首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 107 毫秒
1.
Previously we have shown that ASK-interacting protein 1 (AIP1, also known as DAB2IP), a novel member of the Ras-GAP protein family, mediates TNF-induced activation of ASK1-JNK signaling pathway. However, the mechanism by which TNF signaling is coupled to AIP1 is not known. Here we show that AIP1 is localized on the plasma membrane in resting endothelial cells (EC) in a complex with TNFR1. TNF binding induces release of AIP1 from TNFR1, resulting in cytoplasmic translocation and concomitant formation of an intracellular signaling complex comprised of TRADD, RIP1, TRAF2, and AIPl. A proline-rich region (amino acids 796-807) is critical for maintaining AIP1 in a closed form, which associates with a region of TNFR1 distinct from the death domain, the site of TNFR1 association with TRADD. An AIP1 mutant with deletion of this proline-rich region constitutively binds to TRAF2 and ASK1. A PERIOD-like domain (amino acids 591-719) of AIP1 binds to the intact RING finger of TRAF2, and specifically enhances TRAF2-induced ASK1 activation. At the same time, the binding of AIP1 to TRAF2 inhibits TNF-induced IKK-NF-kappaB signaling. Taken together, our data suggest that AIP1 is a novel transducer in TNF-induced TRAF2-dependent activation of ASK1 that mediates a balance between JNK versus NF-kappaB signaling.  相似文献   

2.
The apoptosis signal-regulating kinase 1 (ASK1)-JNK/p38 signaling pathway is pivotal component in cell apoptosis and can be activated by a variety of death stimuli including tumor necrosis factor (TNF) alpha and oxidative stress (reactive oxygen species). However, the mechanism for ASK1 activation is not fully understood. We have recently identified ASK1-interacting protein (AIP1) as novel signal transducer in TNFalpha-induced ASK1 activation by facilitating dissociation of ASK1 from its inhibitor 14-3-3. In the present study, we employed yeast two-hybrid system using the N-terminal domain of AIP1 as bait and identified homeodomain-interacting protein kinase 1 (HIPK1) as an AIP1-associated protein. Interestingly, we showed that TNFalpha induced HIPK1 desumoylation concomitant with a translocation from nucleus to cytoplasm at 15 min followed by a return to nucleus by 60 min. The kinetics of HIPK1 translocation correlates with those of stress-induced ASK1-JNK/P38 activation. A specific JNK inhibitor blocked the reverse but not the initial translocation of HIPK1, suggesting that the initial translocation is an upstream event of ASK1-JNK/p38 signaling and JNK activation regulates the reverse translocation as a feedback mechanism. Consistently, expression of HIPK1 increased, whereas expression of a kinase-inactive form (HIPK1-D315N) or small interference RNA of HIPK1 decreased stress-induced ASK1-JNK/P38 activation without effects on IKK-NF-kappaB signaling. Moreover, a sumoylation-defective mutant of HIPK1 (KR5) localizes to the cytoplasm and is constitutively active in ASK1-JNK/P38 activation. Furthermore, HIPK1-KR5 induces dissociation of ASK1 from its inhibitors 14-3-3 and thioredoxin and synergizes with AIP1 to induce ASK1 activation. Our study suggests that TNFalpha-induced desumoylation and cytoplasmic translocation of HIPK1 are critical in TNFalpha-induced ASK1-JNK/p38 activation.  相似文献   

3.
Although both tumor necrosis factor (TNF) and H2O2 induce activation of c-Jun N-terminal kinase (JNK) kinase cascades, it is not known whether they utilize distinct intracellular signaling pathways. In this study, we first examined a variety of pharmacological inhibitors on TNF and H2O2-induced JNK activation. Go6983 or staurosporine, which inhibits protein kinase C isoforms had no effects on TNF or H2O2-induced JNK activation. However, Go6976 and calphostin, which can inhibit protein kinase C as well as protein kinase D (PKD), blocked H2O2- but not TNF-induced JNK activation, suggesting that PKD may be specifically involved in H2O2-induced JNK activation. Consistently, H2O2, but not TNF, induced phosphorylation of PKD and translocation of PKD from endothelial cell membrane to cytoplasm where it associates with the JNK upstream activator, apoptosis signal-regulating kinase 1 (ASK1). The association is mediated through the pleckstrin homology domain of PKD and the C-terminal domain of ASK1. Inhibition of PKD by Go6976 or by small interfering RNA of PKD blocked H2O2-induced ASK1-JNK activation and endothelial cell apoptosis. Interestingly, H2O2 induced 14-3-3 binding to PKD via the phospho-Ser-205/208 and phospho-Ser-219/223 and H2O2-induced 14-3-3 binding of PKD was specifically blocked by Go6976 but not by Go6983. More significantly, the 14-3-3-binding defective forms of PKD failed to associate with ASK1 and to activate JNK signaling, highlighting the importance of 14-3-3 binding of PKD in H2O2-induced activation of ASK1-JNK cascade. Thus, our data have identified PKD as a critical mediator in H2O2- but not TNF-induced ASK1-JNK signaling.  相似文献   

4.
Tumor necrosis factor-alpha (TNF-alpha) stimulates expression of endothelial cell (EC) genes that may promote atherosclerosis in part by an activation of mitogen-activated protein (MAP) kinases. Ebselen (2-phenyl-1,2-benzisoselenazol-3[2H]-one), a selenoorganic compound, is effective for acute ischemic stroke; however, its effect on EC has not yet been elucidated. We examined the effect of ebselen on TNF-alpha-induced MAP kinase activation and adhesion molecule expression in cultured human umbilical vein endothelial cells (HUVEC). Extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 were rapidly and significantly activated by TNF-alpha in HUVEC. TNF-alpha-induced JNK activation was inhibited by ebselen, whereas ERK1/2 and p38 were not affected. Apoptosis signal-regulated kinase 1 (ASK1) was suggested to be involved in TNF-alpha-induced JNK activation because transfection of kinase-inactive ASK1 inhibited TNF-alpha-induced JNK activation. Ebselen inhibited TNF-alpha-induced TNF receptor-associated factor 2 (TRAF2)-ASK1 complex formation and phosphorylation of stress-activated protein kinase ERK kinase 1 (SEK1), which is an upstream signaling molecule of JNK. Finally, TNF-alpha-induced activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB) activation and resultant intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) expressions were inhibited by ebselen. Specific inhibitors for JNK and NF-kappaB also inhibited TNF-alpha-induced ICAM-1 and VCAM-1 expressions in HUVEC. These findings suggest that ebselen prevents TNF-alpha-induced EC activation through the inhibition of TRAF2-ASK1-SEK1 signaling pathway, which leads to JNK activation. Inhibition of JNK by ebselen may imply its usefulness for the prevention of atherosclerosis relevant to EC activation.  相似文献   

5.
Focal adhesion kinase (FAK) is widely involved in important cellular functions such as proliferation, migration, and survival, although its roles in immune and inflammatory responses have yet to be explored. We demonstrate a critical role for FAK in the tumor necrosis factor (TNF)-induced activation of nuclear factor (NF)-kappaB, using FAK-deficient (FAK-/-) embryonic fibroblasts. Interestingly, TNF-induced interleukin (IL)-6 production was nearly abolished in FAK-/- fibroblasts, whereas a normal level of production was obtained in FAK+/- or FAK+/+ fibroblasts. FAK deficiency did not affect the three types of mitogen-activated protein kinases, ERK, JNK, and p38. Similarly, TNF-induced activation of activator protein 1 or NF-IL-6 was not impaired in FAK-/- cells. Of note, TNF-induced NF-kappaB DNA binding activity and activation of IkappaB kinases (IKKs) were markedly impaired in FAK-/- cells, whereas the expression of TNF receptor I or other signaling molecules such as receptor-interacting protein (RIP), tumor necrosis factor receptor-associated factor 2 (TRAF2), IKKalpha, IKKbeta, and IKKgamma was unchanged. Also, TNF-induced association of FAK with RIP and subsequent association of RIP with TRAF2 were not observed, resulting in a failure of RIP to recruit the IKK complex in FAK-/- cells. The reintroduction of wild type FAK into FAK-/- cells restored the interaction of RIP with TRAF2 and the IKK complex and allowed recovery of NF-kappaB activation and subsequent IL-6 production. Thus, we propose a novel role for FAK in the NF-kappaB activation pathway leading to the production of cytokines.  相似文献   

6.
The stress-activated protein kinases (SAPKs, also called c-Jun NH(2)-terminal kinases) and the p38s, two mitogen-activated protein kinase (MAPK) subgroups activated by cytokines of the tumor necrosis factor (TNF) family, are pivotal to the de novo gene expression elicited as part of the inflammatory response. Apoptosis signal-regulating kinase 1 (ASK1) is a MAPK kinase kinase (MAP3K) that activates both the SAPKs and p38s in vivo. Here we show that TNF receptor (TNFR) associated factor 2 (TRAF2), an adapter protein that couples TNFRs to the SAPKs and p38s, can activate ASK1 in vivo and can interact in vivo with the amino- and carboxyl-terminal noncatalytic domains of the ASK1 polypeptide. Expression of the amino-terminal noncatalytic domain of ASK1 can inhibit TNF and TRAF2 activation of SAPK. TNF can stimulate the production of reactive oxygen species (ROS), and the redox-sensing enzyme thioredoxin (Trx) is an endogenous inhibitor of ASK1. We also show that expression of TRAF2 fosters the production of ROS in transfected cells. We demonstrate that Trx significantly inhibits TRAF2 activation of SAPK and blocks the ASK1-TRAF2 interaction in a reaction reversed by oxidants. Finally, the mechanism of ASK1 activation involves, in part, homo-oligomerization. We show that expression of ASK1 with TRAF2 enhances in vivo ASK1 homo-oligomerization in a manner dependent, in part, upon the TRAF2 RING effector domain and the generation of ROS. Thus, activation of ASK1 by TNF requires the ROS-mediated dissociation of Trx possibly followed by the binding of TRAF2 and consequent ASK1 homo-oligomerization.  相似文献   

7.
We have previously shown that tumor necrosis factor (TNF)-induced desumoylation and subsequent cytoplasmic translocation of HIPK1 are critical for ASK1-JNK activation. However, the mechanism by which TNF induces desumoylation of HIPK1 is unclear. Here, we show that SENP1, a SUMO-specific protease, specifically deconjugates SUMO from HIPK1 in vitro and in vivo. In resting endothelial cells (ECs), SENP1 is localized in the cytoplasm where it is complexed with an antioxidant protein thioredoxin. TNF induces the release of SENP1 from thioredoxin as well as nuclear translocation of SENP1. TNF-induced SENP1 nuclear translocation is specifically blocked by antioxidants such as N-acetyl-cysteine, suggesting that TNF-induced translocation of SENP1 is ROS dependent. TNF-induced nuclear import of SENP1 kinetically correlates with HIPK1 desumoylation and cytoplasmic translocation. Furthermore, the wild-type form of SENP1 enhances, whereas the catalytic-inactive mutant form or siRNA of SENP1 blocks, TNF-induced desumoylation and cytoplasmic translocation of HIPK1 as well as TNF-induced ASK1-JNK activation. More importantly, these critical functions of SENP1 in TNF signaling were further confirmed in mouse embryonic fibroblast cells derived from SENP1-knockout mice. We conclude that SENP1 mediates TNF-induced desumoylation and translocation of HIPK1, leading to an enhanced ASK1-dependent apoptosis.  相似文献   

8.
ASK1-signaling promotes c-Myc protein stability during apoptosis   总被引:2,自引:0,他引:2  
We previously reported that JNK is involved in the regulation of c-Myc-mediated apoptosis triggered by UV irradiation and anticancer drug treatment. Here we show that ASK1 is an upstream regulator for c-Myc-mediated apoptosis triggered by UV, and we found a direct role for Ser-62 and Ser-71 in the regulation of protein stability and function of c-Myc. The ASK1-JNK pathway enhanced the protein stability of c-Myc through phosphorylation at Ser-62 and Ser-71, which was required for c-Myc-dependent apoptosis by ASK1-signaling. Interestingly, ASK1-signaling attenuated the degradation of ubiquitinated c-Myc without affecting the ubiquitination process. Together, these findings indicate that the ASK1-JNK pathway promotes the proapoptotic activity of c-Myc by modulating c-Myc protein stability through phosphorylation at Ser-62 and Ser-71.  相似文献   

9.
The mechanism of tumor necrosis factor (TNF)-induced nonapoptotic cell death is largely unknown, although the mechanism of TNF-induced apoptosis has been studied extensively. In wild-type mouse embryonic fibroblast cells under a caspase-inhibited condition, TNF effectively induced cell death that morphologically resembled necrosis. In this study, we utilized gene knockout mouse embryonic fibroblasts cells and found that tumor necrosis factor receptor (TNFR) I mediates TNF-induced necrotic cell death, and that RIP, FADD, and TRAF2 are critical components of the signaling cascade of this TNF-induced necrotic cell death. Inhibitors of NF-kappaB facilitated TNF-induced necrotic cell death, suggesting that NF-kappaB suppresses the necrotic cell death pathway. JNK, p38, and ERK activation seem not to be required for this type of cell death because mitogen-activated protein kinase inhibitors did not significantly affect TNF-induced necrotic cell death. In agreement with the previous reports that the reactive oxygen species (ROS) may play an important role in this type of cell death, the ROS scavenger butylated hydroxyanisole efficiently blocked TNF-induced necrotic cell death. Interestingly, during TNF-induced necrotic cell death, the cellular ROS level was significantly elevated in wild type, but not in RIP(-/-), TRAF2(-/-), and FADD(-/-) cells. These results suggest that RIP, TRAF2, and FADD are crucial in mediating ROS accumulation in TNF-induced necrotic cell death.  相似文献   

10.
Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling   总被引:3,自引:0,他引:3  
The cytokines IL-1 and TNF induce expression of a series of genes that regulate inflammation through activation of NF-kappaB signal transduction pathways. TAK1, a MAPKKK, is critical for both IL-1- and TNF-induced activation of the NF-kappaB pathway. TAB2, a TAK1-binding protein, is involved in IL-1-induced NF-kappaB activation by physically linking TAK1 to TRAF6. However, IL-1-induced activation of NF-kappaB is not impaired in TAB2-deficient embryonic fibroblasts. Here we report the identification and characterization of a novel protein designated TAB3, a TAB2-like molecule that associates with TAK1 and can activate NF-kappaB similar to TAB2. Endogenous TAB3 interacts with TRAF6 and TRAF2 in an IL-1- and a TNF-dependent manner, respectively. Further more, IL-1 signaling leads to the ubiquitination of TAB2 and TAB3 through TRAF6. Cotransfection of siRNAs directed against both TAB2 and TAB3 inhibit both IL-1- and TNF-induced activation of TAK1 and NF-kappaB. These results suggest that TAB2 and TAB3 function redundantly as mediators of TAK1 activation in IL-1 and TNF signal transduction.  相似文献   

11.
We have previously shown that ASK1-interacting protein 1 (AIP1) transduces tumor necrosis factor-induced ASK1-JNK signaling. Because endoplasmic reticulum (ER) stress activates ASK1-JNK signaling cascade, we investigated the role of AIP1 in ER stress-induced signaling. We created AIP1-deficient mice (AIP1-KO) from which mouse embryonic fibroblasts and vascular endothelial cells were isolated. AIP1-KO cells show dramatic reductions in ER stress-induced, but not oxidative stress-induced, ASK1-JNK activation and cell apoptosis. The ER stress-induced IRE1-JNK/XBP-1 axis, but not the PERK-CHOP1 axis, is blunted in AIP1-KO cells. ER stress induced formation of an AIP1-IRE1 complex, and the PH domain of AIP1 is critical for the IRE1 interaction. Furthermore, reconstitution of AIP1-KO cells with AIP1 wild type, not an AIP1 mutant with a deletion of the PH domain (AIP1-DeltaPH), restores ER stress-induced IRE1-JNK/XBP-1 signaling. AIP1-IRE1 association facilitates IRE1 dimerization, a critical step for activation of IRE1 signaling. More importantly, AIP1-KO mice show impaired ER stress-induced IRE1-dependent signaling in vivo. We conclude that AIP1 is essential for transducing the IRE1-mediated ER stress response.  相似文献   

12.
A20 zinc finger protein is a negative regulator of tumor necrosis factor (TNF)-induced signaling pathways leading to apoptosis, stress response and inflammation. A20 has been shown to bind to TNF-receptor-associated factor 2 (TRAF2) and 14-3-3 chaperone proteins. Our data indicate that the zinc finger domain of A20 is sufficient and that neither TRAF2 nor 14-3-3 binding is necessary for the inhibitory effects of A20. Mutations in the 14-3-3 binding site of A20 did, however, result in a partial cleavage of A20 protein suggesting that 14-3-3 chaperone proteins may stabilize A20. Furthermore, we show that A20 acts early in TNF-induced signaling cascades blocking both TNF-induced rapid activation of c-Jun N-terminal kinase and processing of the receptor-associated caspase-8. Taken together our data indicate that the zinc finger domain of A20 contains all necessary functional domains required for the inhibition of TNF signaling and that A20 may function at the level of the receptor signaling complex.  相似文献   

13.
Trimeric tumor necrosis factor (TNF) binding leads to recruitment of TRADD to TNFR1. In current models, TRADD recruits RIP, TRAF2, and FADD to activate NF-kappaB, Jun N-terminal protein kinase (JNK), and apoptosis. Using stable short-hairpin RNA (shRNA) knockdown (KD) cells targeting these adaptors, TNF death-inducing signaling complex immunoprecipitation demonstrates competitive binding of TRADD and RIP to TNFR1, whereas TRAF2 recruitment requires TRADD. Analysis of KD cells indicates that FADD is necessary for Fas-L- or TRAIL- but not TNF-induced apoptosis. Interestingly, TRADD is dispensable, while RIP is required for TNF-induced apoptosis in human tumor cells. TRADD is required for c-Jun phosphorylation upon TNF exposure. RIP KD abrogates formation of complex II following TNF exposure, whereas TRADD KD allows efficient RIP-caspase 8 association. Treatment with TRAIL also induces formation of a complex II containing FADD, RIP, IKKalpha, and caspase 8 and 10, leading to activation of caspase 8. Our data suggest that TNF triggers apoptosis in a manner distinct from that of Fas-L or TRAIL.  相似文献   

14.
The enzymatic activity of caspases is implicated in the execution of apoptosis and inflammation. Here we demonstrate a novel nonenzymatic function for caspase-2 other than its reported proteolytic role in apoptosis. Caspase-2, unlike caspase-3, -6, -7, -9, -11, -12, and -14, is a potent inducer of NF-kappaB and p38 MAPK activation in a TRAF2-mediated way. Caspase-2 interacts with TRAF1, TRAF2, and RIP1. Furthermore, we demonstrate that endogenous caspase-2 is recruited into a large and inducible protein complex, together with TRAF2 and RIP1. Structure-function analysis shows that NF-kappaB activation occurs independent of enzymatic activity of the protease and that the caspase recruitment domain of caspase-2 is sufficient for the activation of NF-kappaB and p38 MAPK. These results demonstrate the inducible assembly of a novel protein complex consisting of caspase-2, TRAF2, and RIP1 that activates NF-kappaB and p38 MAPK through the caspase recruitment domain of caspase-2 independently of its proteolytic activity.  相似文献   

15.
Previously we have shown that tyrosine 718 of ASK1 when phosphorylated is critical for SOCS1 binding and SOCS1-mediated degradation of ASK1. However, the kinase and phosphatase responsible for phosphorylation and dephosphorylation of ASK1 at Tyr-718 are unknown. In this study, we identified JAK2 and SHP2 as a Tyr-718-specific kinase and phosphatase, respectively. Interferon-γ (IFN-γ) induced degradation of ASK1 in normal but not in SOCS1-KO endothelial cells (EC). IFN-γ-induced tyrosine phosphorylation of ASK1 at Tyr-718 was blocked by a JAK2-specific inhibitor. IFN-γ enhanced the association between JAK2 and ASK1, and the ASK1-JAK2 complex was labile and was stabilized by the proteasomal inhibitor MG132. Furthermore, JAK2, but not JAK1, directly bound to and phosphorylated ASK1 at Tyr-718, leading to an enhanced association of ASK1 with SOCS1 and subsequent ASK1 degradation. Next, we showed that overexpression of the SH2-containing protein-tyrosine phosphatase-2 (SHP2) augmented, whereas a phosphatase-inactive mutant of SHP2 inhibited, TNF-induced ASK1 dephosphorylation. SHP2 associated with ASK1 in response to tumor necrosis factor in EC. An SHP-2 substrate-trapping mutant formed a complex with tyrosine-phosphorylated ASK1, suggesting that ASK1 is a direct SHP2 substrate. Moreover, SHP2 wild type, but not a catalytically inactive mutant, dissociated SOCS1 from ASK1. IFN-γ-induced ASK1 Tyr(P)-718 was enhanced in mouse EC deficient in SHP2 (SHP2-KO). In contrast, tumor necrosis factor-induced dephosphorylation of ASK1 at Tyr(P)-718 and activation of ASK1-JNK signaling, as well as EC apoptosis, are significantly reduced in SHP2-KO EC. Our data suggest that JAK2-SOCS1 and SHP2 reciprocally regulate ASK1 phosphorylation and stability in response to cytokines.Myocardial infarction due to atherosclerosis of coronary arteries remains the leading cause of death in the United States. It has become clear that increases in inflammatory mediators represent a common pathogenic mechanism for atherosclerosis (1). The vascular cell that normally limits the inflammatory and atherosclerotic process is the EC.3 Proinflammatory stimuli induce EC dysfunction, which is characterized by an enhanced sensitivity of vascular cells to proinflammatory and proapoptotic stimuli. Studies from our laboratory and others have demonstrated that ASK1 (apoptosis signal-regulating kinase-1), a member of MAP3K family (2, 3), is an effector of inflammation in EC (48). Almost all inflammatory stimuli such as tumor necrosis factor-α (TNF), interleukin-1 (IL-1), and reactive oxygen species activate ASK1. Activated ASK1 subsequently recruits and activates its downstream target MAP2Ks (MKK3/7 and MKK4/7), which in turn activate MAPKs (JNK and p38). Studies from ASK1-deficient mice have also linked ASK1 to cardiovascular pathogenesis. ASK1 deletion in mice attenuated angiotensin II-induced cardiac hypertrophy and remodeling. Neointimal formation due to proliferation of smooth muscle cells in a cuff injury model is also attenuated by ASK1 deletion in mice (9, 10).Although the linkage of ASK1 to inflammation is very strong, the mechanism by which inflammatory stimuli, including TNF, activate ASK1 is not fully understood. The identification of proteins associated with ASK1 and their regulation on ASK1 have provided some insights into the mechanism for ASK1 activation. ASK1 is a 170-kDa protein that is composed of an inhibitory N-terminal domain, an internal kinase domain, and a C-terminal regulatory domain. One important regulatory mechanism of ASK1 activity is its Ser/Thr phosphorylation and dephosphorylation by kinases and phosphatases. ASK1 is basally phosphorylated at Ser-967 by an unidentified kinase, and 14-3-3 binds to this site and inhibits ASK1 activity (11, 12). TNF activates ASK1 in part by dissociating these cellular inhibitors from ASK1 (4, 7). Recently, we have identified PP2A as a phosphatase in TNF-induced dephosphorylation of ASK1 Ser(P)-967 (13). In addition to the 14-3-3-binding site, Ser(P)-967, ASK1 is phosphorylated at Ser-83 by Akt, leading to inhibition of ASK1 activity. In contrast, autophosphorylation of ASK1 at Thr-838 leads to oligomerization and activation (14). Phosphorylation of Thr-845 can be negatively regulated by the phosphatase PP5 (15). Similarly, we found that the ASK1 autophosphorylation at Thr-813 and Thr-842 also positively regulates ASK1 signaling (16).In contrast to Ser/Thr phosphorylation, regulation of ASK1 by tyrosine phosphorylation is less well understood. We have recently shown that ASK1 is phosphorylated at Tyr-718, and this phosphorylation is critical for the binding to suppressor of cytokine signaling-1 (SOCS1), a subunit of ubiquitin ligase responsible for ASK1 degradation (17). Tyrosine phosphorylation of ASK1 is up-regulated in response to growth factors and cytokines such as IFN-γ, whereas this phosphorylation can be down-regulated by TNF treatment, resulting in ASK1 dissociation from SOCS1. However, the kinase and phosphatase responsible for phosphorylation and dephosphorylation of ASK1 at Tyr-718 are not known.The cytoplasmic tyrosine kinase, JAK2, autophosphorylates in response to growth factors and cytokines, including IFN-γ. JAK2 then activates cytokine receptors and other cytoplasmic proteins such as the STATs by phosphorylating their key tyrosine residue. The JAK/STAT pathway can be regulated by SH2-containing protein-tyrosine phosphatases such as SHP2 (1820). SHP2 is ubiquitously expressed and composed of two SH2 domains on the N-terminal and C-terminal protein-tyrosine phosphatase (PTP) domain. The SH2 domain of SHP2 mediates the association with phosphotyrosine-containing proteins present on activated receptors as well as on activated JAKs and STATs; this association triggers activation of the tyrosine phosphatase domain and subsequent dephosphorylation of substrates. SHP2 signals downstream of receptor tyrosine kinases and cytokine receptors, and in most cases it serves to positively transduce signals from these receptors. In other instances SHP2 has been shown to exhibit inhibitory signaling properties by negatively regulating the JAK-STAT pathway (19).In this study, we demonstrate that the IFN-γ-activated kinase JAK2 and TNF-activated SHP2 are the tyrosine kinase and phosphatase for Tyr-718 on ASK1, respectively. The actions of both JAK2 and SHP2 affect protein turnover of ASK1 and thus regulate ASK1/JNK-dependent proinflammatory and proapoptotic pathways in EC.  相似文献   

16.
Several chemical compounds not known to interact with tumor necrosis factor (TNF) signal transducing proteins inhibit TNF-mediated activation of vascular endothelial cells (EC). Four structurally diverse agents, arachidonyl trifluoromethylketone, staurosporine, sodium salicylate, and C6-ceramide, were studied. All four agents caused EC apoptosis at concentrations that inhibited TNF-induced IkappaBalpha degradation. However, evidence of apoptosis was not evident until after several (e.g. 3-12) hours of treatment, whereas 2 h of treatment was sufficient to inhibit TNF responses. IL-1-induced IkappaBalpha degradation was unaffected by these treatments. Inhibition of TNF signaling could not be prevented with either of the broad spectrum caspase inhibitors zVADfmk or yVADcmk. The inhibition of p38 kinase with SB203580 prevented the inhibition of TNF signaling by all agents except arachidonyl trifluoromethylketone. No changes in the levels or molecular weights of the adaptor proteins TRADD (TNF receptor-associated death domain), RIP (receptor-interacting protein), or TRAF2 (TNF receptor-associated factor-2) were caused by apoptogenic drugs. However, TNF receptor 1 (TNFR1) surface expression was significantly reduced by all four agents. Furthermore, TNF-dependent recruitment of TRADD to surface TNFR1 was also inhibited. These data suggest that several putative inhibitors of TNF signaling work by triggering apoptosis and that an early event coincident with the initiation of apoptosis, preceding evidence of injury, is loss of TNFR1. Consistent with this hypothesis, cotreatment of EC with the metalloproteinase inhibitor Tapi (TNF-alpha proteinase inhibitor) blocked the reduction in surface TNFR1 by apoptogenic drugs and prevented inhibition of TNF-induced IkappaBalpha degradation without blocking apoptosis. TNFR1 loss could be a mechanism to limit inflammation in response to apoptotic cell death.  相似文献   

17.
TRAF2 and ASK1 play essential roles in tumor necrosis factor alpha (TNF-alpha)-induced mitogen-activated protein kinase signaling. Stimulation through TNF receptor 2 (TNFR2) leads to TRAF2 ubiquitination and subsequent proteasomal degradation. Here we show that TNFR2 signaling also leads to selective ASK1 ubiquitination and degradation in proteasomes. c-IAP1 was identified as the ubiquitin protein ligase for ASK1 ubiquitination, and studies with primary B cells from c-IAP1 knock-out animals revealed that c-IAP1 is required for TNFR2-induced TRAF2 and ASK1 degradation. Moreover, in the absence of c-IAP1 TNFR2-mediated p38 and JNK activation was prolonged. Thus, the ubiquitin protein ligase activity of c-IAP1 is responsible for regulating the duration of TNF signaling in primary cells expressing TNFR2.  相似文献   

18.
Mycobacterium bovis bacillus Calmette-Guérin (BCG) induces innate immune responses through Toll-like receptor (TLR) 2 and TLR4. We investigated the role of apoptosis-regulating signal kinase (ASK) 1 in reactive oxygen species (ROS)-mediated innate immune responses induced by BCG mycobacterial infection. In macrophages, M. bovis BCG stimulation resulted in rapid activation of mitogen-activated protein kinases (MAPKs), secretion of inflammatory cytokines, such as tumor necrosis factor (TNF)-alpha and interleukin (IL)-6, and ROS generation in a TLR2- and TLR4-dependent manner. M. bovis BCG-induced ROS production led to robust activation of ASK1 upstream of the c-jun-N-terminal kinase and p38 MAPK, but not extracellular-regulated kinase 1/2. Blocking ASK1 activity markedly attenuated M. bovis BCG-induced TNF-alpha and IL-6 production by macrophages. Both TLR2 and TLR4 were required for optimal activation of ASK1 in response to M. bovis BCG. Furthermore, we present evidence that TNF receptor-associated factor (TRAF) 6 activities were essential for ROS-mediated ASK1 activation by M. bovis BCG. Finally, ASK1 activities were required for effective control of intracellular mycobacterial survival. Thus, the results of this study suggest a novel role of the TLR-ROS-TRAF6-ASK1 axis in the innate immune response to mycobacteria as a signaling intermediate.  相似文献   

19.
Murine protein serine/threonine kinase 38 (MPK38) is a member of the AMP-activated protein kinase-related serine/threonine kinase family that plays an important role in various cellular processes, including cell cycle, signaling pathways, and self-renewal of stem cells. Here we demonstrate a functional association between MPK38 and apoptosis signal-regulating kinase 1 (ASK1). The physical association between MPK38 and ASK1 was mediated through their carboxyl-terminal regulatory domains and was increased by H(2)O(2) or tumor necrosis factor alpha treatment. The use of kinase-dead MPK38 and ASK1 mutants revealed that MPK38-ASK1 complex formation was dependent on the activities of both kinases. Ectopic expression of wild-type MPK38, but not kinase-dead MPK38, stimulated ASK1 activity by Thr(838) phosphorylation and enhanced ASK1-mediated signaling to both JNK and p38 kinases. However, the phosphorylation of MKK6 and p38 by MPK38 was not detectable. In addition, MPK38-mediated ASK1 activation was induced through the increased interaction between ASK1 and its substrate MKK3. MPK38 also stimulated H(2)O(2)-mediated apoptosis by enhancing the ASK1 activity through Thr(838) phosphorylation. These results suggest that MPK38 physically interacts with ASK1 in vivo and acts as a positive upstream regulator of ASK1.  相似文献   

20.
The cytokine tumor necrosis factor alpha (TNF-alpha) stimulates the NF-kappaB, SAPK/JNK, and p38 mitogen-activated protein (MAP) kinase pathways by recruiting RIP1 and TRAF2 proteins to the tumor necrosis factor receptor 1 (TNFR1). Genetic studies have revealed that RIP1 links the TNFR1 to the IkappaB kinase (IKK) complex, whereas TRAF2 couples the TNFR1 to the SAPK/JNK cascade. In transfection studies, RIP1 and TRAF2 stimulate p38 MAP kinase activation, and dominant-negative forms of RIP1 and TRAF2 inhibit TNF-alpha-induced p38 MAP kinase activation. We found TNF-alpha-induced p38 MAP kinase activation and interleukin-6 (IL-6) production impaired in rip1(-/-) murine embryonic fibroblasts (MEF) but unaffected in traf2(-/-) MEF. Yet, both rip1(-/-) and traf2(-/-) MEF exhibit a normal p38 MAP kinase response to inducers of osmotic shock or IL-1alpha. Thus, RIP1 is a specific mediator of the p38 MAP kinase response to TNF-alpha. These studies suggest that TNF-alpha-induced activation of p38 MAP kinase and SAPK/JNK pathways bifurcate at the level of RIP1 and TRAF2. Moreover, endogenous RIP1 associates with the MAP kinase kinase kinase (MAP3K) MEKK3 in TNF-alpha-treated cells, and decreased TNF-alpha-induced p38 MAP kinase activation is observed in Mekk3(-/-) cells. Taken together, these studies suggest a mechanism whereby RIP1 may mediate the p38 MAP kinase response to TNF-alpha, by recruiting the MAP3K MEKK3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号