首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Tumor necrosis factor (TNF)-induced activation of apoptosis signal-regulating kinase 1 (ASK1) and germinal center kinases (GCKs) and the subsequent activation of stress-activated protein kinases (SAPKs and c-Jun NH(2)-terminal kinases) requires TNF receptor-associated factor 2 (TRAF2). Although the TRAF2 TRAF domain binds ASK1, GCK, and the highly related kinase GCKR, the RING finger domain is needed for their activation. Here, we report that TNF activates GCKR and the SAPK pathway in a manner that depends upon TRAF2 and Ubc13, a member along with Uev1A of a dimeric ubiquitin-conjugating enzyme complex. Interference with Ubc13 function or expression inhibits both TNF- and TRAF2-mediated GCKR and SAPK activation, but has a minimal effect on ASK1 activation. TNF signaling leads to TRAF2 polyubiquitination and oligomerization and to the oligomerization, ubiquitination, and activation of GCKR, all of which are sensitive to the disruption of Ubc13 function. These results indicate that the assembly of a TRAF2 lysine 63-linked polyubiquitin chain by Ubc13/Uev1A is required for TNF-mediated GCKR and SAPK activation, but may not be required for ASK1 activation.  相似文献   

2.
Apoptosis signal-regulating kinase 1 (ASK1), a member of the mitogen-activated protein kinase kinase kinase family, plays pivotal roles in reactive oxygen species (ROS)-induced cellular responses. In resting cells, endogenous ASK1 constitutively forms a homo-oligomerized but still inactive high-molecular-mass complex including thioredoxin (Trx), which we designated the ASK1 signalosome. Upon ROS stimulation, the ASK1 signalosome unbinds from Trx and forms a fully activated higher-molecular-mass complex, in part by recruitment of tumor necrosis factor receptor-associated factor 2 (TRAF2) and TRAF6. However, the precise mechanisms by which Trx inhibits and TRAF2 and TRAF6 activate ASK1 have not been elucidated fully. Here we demonstrate that the N-terminal homophilic interaction of ASK1 through the N-terminal coiled-coil domain is required for ROS-dependent activation of ASK1. Trx inhibited this interaction of ASK1, which was, however, enhanced by expression of TRAF2 or TRAF6 or by treatment of cells with H2O2. Furthermore, the H2O2-induced interaction was reduced by double knockdown of TRAF2 and TRAF6. These findings demonstrate that Trx, TRAF2, and TRAF6 regulate ASK1 activity by modulating N-terminal homophilic interaction of ASK1.  相似文献   

3.
TNF-induced activation of stress activated protein kinases (SAPKs, Jun NH2-terminal kinases) requires TNF receptor associated factor 2 (TRAF2). TRAF2 is a potent activator of a 95-kDa serine/threonine kinase termed germinal center kinase related (GCKR, also referred to as KHS1), which signals activation of the SAPK pathway. Consistent with a role for GCKR in TNF- induced SAPK activation, a kinase-inactive mutant of GCKR is a dominant negative inhibitor of TRAF2-induced SAPK activation. Here we show that TRAF2 interacts with GCKR. This interaction depended upon the TRAF domain of TRAF2 and the C-terminal 150 aa of GCKR. The full activation of GCKR by TRAF2 required the TRAF2 RING finger domain. TNF treatment of a T cell line, Jurkat, increased both GCRK and SAPK activity and enhanced the coimmunoprecipitation of GCKR with TRAF2. Similar results were found with the B cell line HS-Sultan. These findings are consistent with a model whereby TNF signaling results in the recruitment and activation of GCKR by TRAF2, which leads to SAPK activation.  相似文献   

4.
Apoptosis signal-regulating kinase (ASK) 1 was recently identified as a mitogen-activated protein (MAP) kinase kinase kinase which activates the c-Jun N-terminal kinase (JNK) and p38 MAP kinase pathways and is required for tumor necrosis factor (TNF)-alpha-induced apoptosis; however, the mechanism regulating ASK1 activity is unknown. Through genetic screening for ASK1-binding proteins, thioredoxin (Trx), a reduction/oxidation (redox)-regulatory protein thought to have anti-apoptotic effects, was identified as an interacting partner of ASK1. Trx associated with the N-terminal portion of ASK1 in vitro and in vivo. Expression of Trx inhibited ASK1 kinase activity and the subsequent ASK1-dependent apoptosis. Treatment of cells with N-acetyl-L-cysteine also inhibited serum withdrawal-, TNF-alpha- and hydrogen peroxide-induced activation of ASK1 as well as apoptosis. The interaction between Trx and ASK1 was found to be highly dependent on the redox status of Trx. Moreover, inhibition of Trx resulted in activation of endogenous ASK1 activity, suggesting that Trx is a physiological inhibitor of ASK1. The evidence that Trx is a negative regulator of ASK1 suggests possible mechanisms for redox regulation of the apoptosis signal transduction pathway as well as the effects of antioxidants against cytokine- and stress-induced apoptosis.  相似文献   

5.
Klotho transgenic mice exhibit resistance to oxidative stress as measured by their urinal levels of 8-hydroxy-2-deoxyguanosine, albeit this anti-oxidant defense mechanism has not been locally investigated in the brain. Here, we tested the hypothesis that the reactive oxygen species (ROS)-sensitive apoptosis signal-regulating kinase 1 (ASK1)/p38 MAPK pathway regulates stress levels in the brain of these mice and showed that: 1) the ratio of free ASK1 to thioredoxin (Trx)-bound ASK1 is relatively lower in the transgenic brain whereas the reverse is true for the Klotho knockout mice; 2) the reduced p38 activation level in the transgene corresponds to higher level of ASK1-bound Trx, while the KO mice showed elevated p38 activation and lower level of–bound Trx; and 3) that 14-3-3ζ is hyper phosphorylated (Ser-58) in the transgene which correlated with increased monomer forms. In addition, we evaluated the in vivo robustness of the protection by challenging the brains of Klotho transgenic mice with a neurotoxin, MPTP and analyzed for residual neuron numbers and integrity in the substantia nigra pars compacta. Our results show that Klotho overexpression significantly protects dopaminergic neurons against oxidative damage, partly by modulating p38 MAPK activation level. Our data highlight the importance of ASK1/p38 MAPK pathway in the brain and identify Klotho as a possible anti-oxidant effector.  相似文献   

6.
Mitogen-activated protein kinase (MAPK) pathways coordinate critical cellular responses to mitogens, stresses, and developmental cues. The coupling of MAPK kinase kinase (MAP3K) --> MAPK kinase (MEK) --> MAPK core pathways to cell surface receptors remains poorly understood. Recombinant forms of MAP3K MEK kinase 1 (MEKK1) interact in vivo and in vitro with the STE20 protein homologue germinal center kinase (GCK), and both GCK and MEKK1 associate in vivo with the adapter protein tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2). These interactions may couple TNF receptors to the SAPK/JNK family of MAPKs; however, a molecular mechanism by which these proteins might collaborate to recruit the SAPKs/JNKs has remained elusive. Here we show that endogenous GCK and MEKK1 associate in vivo. In addition, we have developed an in vitro assay system with which we demonstrate that purified, active GCK and TRAF2 activate MEKK1. The RING domain of TRAF2 is necessary for optimal in vitro activation of MEKK1, but the kinase domain of GCK is not. Autophosphorylation within the MEKK1 kinase domain activation loop is required for activation. Forced oligomerization also activates MEKK1, and GCK elicits enhanced oligomerization of coexpressed MEKK1 in vivo. These results represent the first activation of MEKK1 in vitro using purified proteins and suggest a mechanism for MEKK1 activation involving induced oligomerization and consequent autophosphorylation mediated by upstream proteins.  相似文献   

7.
TRAF2 and ASK1 play essential roles in tumor necrosis factor alpha (TNF-alpha)-induced mitogen-activated protein kinase signaling. Stimulation through TNF receptor 2 (TNFR2) leads to TRAF2 ubiquitination and subsequent proteasomal degradation. Here we show that TNFR2 signaling also leads to selective ASK1 ubiquitination and degradation in proteasomes. c-IAP1 was identified as the ubiquitin protein ligase for ASK1 ubiquitination, and studies with primary B cells from c-IAP1 knock-out animals revealed that c-IAP1 is required for TNFR2-induced TRAF2 and ASK1 degradation. Moreover, in the absence of c-IAP1 TNFR2-mediated p38 and JNK activation was prolonged. Thus, the ubiquitin protein ligase activity of c-IAP1 is responsible for regulating the duration of TNF signaling in primary cells expressing TNFR2.  相似文献   

8.
Mycobacterium bovis bacillus Calmette-Guérin (BCG) induces innate immune responses through Toll-like receptor (TLR) 2 and TLR4. We investigated the role of apoptosis-regulating signal kinase (ASK) 1 in reactive oxygen species (ROS)-mediated innate immune responses induced by BCG mycobacterial infection. In macrophages, M. bovis BCG stimulation resulted in rapid activation of mitogen-activated protein kinases (MAPKs), secretion of inflammatory cytokines, such as tumor necrosis factor (TNF)-alpha and interleukin (IL)-6, and ROS generation in a TLR2- and TLR4-dependent manner. M. bovis BCG-induced ROS production led to robust activation of ASK1 upstream of the c-jun-N-terminal kinase and p38 MAPK, but not extracellular-regulated kinase 1/2. Blocking ASK1 activity markedly attenuated M. bovis BCG-induced TNF-alpha and IL-6 production by macrophages. Both TLR2 and TLR4 were required for optimal activation of ASK1 in response to M. bovis BCG. Furthermore, we present evidence that TNF receptor-associated factor (TRAF) 6 activities were essential for ROS-mediated ASK1 activation by M. bovis BCG. Finally, ASK1 activities were required for effective control of intracellular mycobacterial survival. Thus, the results of this study suggest a novel role of the TLR-ROS-TRAF6-ASK1 axis in the innate immune response to mycobacteria as a signaling intermediate.  相似文献   

9.
Apoptosis signal-regulating kinase 1 (ASK1) is a mitogenactivated protein kinase (MAPK) kinase kinase that activates JNK and p38 kinases. ASK1 is activated by various stresses, such as reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, lipopolysaccharide (LPS) and calcium influx which are thought to be responsible for the pathogenesis or exacerbations of various human diseases. Recent studies revealed the involvement of ASK1 in ROS- or ER stressrelated diseases, suggesting that ASK1 may be a potential therapeutic target of various human diseases. In this review, we focus on the current findings for the relationship between pathogenesis and ASK1-MAPK pathways.  相似文献   

10.
The type 1 insulin-like growth factor receptor (IGF-IR) is a receptor-tyrosine kinase that plays a critical role in signaling cell survival and proliferation. IGF-IR binding to its ligand, insulin-like growth factor (IGF-I) activates phosphoinositide 3-kinase (PI3K), promotes cell proliferation by activating the mitogen-activated protein kinase (MAPK) cascade, and blocks apoptosis by inducing the phosphorylation and inhibition of proapoptotic proteins such as BAD. Apoptosis signal-regulating kinase 1 (ASK1) is a MAP kinase kinase kinase (MAPKKK) that is required for c-Jun N-terminal kinase (JNK) and p38 activation in response to Fas and tumor necrosis factor (TNF) receptor stimulation, and for oxidative stress- and TNFalpha-induced apoptosis. The results presented here indicate that ASK1 forms a complex with the IGF-IR and becomes phosphorylated on tyrosine residue(s) in a manner dependent on IGF-IR activity. IGF-IR signaling inhibited ASK1 irrespective of TNFalpha-induced ASK1 activation and resulted in decreased ASK1-dependent JNK1 stimulation. Signaling through IGF-IR rescued cells from ASK1-induced apoptotic cell death in a manner independent of PI3K activity. These results indicate that IGF-IR signaling suppresses the ASK-1-mediated stimulation of JNK/p38 and the induction of programmed cell death. The simultaneous activation of MAP kinases and the inhibition of the stress-activated arm of the cascade by IGF-IR may constitute a potent proliferative signaling system and is possibly a mechanism by which IGF-I can stimulate growth and inhibit cell death in a wide variety of cell types and biological settings.  相似文献   

11.
Anandamide is a neuroimmunoregulatory molecule that triggers apoptosis in a number of cell types including PC12 cells. Here, we investigated the molecular mechanisms underlying anandamide-induced cell death in PC12 cells. Anandamide treatment resulted in the activation of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and p44/42 MAPK in apoptosing cells. A selective p38 MAPK inhibitor, SB203580, or dn-JNK, JNK1(A-F) or SAPKbeta(K-R), blocked anandamide-induced cell death, whereas a specific inhibitor of MEK-1/2, U0126, had no effect, indicating that activation of p38 MAPK and JNK is critical in anandamide-induced cell death. An important role for apoptosis signal-regulating kinase 1 (ASK1) in this event was also demonstrated by the inhibition of p38 MAPK/JNK activation and death in cells overexpressing dn-ASK1, ASK1 (K709M). Conversely, the constitutively active ASK1, ASK1DeltaN, caused prolonged p38 MAPK/JNK activation and increased cell death. These indicate that ASK1 mediates anandamide-induced cell death via p38 MAPK and JNK activation. Here, we also found that activation of p38 MAPK/JNK is accompanied by cytochrome c release from the mitochondria and caspase activation (which can be inhibited by SB203580), suggesting that anandamide triggers a mitochondrial dependent apoptotic pathway. The caspase inhibitor, zVAD, and the mitochondrial pore opening inhibitor, cyclosporine A, blocked anandamide-induced cell death but not p38 MAPK/JNK activation, suggesting that activation of these kinases may occur upstream of mitochondrial associated events.  相似文献   

12.
Shikonin derivatives exert powerful cytotoxic effects, induce apoptosis and escape multidrug resistance in cancer. However, the diverse mechanisms underlying their anticancer activities are not completely understood. Here, we demonstrated that shikonin-induced apoptosis is caused by reactive oxygen species (ROS)-mediated activation of Akt/ASK1/p38 mitogen-activated protein kinase (MAPK) and downregulation of p21Cip1. In the presence of shikonin, inactivation of Akt caused apoptosis signal-regulating kinase 1 (ASK1) dephosphorylation at Ser83, which is associated with ASK1 activation. Shikonin-induced apoptosis was enhanced by inhibition of Akt, whereas overexpression of constitutively active Akt prevented apoptosis through modulating ASK1 phosphorylation. Silencing ASK1 and MKK3/6 by siRNA reduced the activation of MAPK kinases (MKK) 3/6 and p38 MAPK, and apoptosis, respectively. Antioxidant N-acetyl cysteine attenuated ASK1 dephosphorylation and p38 MAPK activation, indicating that shikonin-induced ROS is involved in the activation of Akt/ASK1/p38 pathway. Expression of p21Cip1 was significantly induced in early response, but gradually decreased by prolonged exposure to shikonin. Overexpression of p21Cip1 have kept cells longer in G1 phase and attenuated shikonin-induced apoptosis. Depletion of p21Cip1 facilitated shikonin-induced apoptosis, implying that p21Cip1 delayed shikonin-induced apoptosis via G1 arrest. Immunohistochemistry and in vitro binding assays showed transiently altered localization of p21Cip1 to the cytoplasm by shikonin, which was blocked by Akt inhibition. The cytoplasmic p21Cip1 actually binds to and inhibits the activity of ASK1, regulating the cell cycle progression at G1. These findings suggest that shikonin-induced ROS activated ASK1 by decreasing Ser83 phosphorylation and by dissociation of the negative regulator p21Cip1, leading to p38 MAPK activation, and finally, promoting apoptosis.  相似文献   

13.
Previously, we have shown that ASK1-interacting protein 1 (AIP1, also known as DAB2IP), a novel member of the Ras-GAP (Ras-GTPase-activating protein) protein family, opens its conformation in response to tumor necrosis factor (TNF), allowing it to form a complex with TRAF2-ASK1 that leads to activation of ASK1-JNK/p38 signaling in endothelial cells (EC). In the present study, we show that a TNF-inducible 14-3-3-binding site on AIP1 is critical for the opening of its conformation and for the AIP1-mediated TNF signaling. Ser-604, located in the C-terminal domain of AIP1, was identified as a 14-3-3-binding site. TNF treatment of EC induces phosphorylation of AIP1 at Ser-604 as detected by a phospho-specific antibody, with a similar kinetics to ASK1-JNK/p38 activation. 14-3-3 associates with an open, active state of AIP1 assessed by an in vitro pulldown assay. Mutation of AIP1 at Ser-604 (AIP1-S604A) blocks TNF-induced complex formation of AIP1 with 14-3-3. TNF treatment normally induces association of AIP1 with TRAF2-ASK1. The interactions with TRAF2 and ASK1 do not occur with AIP1-S604A, suggesting that phosphorylation at this site not only creates a 14-3-3-binding site but also opens up AIP1, allowing binding to TRAF2 and ASK1. Overexpression of AIP1-S604A blocks TNF-induced ASK1-JNK activation. We further show that RIP1 (the Ser/Thr protein kinase receptor-interacting protein) associates with the GAP domain of AIP1 and mediates TNF-induced AIP1 phosphorylation at Ser-604 and JNK/p38 activation as demonstrated by both overexpression and small interfering RNA knockdown of RIP1 in EC. Furthermore, RIP1 synergizes with AIP1 (but not AIP1-S604A) in inducing both JNK/p38 activation and EC apoptosis. Our results demonstrate that RIP1-mediated AIP1 phosphorylation at the 14-3-3-binding site Ser-604 is essential for TNF-induced TRAF2-RIP1-AIP1-ASK1 complex formation and for the activation of ASK1-JNK/p38 apoptotic signaling.  相似文献   

14.
CDC25A phosphatase promotes cell cycle progression by activating G(1) cyclin-dependent kinases and has been postulated to be an oncogene because of its ability to cooperate with RAS to transform rodent fibroblasts. In this study, we have identified apoptosis signal-regulating kinase 1 (ASK1) as a CDC25A-interacting protein by yeast two-hybrid screening. ASK1 activates the p38 mitogen-activated protein kinase (MAPK) and c-Jun NH(2)-terminal protein kinase-stress-activated protein kinase (JNK/SAPK) pathways upon various cellular stresses. Coimmunoprecipitation studies demonstrated that CDC25A physically associates with ASK1 in mammalian cells, and immunocytochemistry with confocal laser-scanning microscopy showed that these two proteins colocalize in the cytoplasm. The carboxyl terminus of CDC25A binds to a domain of ASK1 adjacent to its kinase domain and inhibits the kinase activity of ASK1, independent of and without effect on the phosphatase activity of CDC25A. This inhibitory action of CDC25A on ASK1 activity involves diminished homo-oligomerization of ASK1. Increased cellular expression of wild-type or phosphatase-inactive CDC25A from inducible transgenes suppresses oxidant-dependent activation of ASK1, p38, and JNK1 and reduces specific sensitivity to cell death triggered by oxidative stress, but not other apoptotic stimuli. Thus, increased expression of CDC25A, frequently observed in human cancers, could contribute to reduced cellular responsiveness to oxidative stress under mitogenic or oncogenic conditions, while it promotes cell cycle progression. These observations propose a mechanism of oncogenic transformation by the dual function of CDC25A on cell cycle progression and stress responses.  相似文献   

15.
The roles of intracellular reactive oxygen species (ROS) and related signalling pathways in mycobacterial infection are largely unknown. Here we show that tuberculin purified protein derivative (PPD)/Toll-like receptor (TLR) 2/ROS signalling through activation of apoptosis-regulating signal kinase (ASK) 1 and p47phox pathways is responsible for the induction of proinflammatory responses during tuberculosis (TB) infection. Tuberculin PPD stimulation resulted in rapid activation of mitogen-activated protein kinases (MAPKs) and an early burst of ROS in monocytes/macrophages in a TLR2-dependent manner. PPD-induced ROS production led to robust activation of ASK1 upstream of p38 MAPK, via TLR2. Interestingly, phosphorylation of the cytosolic NADPH oxidase subunit p47phox and ASK1 activation are mutually dependent on PPD/TLR2-mediated signalling. Furthermore, active pulmonary TB patients showed upregulated ROS generation, as well as enhanced activation of ASK1/p38/p47phox pathways in their primary monocytes compared with healthy controls, which suggests a systemic primed status during TB. Taken together, these results indicate that activation of the ASK1/p38 MAPK/p47phox cascade plays a central role in PPD/TLR2-induced ROS generation and suggests the existence of a 'ROS/ASK1' inflammatory amplification feedback loop in monocytes/macrophages. The altered regulation of this axis with an increasing free-radical burden may contribute to the immunopathogenesis of human TB.  相似文献   

16.
ASK1 regulates influenza virus infection-induced apoptotic cell death   总被引:3,自引:0,他引:3  
Apoptosis occurs in influenza virus (IV)-infected cells. There are a number of mechanisms for the regulation of apoptosis. However, the molecular mechanism of IV infection-induced apoptosis is still controversial. Apoptosis signal-regulating kinase1 (ASK1) is a ubiquitously expressed mitogen-activated protein kinase kinase kinase (MAPKKK) that activates the SEK1-c-Jun N-terminal kinase (JNK) and MKK3/MKK6-p38 MAPK signaling cascades. ASK1 has been implicated in cytokine- and stress-induced apoptosis. Here, we show the following: (1) IV infection activated ASK1 and concomitantly phosphorylated JNK and p38 MAPK in human bronchial epithelial cells; (2) the activation of JNK and p38 MAPK but not extracellular-regulated kinase (ERK) in embryonic fibroblasts (MEFs) derived from ASK1 knockout mice (ASK1(-/-) MEFs) was depressed compared to MEFs derived from wild type mice (ASK1(+/+) MEFs); and (3) ASK1(-/-) MEFs were defective in IV infection-induced caspase-3 activation and cell death. These results indicate that apoptosis in IV-infected BEC is mediated through ASK1-dependent cascades.  相似文献   

17.
Apoptosis signal-regulating kinase 1 (ASK1) plays a pivotal role in oxidative stress-induced cell death. Reactive oxygen species disrupt the interaction of ASK1 with its cellular inhibitor thioredoxin and thereby activates ASK1. However, the precise mechanism by which ASK1 freed from thioredoxin undergoes oligomerization-dependent activation has not been fully elucidated. Here we show that endogenous ASK1 constitutively forms a high molecular mass complex including Trx ( approximately 1,500-2,000 kDa), which we designate ASK1 signalosome. Upon H(2)O(2) treatment, the ASK1 signalosome forms a higher molecular mass complex at least in part because of the recruitment of tumor necrosis factor receptor-associated factor 2 (TRAF2) and TRAF6. Consistent with our previous findings that TRAF2 and TRAF6 activate ASK1, H(2)O(2)-induced ASK1 activation and cell death were strongly reduced in the cells derived from Traf2-/- and Traf6-/- mice. A novel signaling complex including TRAF2, TRAF6, and ASK1 may thus be the key component in oxidative stress-induced cell death.  相似文献   

18.
Activation of apoptosis signal-regulating kinase 1 (ASK1)–p38 MAPK death signaling cascade is implicated in the death of dopaminergic neurons in substantia nigra in Parkinson's disease (PD). We investigated upstream activators of ASK1 using an MPTP mouse model of parkinsonism and assessed the temporal cascade of death signaling in ventral midbrain (VMB) and striatum (ST). MPTP selectively activated ASK1 and downstream p38 MAPK in a time-dependent manner in VMB alone. This occurred through selective protein thiol oxidation of the redox-sensitive thiol disulfide oxidoreductase, thioredoxin (Trx1), resulting in release of its inhibitory association with ASK1, while glutathione-S-transferase µ 1 (GSTM1) remained in reduced form in association with ASK1. Levels of tumor necrosis factor (TNF), a known activator of ASK1, increased early after MPTP in VMB. Protein covariation network analysis (PCNA) using protein states as nodes revealed TNF to be an important node regulating the ASK1 signaling cascade. In confirmation, blocking MPTP-mediated TNF signaling through intrathecal administration of TNF-neutralizing antibody prevented Trx1 oxidation and downstream ASK1–p38 MAPK activation. Averting an early increase in TNF, which leads to protein thiol oxidation resulting in activation of ASK1–p38 signaling, may be critical for neuroprotection in PD. Importantly, network analysis can help in understanding the cause/effect relationship within protein networks in complex disease states.  相似文献   

19.
Heat shock protein 72 (Hsp72) is thought to protect cells against cellular stress. The protective role of Hsp72 was investigated by determining the effect of this protein on the stress-activated protein kinase signaling pathways. Prior exposure of NIH 3T3 cells to mild heat shock (43 degrees C for 20 min) resulted in inhibition of H(2)O(2)-induced activation of apoptosis signal-regulating kinase 1 (ASK1). Overexpression of Hsp72 also inhibited H(2)O(2)-induced activation of ASK1 as well as that of downstream kinases in the p38 mitogen-activated protein kinase (MAPK) signaling cascade. Recombinant Hsp72 bound directly to ASK1 and inhibited ASK1 activity in vitro. Furthermore, coimmunoprecipitation analysis revealed a physical interaction between endogenous Hsp72 and ASK1 in NIH 3T3 cells exposed to mild heat shock. Hsp72 blocked both the homo-oligomerization of ASK1 and ASK1-dependent apoptosis. Hsp72 antisense oligonucleotides prevented the inhibitory effects of mild heat shock on H(2)O(2)-induced ASK1 activation and apoptosis. These observations suggest that Hsp72 functions as an endogenous inhibitor of ASK1.  相似文献   

20.
Extracellular ATP, an autocrine or paracrine intercellular transmitter, is known to induce apoptosis in macrophages. However, the precise signaling mechanisms of ATP-induced apoptosis remain to be elucidated. Here we showed that activation of p38 mitogen-activated protein kinase (MAPK) plays a critical role in ATP-induced apoptosis. p38 activation and apoptosis in macrophages were induced by ATP. ATP-induced apoptosis was mediated in part by production of reactive oxygen species (ROS) derived from NOX2/gp91(phox), a component of the NADPH oxidase complex expressed in macrophages and neutrophils. Furthermore, ATP-induced ROS generation, p38 activation, and apoptosis were almost completely inhibited by selective P2X(7) receptor antagonists. We also found that ATP-induced apoptosis were diminished in ASK1-deficient macrophages accompanied by the lack of p38 activation. These results demonstrate that ROS-mediated activation of the ASK1-p38 MAPK pathway downstream of P2X(7) receptor is required for ATP-induced apoptosis in macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号