首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolation and cultivation are a crucial step in elucidating the physiology, biogeochemistry, and ecosystem role of microorganisms. Many abundant marine bacteria, including the widespread Roseobacter clade-affiliated (RCA) cluster group, have not been cultured with traditional methods. Using novel techniques of cocultivation with algal cultures, we have accomplished successful isolation and propagation of a strain of the RCA cluster. Our experiments revealed that, in addition to growing on alga-excreted organic matter, additions of washed bacterial cells led to significant biomass decrease of dinoflagellate cultures as measured by in vivo fluorescence. Bacterial filtrate did not adversely affect the algal cultures, suggesting attachment-mediated activity. Using an RCA cluster-specific rRNA probe, we documented increasing attachment of these algicidal bacteria during a dinoflagellate bloom, with a maximum of 70% of the algal cells colonized just prior to bloom termination. Cross-correlation analyses between algal abundances and RCA bacterial colonization were statistically significant, in agreement with predator-prey models suggesting that RCA cluster bacteria caused algal bloom decline. Further investigation of molecular databases revealed that RCA cluster bacteria were numerically abundant during algal blooms sampled worldwide. Our findings suggest that the widespread RCA cluster bacteria may exert significant control over phytoplankton biomass and community structure in the oceans. We also suggest that coculture with phytoplankton may be a useful strategy to isolate and successfully grow previously uncultured but ecologically abundant marine heterotrophs.  相似文献   

2.
Over the past 5 years, raphidophyte blooms have been frequently observed along the South Carolina coastal zone. During the 2002, 2003, and 2004 sampling seasons, we investigated temporal fluctuations of algicidal bacteria abundance against raphidophycean flagellates (Heterosigma akashiwo, Chattonella subsalsa, and Fibrocapsa japonica) using the microplate most probable number (MPN) method in three Kiawah Island brackish stormwater detention ponds (K1, K2, and K75). Local axenic isolates of H. akashiwo, C. subsalsa, and F. japonica were obtained and their susceptibility to algicidal bacteria tested. A total of 195 algicidal bacterial strains were isolated from raphidophyte blooms in the study ponds, and 6 of them were identified at the genus level, and the taxonomic specificity of their algicidal activity was tested against local (pond) and nonlocal isolates of raphidophytes (3 species, 10 total strains). In the ponds, a consistent association was found between raphidophyte bloom development and an increase in bacteria algicidal to the bloom species. In 12 of 15 cases, bloom decline followed the increase in algicidal bacteria to maximum abundances. Although variability was found in the taxonomic specificity of the algicidal bacteria effect (i.e. the number of raphidophyte species affected by a particular bacteria strain) and raphidophyte susceptibility (i.e. the number bacteria strains affecting a particular raphidophyte species), a toxic effect was always found when strains of a raphidophyte species were exposed to algicidal bacteria isolated from a bloom caused by that same species. The results suggest that algicidal bacteria may be an important limiting factor in raphidophyte bloom sustenance and can promote bloom decline in brackish lagoonal eutrophic estuaries.  相似文献   

3.
As part of efforts to enhance the strategies employed to manage and mitigate algal blooms and their adverse effects, algicidal bacteria have shown promise as potential suppressors of these events. Nine strains of bacteria algicidal against the toxic dinoflagellate, Alexandrium tamarense, were isolated from the East Sea area, China. Sequence analysis of 16S rDNA showed that all the algicidal bacteria belonged to the γ-proteobacteria subclass and the genera Pseudoalteromonas (strain SP31 and SP44), Alteromonas (strain DH12 and DH46), Idiomarina (strain SP96), Vibrio (strain DH47 and DH51) and Halomonas (strain DH74 and DH77). To assess the algicidal mode of these algicidal bacteria, bacterial cells and the filtrate from bacterial cultures were inoculated into A. tamarense cultures, and fluorescein diacetate vital stain was applied to monitor the growth of the algal cells. The results showed that all the algicidal bacteria exhibited algicidal activity through an indirect attack since algicidal activity was only detected in cell free supernatants but not the bacterial cells. This is the first report of bacteria from the genus Idiomarina showing algicidal activity to the toxic dinoflagellate A. tamarense and these findings would increase our knowledge of bacterial–algal interactions and the role of bacteria during the population dynamics of HABs.  相似文献   

4.
In order to control harmful algal blooms, many biological approaches have been tried. Specially, there have recently been discussions concerning the roles of bacteria in algal bloom dynamics. Then, algicidal bacteria are expected as an agent considerate for harmful algal blooms control. Development of these organisms as biological control agents involves isolation from environmental samples. With the aim of develop eco-technology controlling water blooms in fresh waters, we isolated the diatom-lysing bacteria from the sediments of Lake Seokchon and Pal¡¯tang River-Reservoir. A soft agar-overlay technique was used to isolate the diatom lytic bacteria. The SK-02 showed a diatom lytic activity against Stephanodiscus hantzschii . Taxonomic identification including 16S rDNA base sequencing, and phylogenetic analysis indicated that the isolate SK-02 had a 99.20% homology in its 16S rDNA base sequence with Pseudomonas putida . The nature of these diatom-lying components is still under investigation. These results suggest that the indigenous bacteria isolated from the sediments may have a potential in the application and development of eco-technology controlling harmful water blooms in the fresh water environments.  相似文献   

5.
In order to control harmful algal blooms, many biological approaches have been tried. Specially, there have recently been discussions concerning the roles of bacteria in algal bloom dynamics. Then, algicidal bacteria are expected as an agent considerate for harmful algal blooms control. Development of these organisms as biological control agents involves isolation from environmental samples. With the aim of develop eco‐technology controlling water blooms in fresh waters, we isolated the diatom‐lysing bacteria from the sediments of Lake Seokchon and Pal¡¯tang River‐Reservoir. A soft agar‐overlay technique was used to isolate the diatom lytic bacteria. The SK‐02 showed a diatom lytic activity against Stephanodiscus hantzschii. Taxonomic identification including 16S rDNA base sequencing, and phylogenetic analysis indicated that the isolate SK‐02 had a 99.20% homology in its 16S rDNA base sequence with Pseudomonas putida. The nature of these diatom‐lying components is still under investigation. These results suggest that the indigenous bacteria isolated from the sediments may have a potential in the application and development of eco‐technology controlling harmful water blooms in the fresh water environments.  相似文献   

6.
The red tide dinoflagellate Karenia brevis blooms annually along the eastern Gulf of Mexico, USA, and is often linked to significant economic losses through massive fish kills, shellfish harvest closures, and the potential threat to humans of neurotoxic shellfish poisonings as well as exposure to aerosolized toxin. As part of an effort to enhance the strategies employed to manage and mitigate these events and their adverse effects, several approaches are being investigated for controlling blooms. Previous studies have established the presence of algicidal bacteria lethal to K. brevis in these waters, and we aim to characterize bacterial–algal interactions, evaluate their role as natural regulators of K. brevis blooms, and ultimately assess possible management applications. Herein, the algicidal activity of a newly isolated Cytophaga/Flavobacterium/Bacteroidetes (CFB)-bacterium, strain S03, and a previously described CFB-bacterium, strain 41-DBG2, was evaluated against various harmful algal bloom (HAB) and non-HAB species (23 total), including multiple clones of K. brevis, to evaluate algal target specificity. Strains S03 and 41-DBG2, which employ direct and indirect modes of algicidal lysis, respectively, killed 20% and 40% of the bacteria-containing isolates tested. Interestingly, no bacteria-free algal cultures were resistant to algicidal attack, whereas susceptibility varied occasionally among bacteria-containing isolates of a single algal taxon originating from either the same or different geographic location. The dynamics of K. brevis culture death appeared to differ according to whether the algicidal bacterium did or did not require direct contact with algal cells, with the former most rapidly affecting K. brevis morphology and causing cell lysis. Both bacterial strains promoted the formation of a small number of cyst-like structures in the K. brevis cultures, possibly analogous to temporary cysts formed by other dinoflagellates exposed to certain types of stress. Results were also consistent with earlier work demonstrating that bacterial assemblages from certain cultures can confer resistance to attack by algicidal bacteria, again indicating the complexity and importance of microbial interactions, and the need to consider carefully the potential for using such bacteria in management activities.  相似文献   

7.
Interactions between bacteria and harmful algal bloom (HAB) species have been acknowledged as an important factor regulating both the population dynamics and toxin production of these algae. A marine bacterium SP48 with algicidal activity to the toxic dinoflagellate, Alexandrium tamarense, was isolated from the Donghai Sea area, China. Genetic identification was achieved by polymerase chain reaction amplification and sequence analysis of 16S rDNA. Sequence analysis showed that the most probable affiliation of SP48 was to the γ-proteobacteria subclass and the genus Pseudoalteromonas. Bacterial isolate SP48 showed algicidal activity through an indirect attack. Additional organic nutrients but not algal-derived DOM was necessary for the synthesis of unidentified algicidal compounds but β-glucosidase was not responsible for the algicidal activity. The algicidal compounds produced by bacterium SP48 were heat tolerant, unstable in acidic condition and could be easily synthesized regardless of variation in temperature, salinity or initial pH for bacterial growth. This is the first report of a bacterium algicidal to the toxic dinoflagellate A. tamarense and the findings increase our knowledge of bacterial–algal interactions and the role of bacteria during the population dynamics of HABs.  相似文献   

8.
滇池中溶藻细菌的分离鉴定及其溶藻效应   总被引:1,自引:0,他引:1       下载免费PDF全文
【背景】藻类水华或赤潮在世界范围内频发,带来各种危害,亟需找到有效途径控制水华或赤潮。溶藻细菌具有杀死藻类控制藻类生物量的能力,可以作为防治水华和赤潮的有效工具。【目的】分离并鉴定滇池中的铜绿微囊藻(Microcystisaeruginosa)及其溶藻细菌,对溶藻菌作用于铜绿微囊藻的溶藻效应进行研究,初步了解其溶藻特性与溶藻机制。【方法】采用LB平板稀释涂布,再经多次划线分离纯化细菌,测定16SrRNA基因序列以鉴定细菌种类;采用毛细管分离的方法分离铜绿微囊藻,并测定其cpcBA基因序列以鉴定蓝藻种类;采用热乙醇法提取叶绿素a,从而计算溶藻效率;基于过氧化氢酶(CAT)、还原型谷胱甘肽(GSH)和丙二醛(MDA)探究藻细胞在溶藻菌处理下的抗氧化系统响应。【结果】共分离获得11株微囊藻和17株针对铜绿微囊藻的高效溶藻菌。选取其中一株生长速度最快的铜绿微囊藻DCM4和一株溶藻效果最好的溶藻菌Sp37 (Bacillus siamensis)进行后续研究。Sp37对DCM4的4 d溶藻率达到92.4%±1.5%,且对微囊藻属的水华微囊藻(M. flos-aquae)和惠氏微囊藻(M.wesenbergii)均有溶藻效果,而对绿藻没有溶藻效果。Sp37的原菌液和无菌滤液对DCM4的4d溶藻率分别为86.8%±4.3%和81.1%±2.2%,两者没有显著差异(P0.05)。Sp37菌体对DCM4的溶藻率为25.4%±7.3%。Sp37无菌滤液经不同温度和pH处理之后的溶藻率与未经处理的无菌滤液的溶藻率无明显差异。Sp37无菌滤液处理藻细胞会使藻细胞的CAT、GSH和MDA含量发生变化。【结论】菌株Sp37对铜绿微囊藻DCM4具有高效的溶藻作用,而且对微囊藻属具有一定的溶藻特异性。Sp37是通过分泌胞外物质间接溶藻,且溶藻物质具有热稳定性和酸碱稳定性。Sp37无菌滤液处理藻细胞会触发藻细胞抗氧化系统,并且会损伤藻细胞膜。Sp37无菌滤液很可能是通过对藻细胞造成氧化胁迫,最终导致藻细胞死亡的。  相似文献   

9.
During a bacterial survey of the Huon Estuary in southern Tasmania, Australia, we isolated a yellow-pigmented Pseudoalteromonas strain (class Proteobacteria, gamma subdivision), designated strain Y, that had potent algicidal effects on harmful algal bloom species. This organism was identified by 16S rRNA sequencing as a strain with close affinities to Pseudoalteromonas peptidysin. This bacterium caused rapid cell lysis and death (within 3 h) of gymnodinoids (including Gymnodinium catenatum) and raphidophytes (Chattonella marina and Heterosigma akashiwo). It caused ecdysis of armored dinoflagellates (e.g., Alexandrium catenella, Alexandrium minutum, and Prorocentrum mexicanum), but the algal cultures then recovered over the subsequent 24 h. Strain Y had no effect on a cryptomonad (Chroomonas sp.), a diatom (Skeletonema sp.), a cyanobacterium (Oscillatoria sp.), and two aplastidic protozoans. The algicidal principle of strain Y was excreted into the seawater medium and lost its efficacy after heating. Another common bacterial species, Pseudoalteromonas carrageenovora, was isolated at the same time and did not have these algicidal effects. The minimum concentrations of strain Y required to kill G. catenatum were higher than the mean concentrations found in nature under nonbloom conditions. However, the new bacterium showed a chemotactic, swarming behavior that resulted in localized high concentrations around target organisms. These observations imply that certain bacteria could play an important role in regulating the onset and development of harmful algal blooms.Historically, the dynamics of marine bacterial and algal populations have been studied largely in isolation. Increasing evidence is now pointing toward a close spatial and temporal association between the two and recently attention has been focused on phagocytosis of bacteria by photosynthetic flagellates (21, 28, 30). In contrast, the importance of inhibitory or predatory bacteria in regulating populations of different algal species has received relatively little attention (9, 11). Some bacteria may selectively promote bloom formation by algal species (13), while other bacteria have algicidal effects and are involved in the termination and decomposition of algal blooms (12). The latter finding has raised the possibility of bacterial control of harmful algal blooms (19). There is little data on the occurrence of marine algicidal bacteria outside Japan, where toxic blooms are frequent events (20), and algicidal bacteria have been isolated during toxic blooms of naked dinoflagellates and raphidophytes (9).Gymnodinium catenatum (a causative organism of paralytic shellfish poisoning) is thought to have been introduced into southern Tasmania via ballast water after 1973, and in some years it has a severe negative impact on the shellfish industry (16). Previous efforts to understand and predict the seasonal and interannual variability of harmful algal blooms have largely focused on the environmental factors that affect dinoflagellate growth in the water column, notably water temperature, rainfall, and water column stability (16). Rainfall and estuarine flow patterns also largely determine the allochthonous input of dissolved organic matter (DOM), which is a source of organic carbon for bacteria (27) and is possibly involved in micronutrient dynamics that promote G. catenatum growth (3, 6). As part of a study investigating DOM, bacteria, and algal interactions in the Huon Estuary (24), we isolated two bacterial strains that we tested for possible alga-bacterium interactions by using cultures of G. catenatum. Both bacteria appeared to be Pseudoalteromonas species, which are extremely common, slightly halophilic, gram-negative bacteria found in many marine ecosystems. Preliminary observations indicated that one of the strains was extremely toxic towards G. catenatum, while the other was more benign. The aims of this study were (i) to determine the taxonomic identity of the bacteria, (ii) to document by light microscopy the sequence of algal cell lysis after exposure to an algicidal Pseudoalteromonas strain and compare this lysis to the effect of the more benign Pseudoalteromonas species, (iii) to define the minimum bacterial concentrations required for algicidal effects and compare these concentrations to concentrations in natural water samples, and (iv) to investigate the range of potential target organisms for the bacterium.  相似文献   

10.
The population dynamics of Cytophaga strain 41-DBG2, a bacterium algicidal to the harmful algal bloom (HAB) dinoflagellate Karenia brevis, were investigated in laboratory experiments using fluorescent in-situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE). Following its introduction into non-axenic K. brevis cultures at concentrations of 103 or 105 bacterial cells per milliliter, 41-DBG2 increased to 106 cells per milliliter before initiation of its algicidal activity. Such threshold concentrations were not achieved when starting algal cell numbers were relatively low (103 cells per milliliter), suggesting that the growth of this bacterium may require high levels of dissolved organic matter (DOM) excreted by the algae. It remains to be determined whether this threshold concentration is required to trigger an algicidal response by 41-DBG2 or, alternatively, is the point at which the bacterium accumulates to an effective killing concentration. The ambient microbial community associated with these algal cultures, as determined by DGGE profiles, did not change until after K. brevis cells were in the process of lysing, indicating a response to the rapid input of algal-derived organic matter. Resistance to algicidal attack exhibited by several K. brevis clones was found to result from the inhibition of 41-DBG2 growth in the presence of currently unculturable bacteria associated with those clones. These bacteria apparently prevented 41-DBG2 from reaching the threshold concentration required for initiation of algicidal activity. Remarkably, resistance and susceptibility to the algicidal activity of 41-DBG2 could be transferred between K. brevis clones with the exchange of their respective unattached bacterial communities, which included several dominant phylotypes belonging to the α-proteobacteria, γ-proteobacteria, and Cytophaga–Flavobacterium–Bacteroides (CFB) groups. We hypothesize that CFB bacteria may be successfully competing with 41-DBG2 (also a member of the CFB) for nutrients, thereby inhibiting growth of the latter and indirectly providing resistance against algicidal attack. We conclude that if algicidal bacteria play a significant role in regulating HAB dynamics, as some authors have inferred, bacterial community interactions are crucial factors that must be taken into consideration in future studies.  相似文献   

11.
12.
溶藻微生物在防治有害藻类水华中的作用和潜力,已受到学者的广泛关注.综述溶藻微生物(主要是溶藻细菌和噬藻体)的溶藻作用机制,量效关系及分子生物学.阐述溶藻微生物对蓝藻水华治理存在的问题,并对溶藻微生物作为潜在的控藻因子进行展望.  相似文献   

13.
藻华是一种全球性的生态灾害, 利用海洋溶藻菌治理藻华是藻华治理领域的一个研究热点。文章旨在揭示一株嗜盐杆菌对中肋骨条藻的溶藻作用机理, 对溶藻作用下中肋骨条藻细胞形态结构进行了观察, 并测定了相关的生理参数, 同时研究了溶藻作用对藻细胞光合作用的影响并比较了与氮代谢、抗氧化系统相关酶活性的变化。结果表明, 溶藻作用使得中肋骨条藻细胞链状结构发生断裂, 细胞多以单细胞形态存在且单细胞长度显著增加, 最终细胞原生质体在细胞一端形成泡状后逐渐膨胀破裂。同时, 溶藻作用下中肋骨条藻细胞内总蛋白质含量、叶绿素a含量、总氮含量、Fv/Fm、Y(II)以及与氮代谢相关的硝酸还原酶、亚硝酸还原酶、谷氨酰胺合成酶的活性均显著降低, 而与抗氧化系统相关的丙二醛含量、超氧化物歧化酶、过氧化物酶的活性显著上升。溶藻物质显著抑制了中肋骨条藻对氮的吸收利用, 细胞的正常代谢活动受阻, 最终影响到细胞的繁殖分裂。同时细胞内活性氧的增加可能改变了细胞膜的通透性, 大量胞外物质透过细胞膜进入细胞内而使细胞膨胀破裂死亡。  相似文献   

14.
Interactions between bacteria and harmful algal bloom (HAB) species have been acknowledged as an important factor of regulating the population of these algae. In the study, two strains of algicidal bacteria, DHQ25 and DHY3, were screened out because of their probably secreting algicidal proteins against axenic Alexandrium tamarense. Molecular characterization classified them to the γ-proteobacteria subclass and to the genus Vibrio and Pseudoalteromonas, respectively. After centrifugation and ultrafiltration, chromatography of the cultural supernatants of DHQ25 revealed 8 peaks by HPLC. SDS-PAGE and Native PAGE determination showed that peak 7 to be a monoband peak. Both xenic and axenic culture of A. tamarense were susceptible to the purified protein (short for P7 below) indicated by algicidal activity assay. Observation of algicidal process demonstrated that algal cells were lysed and cellular substances were released under visual fields of microscope. P7 proved to be a challenge controller of A. tamarense by the above characterizations of algicidal activity assaying and algicidal process. This is the first report of a protein algicidal to the toxic dinoflagellate A. tamarense. The findings increase our knowledge of bacterial–algal interactions and the role of bacteria during controlling HABs.  相似文献   

15.
Interactions between bacteria and species of harmful and/or toxic algae are potentially important factors affecting both the population dynamics and the toxicity of these algae. Recent reports of bacteria lethal to certain harmful algal bloom (HAB) species, coupled with a rapidly evolving interest in attempting to minimize the adverse effects of HABs through various prevention, control, and mitigation strategies, have focused attention on defining the role of algicidal bacteria in bloom termination. The aim of the present study was to determine whether algicidal bacteria active against Gymnodinium breve Davis, a dinoflagellate responsible for frequent and protracted red tides in the Gulf of Mexico, are present in the waters of the west Florida shelf. To date, we have isolated two bacterial strains from this region lethal to G. breve and have begun to characterize the algicidal activity of one of these strains, 41-DBG2. This bacterium, a yellow-pigmented, gram-negative rod, was isolated from waters containing no detectable G. breve cells, suggesting that such bacteria are part of the ambient microbial community and are not restricted to areas of high G. breve abundance. Strain 41-DBG2 produced a dissolved algicidal compound(s) that was released into the growth medium, and the algicide was effective against the four Gulf of Mexico G. breve isolates tested as well as a closely related HAB species that also occurs in this region, Gymnodinium mikimotoi Miyake et Kominami ex Oda. Nonetheless, data showing that a nontoxic isolate of Gymnodinium sanguineum Hirasaka from Florida Bay was not affected indicate that the algicidal activity of this bacterium does exhibit a degree of taxonomic specificity. Our efforts are currently being directed at resolving several critical issues, including the identity of the algicide(s), the mechanisms regulating its production and ability to discriminate between target algal species, and how the growth rate of 41-DBG2 is affected by the presence of G. breve cells. We have also proposed a conceptual model for interactions between algicidal bacteria and their target species to serve as a testable framework for ensuing field studies.  相似文献   

16.
AIMS: Enhancement of algicidal activity by immobilization of algicidal bacteria antagonistic to Stephanodiscus hantzschii. METHODS AND RESULTS: In laboratory studies, A diatom-lysing bacterium, Pseudomonas fluorescens HYK0210-SK09 showed strong algicidal activity against S. hantzschii, but a natural mesocosm study revealed that this bacterium failed to fully control natural blooms of Stephanodiscus at the low water temperatures that favour these blooms. Here, we sought to develop an effective immobilization strategy for enhancing the algicidal activity of HYK0210-SK09 in the natural setting. Bacterium HYK0210-SK09 was immobilized with various carriers including agar, alginate, polyurethane and cellulose sponge. The bacterial cells immobilized with cellulose sponge (CIS) induced more rapid and complete lysis of S. hantzschii than other carriers, and had a higher packing ability than polyurethane. Furthermore, CIS-immobilized cells showed higher lysis of S. hantzschii at the same concentrations as that of free cells (< or =1 x 10(7) cells ml(-1)), and had especially strong algicidal activity at the low temperatures (<10 degrees C). Based on these laboratory studies, we assessed the possible application of HYK0210-SK09 cells in the field by performing a mesocosm study during the winter season. The CIS-immobilized cells with species-specific activity towards the genera Stephanodiscus showed extremely high algicidal activity (up to 95%) against a bloom of Stephanodiscus hantzschii even at low water temperatures, because of high cell packing and subsequent cell protection against low temperatures and predators, whereas free cells showed negligible algicidal activities under these conditions. CONCLUSION: Immobilizing cells of HYK0210-SK09 in CIS foam, rather than in the other matrices tested, could achieve more efficient control of Stephanodiscus blooms and showed a significant algicidal activity on in vitro and in vivo blooms, even at low water temperature. SIGNIFICANCE AND IMPACT OF THE STUDY: Collectively, these results indicate that CIS of algicidal bacteria may form an important strategy for effective management of Stephanodiscus blooms at low water temperatures.  相似文献   

17.
Bacteria in the phycosphere have a unique ecological relationship with host algae due to their utilization of algal extracellular products as nutrients. Some bacteria control the growth of algal cells and even lyse them. The diversity of bacteria and their community dynamics in the phycosphere of microalgae are still relatively little understood, especially of those associated with red tide-causing algae. In this study, scanning electron microscope (SEM) images of algal cell morphology revealed that the phycosphere bacteria of the red tide-causing algae, Skeletonema costatum and Scrippsiella trochoidea, could lyse them within 72 h. The community level physiology of the algicidal bacteria was studied using Biolog ECO microplates, a common method for the ecological study of microbial communities. The average well color development (AWCD) values of bacteria in the phycospheres of both species were low, indicating that the bacteria had low metabolic activity overall. The diversity indices were both lower than the bacterial diversity from natural environments. However, the bacteria associated with S. trochoidea demonstrated a higher AWCD value and diversity than those in the phycosphere of S. costatum. The utilization of carbon sources significantly changed at different lytic times, reflecting that the bacterial community structure changed during the algae-lysing process. These results revealed that the bacterial communities in phycospheres had a simple structure and low diversity. When the balance between algae and bacteria broke down, the total bacterial density increased while the algicidal bacteria accumulated and became the dominant species, changing the bacterial community structure in this micro-ecosystem.  相似文献   

18.
With the global expansion of harmful algal blooms (HABs), several measures, including molecular approaches, have been undertaken to monitor its occurrence. Many reports have indicated the significant roles of bacteria in controlling algal bloom dynamics. Attempts have been made to utilize the bacteria/harmful algae relationship in HAB monitoring. In this study, bacterial assemblages monitored during coastal HABs and bacterial communities in induced microcosm blooms were investigated. Samples were analysed using denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene. DGGE bands with peculiar patterns before, during, and after algal blooms were isolated and identified. Probes for six ribotypes representing organisms associated with Chatonella spp., Heterocapsa circularisquama, or Heterosigma akashiwo were used for analysis on NanoChip electronic microarray. In addition, a new approach using cultured bacteria species was developed to detect longer (533 bp) polymerase chain reaction-amplified products on the electronic microarray. The use of fluorescently labelled primers allowed the detection of individual species in single or mixed DNA conditions. The developed approach enabled the detection of the presence or absence and relative abundance of the HAB-related ribotypes in coastal and microcosm blooms. This study indicates the ability of electronic microarray platform to detect or monitor bacteria in natural and induced environments.  相似文献   

19.
The bacteria associated with oceanic algal blooms are acknowledged to play important roles in carbon, nitrogen, and sulfur cycling, yet little information is available on their identities or phylogenetic affiliations. Three culture-independent methods were used to characterize bacteria from a dimethylsulfoniopropionate (DMSP)-producing algal bloom in the North Atlantic. Group-specific 16S rRNA-targeted oligonucleotides, 16S ribosomal DNA (rDNA) clone libraries, and terminal restriction fragment length polymorphism analysis all indicated that the marine Roseobacter lineage was numerically important in the heterotrophic bacterial community, averaging >20% of the 16S rDNA sampled. Two other groups of heterotrophic bacteria, the SAR86 and SAR11 clades, were also shown by the three 16S rRNA-based methods to be abundant in the bloom community. In surface waters, the Roseobacter, SAR86, and SAR11 lineages together accounted for over 50% of the bacterial rDNA and showed little spatial variability in abundance despite variations in the dominant algal species. Depth profiles indicated that Roseobacter phylotype abundance decreased with depth and was positively correlated with chlorophyll a, DMSP, and total organic sulfur (dimethyl sulfide plus DMSP plus dimethyl sulfoxide) concentrations. Based on these data and previous physiological studies of cultured Roseobacter strains, we hypothesize that this lineage plays a role in cycling organic sulfur compounds produced within the bloom. Three other abundant bacterial phylotypes (representing a cyanobacterium and two members of the alpha Proteobacteria) were primarily associated with chlorophyll-rich surface waters of the bloom (0 to 50 m), while two others (representing Cytophagales and delta Proteobacteria) were primarily found in deeper waters (200 to 500 m).  相似文献   

20.
The possible use of algicidal bacteria for the efficient termination of natural freshwater diatom blooms with minimal adverse effects on the freshwater ecosystem was assessed under laboratory and field conditions. A field mesocosm (150 L) was dosed with a single application of isolate SK09, and monitored at Samnang jin in the lower part of the Nakdong River (South Korea) over 12 days of the winter season. We found that the tested bacterium acted against some species of Stephanodiscus- and Aulacoseira-like structures on in vitro and in vivo diatom blooms. However, this bacterium failed to fully control in vivo natural blooms of Stephanodiscus due to the low water temperatures of less than 10°C and predation activity of protozooplankton (heterotrophic nanoflagellates and ciliates). In addition, its selective inhibition indirectly affected the decrease of dissolved oxygen levels, the dramatic regeneration of N and P by the large-scale Stephanodiscus-lysing process, and a great increase in algal biomass of genera Chlamydomonas. This strongly suggests the necessity of developing an effective strategy for enhancing the activity of algicidal bacteria, and for mitigating some drawbacks to effectively and safely regulate natural diatom blooms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号