首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
醋酸钙不动杆菌的分离鉴定及溶藻特性   总被引:2,自引:0,他引:2  
淡水微囊藻水华不仅造成水体动植物缺氧死亡,而且释放藻毒素,影响人类和其它动物的健康。利用液体感染技术,从河南省平顶山市白龟山水库分离一株能够溶解铜绿微囊藻PCC 7806的溶藻菌,命名为溶藻菌5,16S r DNA核苷酸序列测序证实该菌株为醋酸钙不动杆菌。它具有一定的溶藻特异性,只溶解PCC 7806,对FACHB-930和斜生栅藻没有影响,能够促进衣藻和红球藻的生长。最佳溶藻体积比为1∶1。溶藻菌5的菌体和无细胞培养物均具有相同的溶藻效果。显微观察藻细胞被溶解的黄化液显示细菌并未附着在藻细胞周围,也无菌胶膜形成。表明溶藻菌5可能通过释放杀藻物质和与藻竞争营养物质两种机制溶解藻细胞。  相似文献   

2.
【背景】赤潮频发引起严重的海洋生态学问题,不仅直接影响到海洋生态系统稳定、海洋生物资源可持续利用和水产养殖业等海洋产业的健康发展,而且对人类健康也构成了严重威胁。高效的溶藻细菌是生物法防控赤潮的有效工具之一。【目的】分离得到对中肋骨条藻具有高效溶藻效果的溶藻细菌,并对其进行分子鉴定,研究该菌株的溶藻机理以及溶藻菌所分泌溶藻物质的特性。【方法】采用2216E平板稀释涂布法分离纯化细菌,测定16S rRNA基因序列以鉴定细菌种类,利用显微镜计数溶藻菌处理后的目标藻种计算溶藻率,通过扫描电镜观察溶藻菌对中肋骨条藻的溶藻过程,利用常规生理生化方法研究溶藻菌溶藻物质的特征,并通过透析袋截留法研究溶藻物质分子量大小。【结果】分离得到一株中肋骨条藻高效溶藻菌FDHY-CJ,该菌株属于交替单胞菌属(Alteromonas sp. FDHY-CJ)。该菌株72 h处理赤潮藻结果显示,对中肋骨条藻溶藻率为95.45%,对于其他常见赤潮藻溶藻率低于40%。溶藻菌FDHY-CJ通过胞外分泌物溶藻;溶藻物质的溶藻特性不受反复冻融的影响,但对酸碱性及温度较为敏感;扫描电镜观察结果显示该溶藻菌的溶藻物质直接溶解中肋骨条藻的细胞壁,致使硅质壳打开、内容物流出,达到溶藻的效果;溶藻活性物质具有被乙醇和乙酸乙酯沉淀的特性。【结论】溶藻菌FDHY-CJ对中肋骨条藻具有特异溶藻作用,对其他常见赤潮溶藻效果不明显;该细菌溶藻方式为通过分泌物间接溶藻,溶藻物质属于蛋白类,大小在3.5?10 kD之间。  相似文献   

3.
溶藻细菌DC-L5的分离、鉴定及其溶藻特性   总被引:5,自引:0,他引:5  
从滇池蓝藻水华集聚区分离获得一株溶藻细菌DC-L5,通过形态及16S rDNA测序分析鉴定为短小芽孢杆菌.用小白鼠进行生物安全实验,小白鼠无中毒症状.研究表明当细菌处于对数生长期时溶藻效果最强,共培养5d使铜锈微囊藻的叶绿素α含量下降83.33%,使惠氏微囊藻、绿色微囊藻、水华束丝藻和水华鱼腥藻4种蓝藻叶绿素α下降率最高为67.6%,最低为58.5%,平均为62.25%.离心沉降后,发现沉淀菌体和无菌上清液对铜锈微囊藻都有溶藻效果,但溶藻效果不及原菌液,推测DC-L5可能是通过直接接触使藻细胞凝聚下沉及进一步的生物降解,同时存在抑制藻细胞生长的胞外分泌物.高温热处理后菌液溶藻作用不明显,推测高温可能使菌体或胞外分泌物质失活.  相似文献   

4.
从太湖水华水体中分离纯化细菌, 再将细菌的LB液体和固体斜面纯培养物分别收集后感染铜绿微囊藻(Microcystis aeruginosa)细胞, 从中筛选出7株具有溶藻活性的细菌, 并对其中一株溶藻细菌THW7的溶藻方式及溶藻活性物质对铜绿微囊藻生理活性的影响进行了初步研究。结果表明: 仅采用细菌的LB液体纯培养物进行溶藻细菌筛选会存在误筛或高估溶藻效率的风险, 而采用细菌的固体斜面纯培养物进行筛选则可避免以上风险; 溶藻细菌THW7通过分泌胞外活性物质的方式间接溶藻; 在THW7无菌滤液胁迫下, 铜绿微囊藻的生长受到显著抑制(P<0.01), 10d溶藻效率可达94.38%, 光合系统活性也显著降低(P<0.01), MDA含量积累, SOD、POD、CAT活性整体呈现先升高后降低的趋势且显著高于对照组(P<0.01)。推测菌株THW7分泌的溶藻活性物质可能作用于铜绿微囊藻细胞的光合系统Ⅱ, 阻碍电子传递, 抑制其光合作用过程, 并对藻细胞产生氧化损伤, 破坏藻细胞细胞膜的完整性, 从而实现溶藻作用。  相似文献   

5.
溶藻细菌     
邱并生 《微生物学通报》2011,38(8):1316-1316
利用溶藻细菌防治水华和赤潮,作为富营养化水体藻类生物防治的方法已经受到广泛关注.多项研究表明,许多溶藻细菌能分泌胞外活性物质,对宿主藻类的生长起抑制作用.因此,分离筛选环保、高效、专一的溶藻活性代谢产物,最终开发安全、高效的生物杀藻剂已经日渐成为治理藻类水华和赤潮问题的方法之一.近年来,国内外相关人员和机构对溶藻细菌的溶藻机理以及溶藻活性物质的分离、提纯和鉴定进行了较为深入的基础性研究.  相似文献   

6.
近年来,由水体富营养化引发的蓝藻水华频繁暴发,对水体生态系统平衡产生了重大影响,给人类健康也带来严重威胁。生物法除藻具有高效性、环境友好等优点,因此,如果能获得具有较高溶藻效率的溶藻细菌,选择生物法除藻更为理想。从菏泽一富营养化池塘分离得到1株溶藻细菌FS1,经16S rDNA测序分析鉴定为芽胞杆菌属。实验以铜绿微囊藻为研究对象,采用血球计数板法计算反应前后藻细胞的浓度,对不同生长阶段溶藻细菌FS1的溶藻效果进行了探究。停滞期、对数期、稳定期和衰亡期的除藻率分别为7.1%、24.3%、57.0%和45.5%,结果表明,处于稳定期的FS1对铜绿微囊藻的去除效果最佳。细菌溶藻方式的研究结果表明,溶藻细菌是通过分泌溶藻物质间接溶解藻细胞。  相似文献   

7.
【背景】水体富营养化导致的蓝藻水华对淡水资源造成了严重污染。利用环境友好型的溶藻菌可有效控制蓝藻的生长,是防治蓝藻水华形成的有效途径之一。【目的】优化溶藻细菌EHB01对铜绿微囊藻(Microcystis aeruginosa)的溶藻条件,以期为治理蓝藻水华污染提供高效的溶藻菌制剂。【方法】采用单因素试验对溶藻的发酵液浓度、温度、光照以及C:N和N:P进行分析,并对溶藻细菌EHB01发酵液的碳源、氮源和p H进行优化。基于单因素试验,选用中心组合试验设计(central composite design,CCD)确定关键因子的最佳数量水平,并以Desig-Expert 8.0.5进行回归分析,通过响应面分析获得溶藻效果最佳的参数。【结果】发酵液浓度对溶藻率的影响表现为持续上升;温度对溶藻率表现为先上升后下降;而光照、C:N和N:P均对细菌EHB01发酵液溶藻率的影响表现为先降低后上升的趋势。溶藻细菌EHB01发酵液所需的最佳碳源为蔗糖,氮源为硝酸钾,pH为7.5,优化条件下溶藻率达86.97%,与优化之前相比提高了21.72%。【结论】采用响应面法优化得出溶藻细菌EHB01发酵液最优的培养条件,且模型拟合效果较好,可为溶藻菌制剂工业化发酵提供有效依据。  相似文献   

8.
短小芽孢杆菌溶藻效应研究   总被引:1,自引:0,他引:1  
随着全球水体富营养化的加剧,有害藻类水华的暴发日趋频繁,其造成的环境和经济问题日益引起人们的重视,寻求有效的水华和赤潮防治途径势在必行。溶藻细菌作为水生生态系统中生物种群结构和功能的重要组成部分,对维持浮游植物生物量平衡具有非常重要的作用。不少研究认为水华和赤潮的突然消亡可能与溶藻细菌的感染有关。有些溶藻细菌能够分泌细胞外物质,对宿  相似文献   

9.
【目的】分离并鉴定溶藻菌和栅藻,并对溶藻菌抑制栅藻的机理进行分析。【方法】溶藻菌分离采用高氏一号培养基,经多次划线纯化而得;溶藻菌鉴定采用生理生化性质判定;栅藻分离和鉴定主要采用镜检和《中国常见淡水浮游藻类图谱》完成;溶藻菌对栅藻的影响分析测定包括:测定栅藻叶绿素a变化、水体中溶解氧变化、藻细胞数目变化、藻蛋白表达变化、抑藻特殊物质测定等。【结果】共分离出4株溶藻菌(R1-R4),通过对其理化性质测定初步判定均属于芽孢杆菌属(Bacillus sp.),其中溶藻菌R1对栅藻生长的影响最明显,其对栅藻叶绿素a的抑制率为65%、溶解氧最低达6.5 mg/L,远低于栅藻单独培养下的10.4 mg/L;栅藻单独培养条件下的蛋白质表达为0.845 7 mg/L,与溶藻菌R1共培养时栅藻蛋白表达仅有0.192 6 mg/L;傅里叶红外光谱(FTIR)测定表明溶藻菌对栅藻细胞结构产生影响;相差显微镜对溶藻菌R1-栅藻共培养动态观察图可以看出,溶藻菌R1对栅藻的生长具有明显的抑制作用。【结论】从影响栅藻细胞结构、栅藻蛋白表达、栅藻光合作用等方面进行了分析,为揭示溶藻菌对栅藻抑制的机理提供了一定的理论基础。  相似文献   

10.
溶藻细菌的功能多样性及其菌剂应用   总被引:1,自引:0,他引:1  
溶藻细菌(algicidal bacteria)是一种以直接或间接方式杀灭藻细胞或抑制其生长的细菌.本文聚焦溶藻细菌的应用研究现状,从溶藻菌剂的类型、搭配策略、应用形式与场景等角度综述了 5个门78个属的溶藻细菌以及7个门56个属的目标藻类的研究进展.总结发现Bacillus spp.、Streptomyces spp...  相似文献   

11.
The aim of this study was to isolate and identify algicidal bacteria against the dinoflagellate Cochlodinium polykrikoides, and to determine the algicidal activity and algicidal range. During the declining period of C. polykrikoides blooms, seven algicidal bacteria were isolated. The algicidal bacteria against C. polykrikoides were enumerated using the most probable number (MPN) method. The number of algicidal bacteria was high (3.7 × 103 mL−1). Algicidal bacteria were identified on the basis of biochemical and chemotaxonomic characteristics, and analysis of 16S rDNA sequences. Seven algicidal bacteria isolated in this study belonged to the genera Bacillus, Dietzia, Janibacter, and Micrococcus. The most algicidal bacterium, designated Micrococcus luteus SY-13, is assumed to produce secondary metabolites. When 5% culture filtrate of this strain was applied to C. polykrikoides cultures, over 90% of C. polykrikoides cells were destroyed within 6 h. M. luteus SY-13 showed significant algicidal activities against C. polykrikoides and a wide algicidal range against various harmful algal bloom (HAB) species. Taken together, our results suggest that M. luteus SY-13 could be a candidate for controlling HABs.  相似文献   

12.
Aims: This work is aiming at investigating algicidal characterization of a bacterium isolate DHQ25 against harmful alga Alexandrium tamarense. Methods and Results: 16S rDNA sequence analysis showed that the most probable affiliation of DHQ25 belongs to the γ‐proteobacteria subclass and the genus Vibrio. Bacterial isolate DHQ25 showed algicidal activity through an indirect attack. Xenic culture of A. tamarense was susceptible to the culture filtrate of DHQ25 by algicidal activity assay. Algicidal process demonstrated that the alga cell lysed and cellular substances released under the visual field of microscope. DHQ25 was a challenge controller of A. tamarense by the above characterizations of algicidal activity assay and algicidal process. Conclusion: Interactions between bacteria and harmful algal bloom (HAB) species proved to be an important factor regulating the population of these algae. Significance and Impact of Study: This is the first report of a Vibrio sp. bacterium algicidal to the toxic dinoflagellate A. tamarense. The findings increase our knowledge of the role of bacteria in algal–bacterial interaction.  相似文献   

13.
AIMS: Identification of bacterium HYK0203-SK02 and its lysis of Stephanodiscus hantzschii. METHODS AND RESULTS: In an effort to identify a bio-agent capable of controlling S. hantzschii blooms, we used the algal lawn method to identify 76 bacteria in relevant water samples. Of these, the seven isolate showed algicidal activity against S. hantzschii; isolate HYK0203-SK02 exhibited the strongest algicidal activity, and was used for further analysis. 16S rDNA sequencing of this isolate allowed us to identify HYK0203-SK02 as a strain of Pseudomonas putida (99.2%). Growth of S. hantzschii was strongly suppressed by bacteria in all growth phases, with the strongest algicidal activity noted against diatoms in the exponential stage (5-18 days). Host range assays revealed that isolate HYK0203-SK02 also strongly inhibited the growth of Microcystis aeruginosa, but stimulated growth of the diatom Cyclotella sp., which has a similar structure to that of S. hantzschii. Biochemical assays revealed that the algicidal substance seemed to be localized in the cytoplasmic membrane of this newly identified algicidal bacterium. CONCLUSION: The algicidal bacteria P. putida HYK0203-SK02 caused cell lysis and death of not only diatom S. hantzschii but also cyanobacteria M. aeruginosa, dramatically. Algicidal substance might be located at the compartment of cytoplasmic membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: Taken together, our results indicate that P. putida HYK0203-SK02 may be a potential bio-agent for future use in controlling freshwater diatomic blooms.  相似文献   

14.
一种快速检测分离溶藻细菌方法的初探   总被引:1,自引:1,他引:1       下载免费PDF全文
传统的细菌培养基对铜绿微囊藻具有毒性作用。会大大影响溶藻细菌的筛选效率和准确性。通过基本培养基各成分对铜绿微囊藻DS的作用研究发现,培养基中的葡萄糖成分对藻有抑制作用,并且这种抑制作用与培养基中的葡萄糖浓度密切相关,当培养基中葡萄糖的浓度在0.1~0.4g/L时,藻细胞生长受到抑制,当用柠檬酸三钠取代葡萄糖后,铜绿微囊藻在改良后的培养基中生长正常,与对照组相比无显著性差异(P<0.05)。用改良的培养基富集水样中的溶藻微生物,并用此培养液直接感染宿主藻,一周内即可初步快速检测是否含有溶藻细菌。此种方法既排除了培养基的干扰因素,又迅速增加了溶藻细菌的生物量,并可大量收集细菌分泌的胞外物质,为溶藻细菌尤其以分泌物质溶藻的细菌的初步筛选提供了一条快捷、有效的途径。  相似文献   

15.
Harmful algal blooms (HABs) are a global environmental concern, causing significant economic losses in fisheries and posing risks to human health. Algicidal bacteria have been suggested as a potential solution to control HABs, but their algicidal efficacy is influenced by various factors. This study aimed to characterize a novel algicidal bacterium, Maribacter dokdonensis (P4), isolated from a Karenia mikimotoi (Hong Kong strain, KMHK) HAB and assess the impact of P4 and KMHK's doses, growth phase, and algicidal mode and the axenicity of KMHK on P4's algicidal effect. Our results demonstrated that the algicidal effect of P4 was dose-dependent, with the highest efficacy at a dose of 25% v/v. The study also determined that P4's algicidal effect was indirect, with the P4 culture and the supernatant, but not the bacterial cells, showing significant effects. The algicidal efficacy was higher when both P4 and KMHK were in the stationary phase. Furthermore, the P4 culture at the log phase could effectively kill KMHK cells at the stationary phase, with higher algicidal efficacy in the bacterial culture than that of the supernatant alone. Interestingly, P4's algicidal efficacy was significantly higher when co-culturing with xenic KMHK (~90% efficacy at day 1) than that with the axenic KMHK (~50% efficacy at day 1), suggesting the presence of other bacteria could regulate P4's algicidal effect. The bacterial strain P4 also exhibited remarkable algicidal efficacy on four other dinoflagellate species, particularly the armored species. These results provide valuable insights into the algicidal effect of M. dokdonensis on K. mikimotoi and on their interactions.  相似文献   

16.
Algicidal bacteria in the sea and their impact on algal blooms   总被引:23,自引:0,他引:23  
Over the past two decades, many reports have revealed the existence of bacteria capable of killing phytoplankton. These algicidal bacteria sometimes increase in abundance concurrently with the decline of algal blooms, suggesting that they may affect algal bloom dynamics. Here, we synthesize the existing knowledge on algicidal bacteria interactions with marine eukaryotic microalgae. We discuss the effectiveness of the current methods to characterize the algicidal phenotype in an ecosystem context. We briefly consider the literature on the phylogenetic identification of algicidal bacteria, their interaction with their algal prey, the characterization of algicidal molecules, and the enumeration of algicidal bacteria during algal blooms. We conclude that, due to limitations of current methods, the evidence for algicidal bacteria causing algal bloom decline is circumstantial. New methods and an ecosystem approach are needed to test hypotheses on the impact of algicidal bacteria in algal bloom dynamics. This will require enlarging the scope of inquiry from its current focus on the potential utility of algicidal bacteria in the control of harmful algal blooms. We suggest conceptualizing bacterial algicidy within the general problem of bacterial regulation of algal community structure in the ocean.  相似文献   

17.
利用铜绿微囊藻(Microcystis aeruginosa)作为溶藻对象富集、筛选, 获得一个稳定的溶藻菌群。采用叶绿素、PCR和变性梯度凝胶电泳(DGGE)方法研究溶藻过程及其细菌种群结构的变化。结果显示, 富集的溶藻菌经1×10-5稀释后仍有显著溶藻效果。Rubritepida菌C1、假单胞菌C2和鞘氨醇单胞菌C3是存在于铜绿微囊藻中的3种伴生细菌。加入富集的溶藻菌群后, 菌群结构发生明显的变化, Rubritepida菌C1、假单胞菌C2消失, 混合菌群包含未培养黄杆菌A2、鞘氨醇单胞菌C3和噬氢  相似文献   

18.
【目的】研究溶藻细菌BS03(Microbulbifer sp.)胁迫下塔玛亚历山大藻细胞光合作用、抗氧化酶系统和半胱氨酸蛋白酶3(Caspase-3)变化,探讨溶藻细菌BS03对塔玛亚历山大藻的溶藻机制。【方法】通过0.5%、1.0%、1.5%、2.0%不同终浓度BS03上清液处理藻细胞后12、24、36、48h取样,测定溶藻过程藻细胞光合色素、叶绿素荧光效率、抗氧化酶系统、Caspase酶活性变化。【结果】(1)BS03上清液处理藻细胞后,藻细胞叶绿素a含量和叶绿素荧光Fv/Fm比值随BS03上清液处理时间延长和浓度的增加呈逐渐下降趋势;低浓度处理组藻细胞类胡萝卜素含量上升到一峰值,高于对照组后逐渐回落,而高浓度处理组类胡萝素含量呈下降趋势,低于对照组;(2)藻细胞抗氧化酶保护系统(SOD和CAT)活性随着BS03上清液处理浓度增加而升高,但随着处理时间的延长呈现先上升后下降趋势。藻细胞膜脂过氧化产物MDA积累量随着BS03上清液处理时间延长和处理浓度的增加而显著提高;(3)处理组藻细胞Caspase-3活性显著高于对照组,呈现出类似程序性死亡特征。【结论】BS03的抑藻机理可能是通过抑制藻细胞光合作用,降低抗氧化酶活性、加大膜脂过氧化起到对塔玛亚历山大藻的溶解作用,并呈现出类程序性死亡特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号