首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 919 毫秒
1.
Taurine and Zinc Modulate Outgrowth from Goldfish Retinal Explants   总被引:1,自引:0,他引:1  
Taurine and zinc, highly concentrated in the retina, possess similar properties in this structure, such as neuro-protection, membrane stabilization, influencing regeneration, and modulating development, maybe by acting in parallel or as interacting agents. We previously demonstrated that there are some correlations between taurine and zinc levels in hippocampus, dentate gyrus and retina of the developing rat. In the present study we evaluate the possible effects of taurine and zinc on outgrowth from goldfish retinal explants. The optic nerve was crushed 10 days before plating and culturing retinal explants in Leibovitz medium with 10% fetal calf serum and gentamicin. Neurites were measured with SigmaScanPro after 5 days in culture. Taurine (HPLC) and zinc (ICP) concentrations were determined in the retina between 1 and 180 days after crushing the optic nerve. Zinc sulfate (0.01–100 μM), N,N, N′,N′-tetrakis (pyridylmethyl) ethylenediamine (TPEN, 0.1–5 nM) and diethylenetriamine penta-acetic acid (DTPA, 10–300 μM), intracellular and extracellular zinc chelators, respectively, were added to the medium. TPEN was also injected intraocular (0.1 nM). Combinations of them were added with taurine (1–16 mM). Taurine concentrations were elevated in the retina 72 h after the crush, but were normalized by 180 days, those of zinc increased at 24 h, preceding the increase of taurine. The axonal transport of [3H]taurine from the optic tectum to the retina was not affected in fish with or without crush of the optic nerve at early periods after the injection, indicating an increase of it post-lesion. Zinc sulfate produced a bell-shaped concentration dependency on in vitro outgrowth, with stimulation at 0.05 μM, and inhibition at higher levels, also increased the effect of 4 mM taurine at 0.02 μM, but diminished it at higher concentrations in the medium. TPEN decreased outgrowth at 1 nM, but not at 0.5 nM, although the simultaneous presence of 4 mM taurine and 0.5 nM TPEN decreased outgrowth respecting the stimulation by taurine alone. The intraocular administration of TPEN decreased outgrowth in vitro, an effect counteracted by the addition of 4 mM taurine to the culture medium. DTPA decreased outgrowth from 10 μM in the medium. The present results indicate that an optimal zinc concentration is necessary for outgrowth of goldfish retinal explants and that, in zinc deficient retina, taurine could stimulate outgrowth. In addition, the observations of variations in tissue concentrations and of the effects of intraocular administration of TPEN indicate that these effects could occur in vivo. Special issue dedicated to Dr. Simo S. Oja  相似文献   

2.

Background

Taurine and zinc exert neurotrophic effects in the central nervous system. Current studies demonstrate that Na+/Cl- dependent neurotransmitter transporters, similar to that of taurine, are modulated by micromolar concentrations of zinc. This study examined the effect of zinc sulfate ex vivo on [3H]taurine transport in goldfish retina.

Methods

Isolated cells were incubated in Ringer with zinc (0.1–100 µM). Taurine transport was done with 50 nM [3H]taurine or by isotopic dilution with taurine (0.001–1 mM) and 50 nM [3H]taurine.

Results

Zinc reduced the capacity of taurine transport without changes in affinity, and caused a noncompetitive inhibition of high affinity taurine transport, with an EC50= 0.072 µM. The mechanism by which zinc affects taurine transport is unknown at the present.

Conclusions

There may be a binding site of zinc in the transporter that affects union or translocation of taurine, or possibly the formation of taurine-zinc complexes, rather than free zinc, could affect the operation of the transporter.
  相似文献   

3.
Zinc regulates Na+/Cl?-dependent transporters, similar to taurine one, such as those for dopamine, serotonin and norepinephrine. This study examined the ex vivo effect of zinc (ZnSO4), N,N,N,N-tetraquis-(2-piridilmetil)etilendiamino (TPEN) and diethylenetriaminepenta-acetic acid (DTPA), intracellular and extracellular zinc chelators, respectively, on rat retina [3H]taurine transport. Isolated cells were incubated in Locke solution with 100 nM of [3H]taurine for 25 s. Different concentrations of ZnSO4 (0.5–200 μM) were used. Low concentrations of ZnSO4 (30 and 40 μM) increased the transport, while higher concentrations (100, 150 and 200 μM) decreased it. Various concentrations of TPEN (1–200 μM) were added. Intermediate concentrations of TPEN (10–60 μM) significantly decreased [3H]taurine transport. The presence of TPEN, 20 μM, plus ZnSO4 reversed the effect of TPEN alone. Several concentrations of DTPA (1–500 μM) were also investigated. Reduction of transport took place at high concentrations of the chelator (100, 250 and 500 μM). DTPA, 500 μM, plus ZnSO4, did not modify the effect of it. These results indicate that zinc modulates taurine transport in a concentration-dependent manner, directly acting on the transporter or by forming taurine–zinc complexes in cell membranes.  相似文献   

4.
We have investigated the characteristics of zinc biosorption by Aphanothece halophytica. Zinc could be rapidly taken up from aqueous solution by the cells with an equilibrium being reached within 15 min of incubation with 100 mg L−1 ZnCl2. The adsorbed zinc was desorbed by treatment with 10 mM EDTA. The presence of glucose, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and N,N′-dicyclohexylcarbodiimide (DCCD) did not affect the uptake of zinc. The specific uptake of zinc increased at low cell concentration and decreased when cell concentration exceeded 0.2 g L−1. The binding of zinc followed Langmuir isotherm kinetics with a maximum zinc binding capacity of 133 mg g−1 and an apparent zinc binding constant of 28 mg L−1. The presence of an equimolar concentration of Mn2+, Mg2+, Co2+, K+, or Na+ had no effect on zinc biosorption, whereas Ca2+, Hg2+, and Pb2+ showed an inhibitory effect. The biosorption of zinc was low at a pH range from 4 to 6, but increased progressively at pH 6.5 and 7. Received: 12 December 2001 / Accepted: 11 January 2002  相似文献   

5.
Severe acidosis caused death of cultured cerebellar granule neurons (CGNs). Acidosis was accompanied by a progressive increase of the intracellular zinc ions ([Zn2+]i) and decrease of [Ca2+]i. Zn2+ chelator, N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), prevented the increase of [Zn2+]i and acidosis-induced neuronal death. However, neuronal death was insensitive to blockade of ASIC1 channels with amiloride, as CGNs display considerably lower expression of ASIC1a than other neurons. The antioxidant trolox and menadione significantly protected neurons from acidotic death. Earlier, we demonstrated that menadione rescues neurons from the deleterious effect of inhibition of mitochondrial complex I (Isaev et al. Neuroreport 15:2227–2231, 2004). We speculate that excessive Zn2+-dependent production of reactive oxygen species by mitochondrial complex I may be a general motive for the induction of cell death in CGNs under acidotic conditions.  相似文献   

6.
We firstly characterized zinc uptake phenomenon across basolateral membrane vesicles (BLMVs) isolated from normal rat kidney. The process was found to be time, temperature, and substrate concentration dependent, and displayed saturability. Zn2+ uptake was competitively inhibited in the presence of 2 mM Cd with Ki of 3.9 mM. Zinc uptake was also inhibited in the presence of sulfhydryl reacting compound suggesting involvement of {–}SH groups in the transport process. Further, to elucidate the effect of in vivo Cd on zinc transport in BLMVs, Cd nephrotoxicity was induced by subcutaneous administration of CdCl2 at dose of 0.6 mg/kg/d for 5 days in a week for 12 weeks. An indolent renal failure developed in Cd exposed rats was accompanied with a significantly high urinary excretion of Cd2+, Zn2+ and proteins. The histopathology and electron microscopy of kidneys of Cd exposed rats documented changes of proximal tubular degeneration. Notably, Cd content in renal cortex of Cd exposed rats was 215 μg/g tissue that was higher than the critical concentration of Cd in kidneys which was associated with significantly higher Zn and metallothionein (MT) contents. Zinc uptake in BLMVs isolated from kidneys of Cd exposed rats was significantly reduced. Further, kinetic studies revealed that decrease in zinc uptake synchronized with decrease in maximal velocity (Vmax) and increase in affinity constant which is suggestive of decreased number of active zinc transporters. Furthermore, conformational modulation of Zn transporter in BLM was further supported by observed variation in transition temperature for zinc transport in BLMVs isolated from Cd-exposed kidney.  相似文献   

7.
Heavy metal content analysis of River Torsa in India did not indicate any alarming level of toxicity for human consumption but revealed variation at the ppb level in different months. The variation in recoverable nickel and zinc resistant copiotrophic (or eutrophic) bacterial counts was explained by the variation of the zinc content (34.0–691.3 ppb) of the river water in different sampling months. Growth studies conducted with some purified nickel and/or zinc resistant strains revealed that pre-exposure of the cells to ppb levels of Zn2+, comparable to the indigenous zinc ion concentration of the river, could induce the nickel or zinc resistance. A minimum concentration of 5–10 μM Zn2+ (325–650 ppb) was found effective in inducing the Nickel resistance of the isolates. Zinc resistance of the isolates was tested by pre-exposing the cells to 4 μM Zn2+ (260 ppb). The lag phase was reduced by 6–8 h in all the cases. Biochemical characteristics and phylogenetic analysis based on 16S rDNA sequence indicated that some of the Torsa River isolates, having inducible nickel and zinc resistance, are members of the genus Pseudomonas, Acinetobacter, Bacillus, Enterobacter, Serratia and Moraxella.  相似文献   

8.
9.
Zinc, cadmium, and copper are known to interact in many transport processes, but the mechanism of inhibition is widely debated, being either competitive or noncompetitive according to the experimental model employed. We investigated the mechanisms of inhibition of zinc transport by cadmium and copper using renal proximal cells isolated from rabbit kidney. Initial rates of65Zn uptake were assessed after 0.5 min of incubation. The kinetics parameters of zinc uptake obtained at 20°C were a Jmax of 208.0±8.4 pmol· min−1·(mg protein)−1, aK m of 15.0±1.5 μM and an unsaturable constant of 0.259±0.104 (n=8). Cadmium at 15 μM competitively inhibited zinc uptake. In the presence of 50 μM cadmium, or copper at both 15 and 50 μM, there was evidence of noncompetitive inhibition. These data suggest that zinc and cadmium enter renal proximal cells via a common, saturable, carrier-mediated process. The mechanisms of the noncompetitive inhibition observed at higher concentrations of cadmium or with copper require further investigation, but may involve a toxic effect on the cytoskeleton.  相似文献   

10.
Summary Taurine transport was investigated in brush border membrane vesicles isolated from renal tubules of the winter flounder (Pseudopleuronectes americanus). Taurine uptake by the vesicles was greater in the presence of NaCl as compared to uptake in KCl. The Na+-dependent taurine transport was electrogenic and demonstrated tracer replacement and inhibition by -alanine and HgCl2, indicating the presence of Na+-dependent, carrier-mediated taurine transport. In contrast to Na+-dependent taurine transport across the basolateral membrane, there was not a specific Cl dependency for transport in the brush border membrane. No evidence was obtained for Na+-independent carrier-mediated taurine transport. The possible involvement of the brush border Na+-dependent transport system in the net secretion of taurine from blood to tubular lumen in vivo (Schrock et al. 1982) is discussed.  相似文献   

11.
Sulfite-oxidizing enzyme activities were analyzed in cell-free extracts of aerobically grown cells of Acidianus ambivalens, an extremely thermophilic and chemolithoautotrophic archaeon. In the membrane and cytoplasmic fractions, two distinct enzyme activities were found. In the membrane fraction, a sulfite:acceptor oxidoreductase activity was found [530 mU (mg protein)–1; apparent K m for sulfite, 3.6 mM]. In the cytoplasmic fraction the following enzyme activities were found and are indicative of an oxidative adenylylsulfate pathway: adenylylsulfate reductase [138 mU (mg protein)–1], adenylylsulfate:phosphate adenyltransferase [“ADP sulfurylase”; 86 mU (mg protein)–1], adenylate kinase [650 mU (mg protein)–1], and rhodanese [thiosulfate sulfur transferase, 9.2 mU (mg protein)–1]. In addition, 5′,5′′′-P1,P4-di(adenosine-5′) tetraphosphate (Ap4A) synthase and Ap4A pyrophosphohydrolase activities were detected. Received: 17 August 1998 / Accepted: 29 April 1999  相似文献   

12.
Modulation of the sinus rate and contractile force by taurine at different extracellular Ca2+ concentrations ([Ca2+]o) was examined using rat right atria loaded with forced swimming stress. Serum concentration of corticosterone profoundly increased in stress-loaded rats as compared with native rats. The taurine level in serum also increased in stress-loaded rats, but was not changed in the different heart tissues and aorta. Heat-shock protein (HSP72) was detectable in cardiac muscles and in the lumen of cardiac blood vessels of stress-loaded rats using a monoclonal antibody. Increasing [Ca2+]o (from 0.9 to 3.6 mM) enhanced the sinus rate and contractile force in a [Ca2+]o-dependent fashion in native rats, but not in stress-loaded rats. Taurine (1–20 mM) caused a negative chronotropic and inotropic effect in a concentration-dependent manner. At 1.8 mM [Ca2+]o, the negative chronotropic effect of taurine (10–20 mM) was attenuated in stress-loaded rats as compared with native rats. These results indicate that swimming stress causes a release of taurine into the serum and reduces the sensitivity to [Ca2+]o. Taurine administration might, in part, exhibit the protective actions on acute stress-induced responses.  相似文献   

13.
It is possible to cultivate aerobic granular sludge at a low organic loading rate and organics-to-total nitrogen (COD/N) ratio in wastewater in the reactor with typical geometry (height/diameter = 2.1, superficial air velocity = 6 mm/s). The noted nitrification efficiency was very high (99%). At the highest applied ammonia load (0.3 ± 0.002 mg NH4+–N g total suspended solids (TSS)−1 day−1, COD/N = 1), the dominating oxidized form of nitrogen was nitrite. Despite a constant aeration in the reactor, denitrification occurred in the structure of granules. Applied molecular techniques allowed the changes in the ammonia-oxidizing bacteria (AOB) community in granular sludge to be tracked. The major factor influencing AOB number and species composition was ammonia load. At the ammonia load of 0.3 ± 0.002 mg NH4+–N g TSS−1 day−1, a highly diverse AOB community covering bacteria belonging to both the Nitrosospira and Nitrosomonas genera accounted for ca. 40% of the total bacteria in the biomass.  相似文献   

14.
The role of 3′,5′-cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), protein kinase C (PKC) and phosphatases in the regulation of the taurine influx via the β-system in Ehrlich ascites tumor cells has been investigated. The taurine uptake by the β-system in Ehrlich cells is inhibited when PKC is activated by phorbol 12-myristate 13-acetate (PMA) and when protein phosphatases are inhibited by calyculin A (CLA). On the other hand, taurine uptake by the β-system is stimulated by an increased level of cAMP or following addition of N6,2′-O-dibutyryl-3′,5′-cyclic adenosine monophosphate (dbcAMP). The effect of dbcAMP is partially blocked by addition of the protein kinase inhibitor H-89, and suppressed in the presence of CLA. It is proposed that the β-system in the Ehrlich cells exists in three states of activity: State I, where a PKC phosphorylation site on the transporter or on a regulator is phosphorylated and transport activity is low. State II, where the PKC phosphorylation site is dephosphorylated and transport activity is normal. State III, representing a state with high transport activity, induced by an elevated cellular cAMP level. Apparently, cAMP preferentially stimulates taurine transport when the β-system is in State II. Received: 8 September/Revised: 9 November 1995  相似文献   

15.
Zinc is an essential trace element necessary to life. This metal may exert some of its physiological effects by acting directly on cellular membranes, either by altering permeability or by modulating the activity of membrane-bound enzymes. On the other hand, calcium is an essential element in a wide variety of cellular activities. The aim of the present work was to study a possible interaction between zinc and calcium on intestinal transport ofd-galactose in jejunum of rabbit in vitro. In media with Ca2+, when ZnCl2 was present at 0.5 or 1 mM, zinc was found to reduce thed-galactose absorption significantly. In Ca2+-free media, where CaCl2 was omitted and replaced isotonically with choline chloride, the sugar transport was not modified by zinc. Verapamil at 10−6 M (blocking mainly Ca2+ transport) did not modify the inhibitory effect of zinc ond-galactose transport. When 10−6 M of A 23187 (Ca2+-specific ionophore) was added with/without Ca2+ to the media, ZnCl2 produced no change in sugar transport. These results could suggest a possible interaction of calcium and zinc for the same chemical groups of membrane, which could affect the intestinal absorption of sugars.  相似文献   

16.
In a combined field and laboratory study in the southwest of Burkina Faso, we quantified soil-atmosphere N2O and NO exchange. N2O emissions were measured during two field campaigns throughout the growing seasons 2005 and 2006 at five different experimental sites, that is, a natural savanna site and four agricultural sites planted with sorghum (n = 2), cotton and peanut. The agricultural fields were not irrigated and not fertilized. Although N2O exchange mostly fluctuated between −2 and 8 μg N2O–N m−2 h−1, peak N2O emissions of 10–35 μg N2O–N m−2 h−1 during the second half of June 2005, and up to 150 μg N2O–N m−2 h−1 at the onset of the rainy season 2006, were observed at the native savanna site, whereas the effect of the first rain event on N2O emissions at the crop sites was low or even not detectable. Additionally, a fertilizer experiment was conducted at a sorghum field that was divided into three plots receiving different amounts of N fertilizer (plot A: 140 kg N ha−1; plot B: 52.5 kg N ha−1; plot C: control). During the first 3 weeks after fertilization, only a minor increase in N2O emissions at the two fertilized plots was detected. After 24 days, however, N2O emission rates increased exponentially at plot A up to a mean of 80 μg N2O–N m−2 h−1, whereas daily mean values at plot B reached only 19 μg N2O–N m−2 h−1, whereas N2O flux rates at plot C remained unchanged. The calculated annual N2O emission of the nature reserve site amounted to 0.52 kg N2O–N ha−1 a−1 in 2005 and to 0.67 kg N2O–N ha−1 a−1 in 2006, whereas the calculated average annual N2O release of the crop sites was only 0.19 kg N2O–N ha−1 a−1 and 0.20 kg N2O–N ha−1 a−1 in 2005 and 2006, respectively. In a laboratory study, potential N2O and NO formation under different soil moisture regimes were determined. Single wetting of dry soil to medium soil water content with subsequent drying caused the highest increase in N2O and NO emissions with maximum fluxes occurring 1 day after wetting. The stimulating effect lasted for 3–4 days. A weaker stimulation of N2O and NO fluxes was detected during daily wetting of soil to medium water content, whereas no significant stimulating effect of single or daily wetting to high soil water content (>67% WHCmax) was observed. This study demonstrates that the impact of land-use change in West African savanna on N trace gas emissions is smaller—with the caveat that there could have been potentially higher N2O and NO emissions during the initial conversion—than the effect of timing and distribution of rainfall and of the likely increase in nitrogen fertilization in the future.  相似文献   

17.
An extension to HN(CO-α/β-N,Cα-J)-TROSY (Permi and Annila in J Biomol NMR 16:221–227, 2000) is proposed that permits the simultaneous determination of the four coupling constants 1 J N′(i)Cα(i), 2 J HN(i)Cα(i), 2 J Cα(i−1)N′(i), and 3 J Cα(i−1)HN(i) in 15N,13C-labeled proteins. Contrasting the original scheme, in which two separate subspectra exhibit the 2 J CαN′ coupling as inphase and antiphase splitting (IPAP), we here record four subspectra that exhibit all combinations of inphase and antiphase splittings possible with respect to both 2 J CαN′ and 1 J N′Cα (DIPAP). Complementary sign patterns in the different spectrum constituents overdetermine the coupling constants which can thus be extracted at higher accuracy than is possible with the original experiment. Fully exploiting data redundance, simultaneous 2D lineshape fitting of the E.COSY multiplet tilts in all four subspectra provides all coupling constants at ultimate precision. Cross-correlation and differential-relaxation effects were taken into account in the evaluation procedure. By applying a four-point Fourier transform, the set of spectra is reversibly interconverted between DIPAP and spin-state representations. Methods are exemplified using proteins of various size.  相似文献   

18.
We examined the hydrologic controls on nitrogen biogeochemistry in the hyporheic zone of the Tanana River, a glacially-fed river, in interior Alaska. We measured hyporheic solute concentrations, gas partial pressures, water table height, and flow rates along subsurface flowpaths on two islands for three summers. Denitrification was quantified using an in situ 15NO3 push–pull technique. Hyporheic water level responded rapidly to change in river stage, with the sites flooding periodically in mid−July to early−August. Nitrate concentration was nearly 3-fold greater in river (ca. 100 μg NO3–N l−1) than hyporheic water (ca. 38 μg NO3–N l−1), but approximately 60–80% of river nitrate was removed during the first 50 m of hyporheic flowpath. Denitrification during high river stage ranged from 1.9 to 29.4 mg N kg sediment−1 day−1. Hotspots of methane partial pressure, averaging 50,000 ppmv, occurred in densely vegetated sites in conjunction with mean oxygen concentration below 0.5 mgOl−1. Hyporheic flow was an important mechanism of nitrogen supply to microbes and plant roots, transporting on average 0.41 gNO3–N m−2 day−1, 0.22 g NH4+–N m−2 day−1, and 3.6 g DON m−2 day−1 through surface sediment (top 2 m). Our results suggest that denitrification can be a major sink for river nitrate in boreal forest floodplain soils, particularly at the river-sediment interface. The stability of the river hydrograph and the resulting duration of soil saturation are key factors regulating the redox environment and anaerobic metabolism in the hyporheic zone.  相似文献   

19.
Geometrical structures and relative stabilities of (LiNH2)n (n = 1–5) clusters were studied using density functional theory (DFT) at the B3LYP/6-31G* and B3LYP/6-31++G* levels. The electronic structures, vibrational properties, N–H bond dissociation energies (BDE), thermodynamic properties, bond properties and ionization potentials were analyzed for the most stable isomers. The calculated results show that the Li–N and Li–Li bonds can be formed more easily than those of the Li–H or N–H bonds in the clusters, in which NH2 is bound to the framework of Li atomic clusters with fused rings. The average binding energies for each LiNH2 unit increase gradually from 142 kJ mol−1 up to about 180 kJ mol−1 with increasing n. Natural bond orbital (NBO) analysis suggests that the bonds between Li and NH2 are of strong ionicity. Three-center–two-electron Li–N–Li bonding exists in the (LiNH2)2 dimer. The N–H BDE values indicate that the change in N–H BDE values from the monomer a1 to the singlet-state clusters is small. The N–H bonds in singlet state clusters are stable, while the N–H bonds in triplet clusters dissociate easily. A study of their thermodynamic properties suggests that monomer a1 forms clusters (b1, c1, d2 and e1) easily at low temperature, and clusters with fewer numbers of rings tend to transfer to ones with more rings at low temperature. E g, E HOMO and E av decrease gradually, and become constant. Ring-like (LiNH2)3,4 clusters possess higher ionization energy (VIE) and E g, but lower values of E HOMO. Ring-like (LiNH2)3,4 clusters are more stable than other types. A comparison of structures and spectra between clusters and crystal showed that the NH2 moiety in clusters has a structure and spectral features similar to those of the crystal.  相似文献   

20.
Crystal structure analysis of the zinc complex establishes it as a distorted octahedral complex, bis(3-methylpicolinato-κ2 N,O)2(1,10-phenanthroline-κ2 N,N)-zinc(II) pentahydrate, [Zn(3-Me-pic)2(phen)]·5H2O. The trans-configuration of carbonyl oxygen atoms of the carboxylate moieties and orientation of the two planar picolinate ligands above and before the phen ligand plane seems to confer DNA sequence recognition to the complex. It cannot cleave DNA under hydrolytic condition but can slightly be activated by hydrogen peroxide or sodium ascorbate. Circular Dichroism and Fluorescence spectroscopic analysis of its interaction with various duplex polynucleotides reveals its binding mode as mainly intercalation. It shows distinct DNA sequence binding selectivity and the order of decreasing selectivity is ATAT > AATT > CGCG. Docking studies lead to the same conclusion on this sequence selectivity. It binds strongly with G-quadruplex with human tolemeric sequence 5′-AG3(T2AG3)3-3′, can inhibit topoisomerase I efficiently and is cytotoxic against MCF-7 cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号