iron chelation therapy for the management of iron-overload disease is dominated by desferrioxamine (DFO). However, treatment using DFO is very arduous. Recently, novel Fe chelators of the pyridine-2-carboxaldehyde isonicotinoyl hydrazone (PCIH) class have shown high chelation efficacy and the potential to replace DFO. A critical consideration in the design of alternatives to DFO is that the chelator forms a redox-inert Fe complex. In the present study, the participation of Fe complexes in redox reactions has been investigated. Ascorbate oxidation in the presence of Fe(III) or benzoate hydroxylation in the presence of Fe(II) was not enhanced by the PCIH analogues. However, redox-induced DNA strand breaks were observed with these ligands under highly oxidizing conditions in the presence of Fe(II) and hydrogen peroxide. Experiments then examined the interactions of the PCIH analogues with DNA, and this was found to be weak. Considering this, we suggest that under extreme conditions seen in the DNA-strand break assay, weak DNA-binding may potentiate the redox activity of the PCIH analogues. However, importantly, in contrast to naked plasmid DNA, DNA damage by these chelators using intact human cells was not significant. Collectively, our results support the potential of the PCIH analogues for the treatment of Fe overload.  相似文献   

4.
The search for orally effective drugs for the treatment of iron overload disorders is an important goal in improving the health of patients suffering diseases such as β-thalassemia major. Herein, we report the syntheses and characterization of some new members of a series of N-aroyl-N′-picolinoyl hydrazine chelators (the H2IPH analogs). Both 1:1 and 1:2 FeIII:L complexes were isolated and the crystal structures of Fe(HPPH)Cl2, Fe(4BBPH)Cl2, Fe(HAPH)(APH) and Fe(H3BBPH)(3BBPH) were determined (H2PPH=N,N′-bis-picolinoyl hydrazine; H2APH=N-4-aminobenzoyl-N′-picolinoyl hydrazine, H23BBPH=N-3-bromobenzoyl-N′-picolinoylhydrazine and H24BBPH=N-(4-bromobenzoyl)-N′-(picolinoyl)hydrazine). In each case, a tridentate N,N,O coordination mode of each chelator with Fe was observed. The FeIII complexes of these ligands have been synthesized and their structural, spectroscopic and electrochemical characterization are reported. Five of these new chelators, namely H2BPH (N-(benzoyl)-N′-(picolinoyl)hydrazine), H2TPH (N-(2-thienyl)-N′-(picolinoyl)-hydrazine), H2PPH, H23BBPH and H24BBPH, showed high efficacy at mobilizing 59Fe from cells and inhibiting 59Fe uptake from the serum Fe transport protein, transferrin (Tf). Indeed, their activity was much greater than that found for the chelator in current clinical use, desferrioxamine (DFO), and similar to that observed for the orally active chelator, pyridoxal isonicotinoyl hydrazone (H2PIH). The ability of the chelators to inhibit 59Fe uptake could not be accounted for by direct chelation of 59Fe from 59Fe–Tf. The most effective chelators also showed low antiproliferative activity which was similar to or less than that observed with DFO, which is important in terms of their potential use as agents to treat Fe-overload disease.  相似文献   

5.
 Previous studies have demonstrated that 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone (NIH) and several other aroylhydrazone chelators possess anti-neoplastic activity due to their ability to bind intracellular iron. In this study we have examined the structure and properties of NIH and its FeIII complex in order to obtain further insight into its anti-tumour activity. Two tridentate NIH ligands deprotonate upon coordination to FeIII in a meridional fashion to form a distorted octahedral, high-spin complex. Solution electrochemistry of [Fe(NIH–H)2]+ shows that the trivalent oxidation state is dominant over a wide potential range and that the FeII analogue is not a stable form of this complex. The fact that [Fe(NIH–H)2]+ cannot cycle between the FeII and FeIII states suggests that the production of toxic free-radical species, e.g. OH . or O2 . , is not part of this ligand's cytotoxic action. This suggestion is supported by cell culture experiments demonstrating that the addition of FeIII to NIH prevents its anti-proliferative effect. The chemistry of this chelator and its FeIII complex are discussed in the context of understanding its anti-tumour activity. Received: 12 November 1998 / Accepted: 9 February 1999  相似文献   

6.
The orally effective iron chelator, pyridoxal isonicotinoyl hydrazone (PIH), and five analogues, pyridoxal benzoyl hydrazone (PBH), pyridoxal p-methoxybenzoyl hydrazone ((PpMBH), pyridoxal m-fluorobenzoyl hydrazone (PmFBH), 3-hydroxy- isonicotinaldehyde isonicotinoyl hydrazone (IIH) and salicylaldehyde isonicotinoyl hydrazone (SIH) were synthesised and characterised and their acid dissociation constants measured by glass electrode potentiometry and UV—Vis spectrophotometry. Analysis of the data showed that at physiological pH all of the ligands are predominantly (av. 80%) in the form of the neutral molecule, allowing passage through cell membranes and access to intracellular iron pools. The results are discussed in the context of the development of an orally effective iron chelator for clinical use.  相似文献   

7.
Friedreich's ataxia (FA) is a crippling neurodegenerative disease that is due to iron (Fe) overload within the mitochondrion. One therapeutic intervention may be the development of a chelator that could remove mitochondrial Fe. We have implemented the only well characterized model of mammalian mitochondrial Fe overload to examine the Fe chelation efficacy of novel chelators of the 2-pyridylcarboxaldehyde isonicotinoyl hydrazone (PCIH) class. In this model we utilize reticulocytes treated with the haem synthesis inhibitor succinylacetone which results in mitochondrial Fe-loading. Our experiments demonstrate that in contrast to desferrioxamine, several of the PCIH analogues show very high activity at mobilizing (59)Fe from (59)Fe-loaded reticulocytes. Further studies on these ligands in animals are clearly warranted considering their potential to treat FA.  相似文献   

8.
Summary Formation constants for the calcium(II), magnesium(II) and zinc(II) complexes of the orally effective iron chelator, pyridoxal isonicotinoyl hydrazone (PIH) and three analogues, pyridoxal benzoyl hydrazone (PBH), pyridoxalp-methoxybenzoyl hydrazone (PpMBH) and pyridoxalm-fluorobenzoyl hydrazone (PmFBH) have been determined by potentiometry at 25\dg C andI=0.1 M [KNO3]. The four ligands bind calcium(II) weakly and magnesium(II) only slightly more strongly, as a l: l complex which is formed at pH \s> 8. The chelation of zinc(II) for all the ligands studied was greater than that for calcium(II) and magnesium(II), with complexation generally becoming significant at about pH 5. Thus, chelation of zinc(II) but not calcium(II) or magnesium(II) at physiological pH, 7.4 may be expected. Calculated values of the concentration of uncomplexed metal ion indicate that the selectivity of these ligands towards Fe(III) is comparable to that of the clinically used chelator desferrioxamine.  相似文献   

9.
John T Edward 《Biometals》1998,11(3):203-205
Pyridoxal isonicotinoyl hydrazone (PIH), salicylaldehydebenzoyl hydrazone (SBH), and their analogschelate iron(III) and show promise asorally effective drugs for treating diseases of iron overload. Theirbiological activity isrelated to their lipophilicity, as measured by their partition coefficients P betweenn-octanoland water. However, the method of calculating log P described in an article in this journal(Edwardet al. 1995; BioMetals, 8, 209-217) is faulty for compounds such as PIH, SBH andtheir analogs whichcontain adjacent hydrophilic groups. Consequently, the calculations reportedin the article, based on erro-neouslog P values of the chelating molecules, giveerroneous log P values of the iron(III) complexes. Thechelators most effective inmobilizing 59 Fe from reticulocytes have log P < 2.8, not log P < 0 and theiron(III)complexes of the most effective chelators have log P < 3.1, not log P < 0.  相似文献   

10.
The chelating agent pyridoxal isonicotinoyl hydrazone (PIH) has recently been shown to mobilize 59Fe from reticulocytes loaded with non-heme 59Fe. In this study, various chelating agents were tested for their ability to effect the mobilization of iron from reticulocytes by PIH. They fall into several groups. The largest group includes chelators such as citrate, ethylenediaminetetracetic acid and desferrioxamine, which fail to affect PIH-induced iron mobilization and do not mobilize iron per se. Either these chelators do not enter reticulocytes or they do not take up iron from PIH-Fe complexes. The second group includes chelators such as 2,2′-bipyridine, 1,10-phenanthroline, bathophenanthroline sulfonate and N,N′-ethylenebis(o-hydroxyphenylglycine) which inhibit PIH-induced iron mobilization from reticulocytes and, when added together with PIH, induce radioiron accumulation in an alcohol-soluble fraction of reticulocytes. It appears that these chelators enter the cell and compete with PIH for 59Fe(II), but having bound iron are unable to cross the cell membrane. Spectral analysis suggests that Fe(II) chelators such as 2,2′-bipyridine and 1,10-phenanthroline remove iron from Fe(II)PIH but are not able to do so from Fe(III)PIH. Then there are compounds such as 2,3-dihydroxybenzoic acid and catechol which potentiate PIH-induced iron mobilization although they are unable to mobilize iron from reticulocytes by themselves. Lastly, there is a group of miscellaneous compounds which include chelators that either potentiate the iron-mobilizing effect of PIH as well as mobilizing iron from reticulocytes by themselves (tropolone), or that reduce PIH-induced iron mobilization while themselves having an iron-mobilizing effect (N,N′-bis(2,3-dihydroxybenzoyl)-1,6-diaminohexane). In further experiments, heme was found to stimulate globin synthesis in reticulocytes, the heme synthesis of which was inhibited by PIH, suggesting that PIH is probably not toxic to the cells.  相似文献   

11.
Salicylaldehyde isonicotinoyl hydrazone (SIH) is a lipophilic, orally-active tridentate iron chelator providing both effective protection against various types of oxidative stress-induced cellular injury and anticancer action. However, the major limitation of SIH is represented by its labile hydrazone bond that makes it prone to plasma hydrolysis. Recently, nine new SIH analogues derived from aromatic ketones with improved hydrolytic stability were developed. Here we analyzed their antiproliferative potential in MCF-7 breast adenocarcinoma and HL-60 promyelocytic leukemia cell lines. Seven of the tested substances showed greater selectivity than the parent agent SIH towards the latter cancer cell lines compared to non-cancerous H9c2 cardiomyoblast-derived cells. The tested chelators induced a dose-dependent dissipation of the inner mitochondrial membrane potential, an induction of apoptosis as evidenced by Annexin V positivity or significant increases of activities of caspases 3, 7, 8 and 9 and cell cycle arrest. With the exception of nitro group-bearing NHAPI, the studies of iron complexes of the chelators confirmed the crucial role of iron in the mechanism of their antiproliferative action. Finally, all the assayed chelators inhibited the oxidation of ascorbate by iron ions indicating lack of redox activity of the chelator-iron complexes. In conclusion, this study identified several important design criteria for improvement of the antiproliferative selectivity of the aroylhydrazone iron chelators. Several of the novel compounds--in particular the ethylketone-derived HPPI, NHAPI and acetyl-substituted A2,4DHAPI--merit deeper investigation as promising potent and selective anticancer agents.  相似文献   

12.
13.
Ligands of the 2-pyridylcarbaldehyde isonicotinoylhydrazone class show high iron (Fe) sequestering efficacy and have potential as agents for the treatment of Fe overload disease. We have investigated the mechanisms responsible for their high activity. X-ray crystallography studies show that the tridentate chelate 2-pyridylcarbaldehyde isonicotinoylhydrazone undergoes an unexpected oxidation to isonicotinoyl(picolinoyl)hydrazine when complexed with FeIII. In contrast, in the absence of FeIII, the parent hydrazone is not oxidized in aerobic aqueous solution. To examine whether the diacylhydrazine could be responsible for the biological effects of 2-pyridylcarbaldehyde isonicotinoylhydrazone, their Fe chelation efficacy was compared. In contrast to its parent hydrazone, the diacylhydrazine showed little Fe chelation activity. Potentiometric titrations suggested that this might be because the diacylhydrazine was charged at physiological pH, hindering its access across membranes to intracellular Fe pools. In contrast, the Fe complex of this diacylhydrazine was charge neutral, which may allow facile movement through membranes. These data allow a model of Fe chelation for this compound to be proposed: the parent aroylhydrazone diffuses through cell membranes to bind Fe and is subsequently oxidized to the diacylhydrazine complex which then diffuses from the cell. Other diacylhydrazine analogues that were charge neutral at physiological pH demonstrated high Fe chelation efficacy. Thus, for this class of ligands, the charge of the chelator appears to be an important factor for determining their ability to access intracellular Fe. The results of this study are significant for understanding the biological activity of 2-pyridylcarbaldehyde isonicotinoylhydrazone and for the design of novel diacylhydrazine chelators for clinical use.  相似文献   

14.
Iron (Fe) is crucial for cellular proliferation, and Fe chelators have shown activity at preventing the growth of the malarial parasite in cell culture and in animal and human studies. We investigated the anti-malarial activity of novel aroylhydrazone and thiosemicarbazone Fe chelators that show high activity at inhibiting the growth of tumour cells in cell culture [Blood 100 (2002) 666]. Experiments with the chelators were performed using the chloroquine-sensitive, 3D7, and chloroquine-resistant, 7G8, strains of Plasmodium falciparum in vitro. The new ligands were significantly more active in both strains than the Fe chelator in widespread clinical use, desferrioxamine (DFO). The most effective chelators examined were 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone and 2-hydroxy-1-naphthylaldehyde-4-phenyl-3-thiosemicarbazone. The anti-malarial activity correlates with anti-proliferative activity against neoplastic cells demonstrated in a previous study. Our studies suggest that this class of lipophilic chelators may have potential as useful agents for the treatment of malaria.  相似文献   

15.
Pyridoxal isonicotinoyl hydrazone (PIH) analogues are effective iron chelators in vivo and in vitro, and may be of value for the treatment of secondary iron overload. The sensitivity of Jurkat cells to Fe-chelator complexes was enhanced several-fold by the depletion of the antioxidant glutathione, indicating the role of oxidative stress in their toxicity. K562 cells loaded with eicosapentaenoic acid, a fatty acid particularly susceptible to oxidation, were also more sensitive to the toxic effects of the Fe complexes, and toxicity was proportional to lipid peroxidation. Thus Fe-chelator complexes cause oxidative stress, which may be a major component of their toxicity. As was the case for their Fe complexes, the toxicity of PIH analogues was enhanced by glutathione depletion of Jurkat cells and eicosapentaenoic acid-loading of K562 cells. Thus the toxicity of the chelators themselves is also enhanced by compromised cellular redox status. In addition, the toxicity of the chelators was diminished by culturing Jurkat cells under hypoxic conditions, which may limit the production of the reactive oxygen species that initiate oxidative stress. A significant part of the toxicity of the chelators may be due to intracellular formation of Fe-chelator complexes, which oxidatively destroy the cell.  相似文献   

16.
Four hydrazone ligands: 2-benzoylpyridine benzoyl hydrazone (HBPB), di-2-pyridyl ketone nicotinoyl hydrazone (HDKN), quinoline-2-carbaldehyde benzoyl hydrazone (HQCB), and quinoline-2-carbaldehyde nicotinoyl hydrazone (HQCN) and four of their complexes with vanadyl salts have been synthesized and characterized. Single crystals of HBPB and complexes [VO(BPB)(μ2-O)]2 (1) and [VO(DKN)(μ2-O)]2·½H2O (2) were isolated and characterized by X-ray crystallography. Each of the complexes exhibits a binuclear structure where two vanadium(V) atoms are bridged by two oxygen atoms to form distorted octahedral structures within cis-N2O4 donor sets. In most complexes, the uninegative anions function as tridentate ligands, coordinating through the pyridyl- and azomethine-nitrogen atoms and enolic oxygen whereas in complex [VO(HQCN)(SO4)]SO4·4H2O (4) the ligand is coordinated in the keto form. Complexes [VO(QCB)(OMe)]·1.5H2O (3) and 4 are found to be EPR active and showed well-resolved axial anisotropy with two sets of eight line pattern.  相似文献   

17.
The search for effective iron chelating agents was primarily driven by the need to treat iron-loading refractory anemias such as β-thalassemia major. However, there is a potential for therapeutic use of iron chelators in non-iron overload conditions. Iron can, under appropriate conditions, catalyze the production of toxic oxygen radicals which have been implicated in numerous pathologies and, hence, iron chelators may be useful as inhibitors of free radical-mediated tissue damage. We have developed the orally effective iron chelator pyridoxal isonicotinoyl hydrazone (PIH) and demonstrated that it inhibits iron-mediated oxyradical formation and their effects (e.g. 2-deoxyribose oxidative degradation, lipid peroxidation and plasmid DNA breaks). In this study we further characterized the mechanism of the antioxidant action of PIH and some of its analogs against OH formation from the Fenton reaction. Using electron paramagnetic resonance (EPR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap for OH we showed that PIH and salicylaldehyde isonicotinoyl hydrazone (SIH) inhibited Fe(II)-dependent production of OH from H2O2. Moreover, PIH protected 2-deoxyribose against oxidative degradation induced by Fe(II) and H2O2. The protective effect of PIH against both DMPO hydroxylation and 2-deoxyribose degradation was inversely proportional to Fe(II) concentration. However, PIH did not change the primary products of the Fenton reaction as indicated by EPR experiments on OH-mediated ethanol radical formation. Furthermore, PIH dramatically enhanced the rate of Fe(II) oxidation to Fe(III) in the presence of oxygen, suggesting that PIH decreases the concentration of Fe(II) available for the Fenton reaction. These results suggest that PIH and SIH deserve further investigation as inhibitors of free-radical mediated tissue damage.  相似文献   

18.
Pyridoxal isonicotinoyl hydrazone (PIH) and many of its analogs are effective iron chelators in vivo and in vitro, and are of interest for the treatment of secondary iron overload. Because previous work has implicated the Fe(3+)-chelator complexes as a determinant of toxicity, the role of iron-based oxidative stress in the toxicity of PIH analogs was assessed. The Fe(3+) complexes of PIH analogs were reduced by K562 cells and the physiological reductant, ascorbate. Depletion of the antioxidant, glutathione, sensitized Jurkat T lymphocytes to the toxicity of PIH analogs and their Fe(3+) complexes, and toxicity of the chelators increased with oxygen tension. Fe(3+) complexes of pyridoxal benzoyl hydrazone (PBH) and salicyloyl isonicotinoyl hydrazone (SIH) caused lipid peroxidation and toxicity in K562 cells loaded with eicosapentenoic acid (EPA), a readily oxidized fatty acid, whereas Fe(PIH)(2) did not. The lipophilic antioxidant, vitamin E, completely prevented both the toxicity and lipid peroxidation caused by Fe(PBH)(2) in EPA-loaded cells, indicating a causal relationship between oxidative stress and toxicity. PBH also caused concomitant lipid peroxidation and toxicity in EPA-loaded cells, both of which were reversed as its concentration increased. In contrast, PIH was inactive, while SIH was equally toxic toward control and EPA-loaded cells, without causing lipid peroxidation, indicating a much smaller contribution of oxidative stress to the mechanism of toxicity of these analogs. In summary, PIH analogs and their Fe(3+) complexes are redox active in the intracellular environment. The contribution of oxidative stress to the overall mechanism of toxicity varies across the series.  相似文献   

19.
Salicylaldehyde isonicotinoyl hydrazone (SIH) is a lipophilic, tridentate iron chelator with marked anti-oxidant and modest cytotoxic activity against neoplastic cells. However, it has poor stability in an aqueous environment due to the rapid hydrolysis of its hydrazone bond. In this study, we synthesized a series of new SIH analogs (based on previously described aromatic ketones with improved hydrolytic stability). Their structure-activity relationships were assessed with respect to their stability in plasma, iron chelation efficacy, redox effects and cytotoxic activity against MCF-7 breast adenocarcinoma cells. Furthermore, studies assessed the cytotoxicity of these chelators and their ability to afford protection against hydrogen peroxide-induced oxidative injury in H9c2 cardiomyoblasts. The ligands with a reduced hydrazone bond, or the presence of bulky alkyl substituents near the hydrazone bond, showed severely limited biological activity. The introduction of a bromine substituent increased ligand-induced cytotoxicity to both cancer cells and H9c2 cardiomyoblasts. A similar effect was observed when the phenolic ring was exchanged with pyridine (i.e., changing the ligating site from O, N, O to N, N, O), which led to pro-oxidative effects. In contrast, compounds with long, flexible alkyl chains adjacent to the hydrazone bond exhibited specific cytotoxic effects against MCF-7 breast adenocarcinoma cells and low toxicity against H9c2 cardiomyoblasts. Hence, this study highlights important structure-activity relationships and provides insight into the further development of aroylhydrazone iron chelators with more potent and selective anti-neoplastic effects.  相似文献   

20.
Iron(II) dichloride complexes bearing 2-(methyl-substituted 1H-benzoimidazol-2-yl)-6-(1-aryliminoethyl)pyridines (Fe1Fe6) or 2-(chloro-substituted 1H-benzoimidazol-2-yl)-6-(1-aryliminoethyl)pyridines (Fe7Fe12) were synthesized and characterized by FT-IR and elemental analysis. Single crystal X-ray crystallographic analyses revealed that complexes Fe2 and Fe3 possessed a distorted square-pyramidal geometry at iron. Upon activation with either MAO or MMAO, all iron pro-catalysts showed good activities toward ethylene oligomerization with high selectivity for α-olefins and high K values. The influence of the reaction conditions and the nature of the ligands on the catalytic performance of these iron complexes were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号