首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 622 毫秒
1.
Summary Hormonal and neural signals transmitted from the pineal organ to the brain in cold-blooded vertebrates presumably convert information about the ambient illumination into signals which may be used to mediate photoperiodic and circadian responses. The possible intrapineal function of melatonin was investigated by recording intra- and extracellularly from photoreceptors and second-order neurons in the isolated superfused pineal organ of the trout (Salmo gairdneri). Melatonin added through the perfusion bath to the explanted pineal organ caused a dose-related and reversible inhibition of ganglion cells of the luminance type whereas the hormone did not significantly affect the membrane potential of photoreceptors and their light-evoked response. The observed effects seem to be independent from photoperiod and adaptation conditions. These results suggest that melatonin provides a feedforward signal to intrapineal neurons regulating the neural output of the organ.Laboratory of Fish Biology, School of Agriculture, Nagoya University, Chikusa, Nagoya 464 Japan  相似文献   

2.
Using sodium-dithionite as an oxygen scavenger, the influences of different light intensities and periods of anaerobic pre-incubation in the dark on H2-photoproductivity were studied with the green algaChlorella fusca. By measuring hydrogen production in the light using manometric and gas chromatographic methods the effectiveness of sodium dithionite in stabilizing photoproduction was established. For high rates of H2-photoproduction high light intensities up to 30,000 lux (580 W m-2) were necessary; these are comparable to those required for light saturation of oxygen photoproduction by this alga. AlthoughChlorella fusca produces H2 immediately after transition to anaerobic conditions, the optimum rate of H2 production was reached after a 5 h dark adaptation period only. The results obtained are discussed with respect to characteristics of H2-photoproduction by green algae: the initial burst kinetics, the light saturation, and the obligate period of anaerobic adaptation. It is concluded that H2-photoproduction byChlorella is an anaerobic photosynthetic process which occurs in the absence of CO2 and can be experimentally stabilized by exogenous oxygen scavengers.Abbreviations DCMU (3-(3,4-Dichlorophenyl)-1,1-dimethylurea) - HEPES (2-[4-(2-Hydroxyethyl)-1-piperazinyl]ethanesulfonic acid)  相似文献   

3.
In this work, we investigate the locomotor behaviour of Talitrus saltator (Montagu 1808) for a population collected from the supralittoral zone of Korba beach. The locomotor activity rhythm was recorded for adult individuals during 10 summer days under continuous light with four different luminous intensities: 5 lux (N = 30), 35 lux (N = 30), 75 lux (N = 30) and 140 lux (N = 15). By the end of the experiments, 100% of the considered individuals were found alive under light intensities of 35 and 140 lux, whereas only 86 and 90% were found alive under light intensity of 5 and 75 lux, respectively. Furthermore, whatever the imposed luminous intensity is, actograms showed a clear drift to the right lengthening day after day the circadian period. Moreover, we found that by raising the light intensity, the drift becomes increasingly important. Actograms as well as activity curves, results showed that the locomotor activity profiles are mainly unimodal and their percentage increases when increasing the light intensity. Furthermore, periodogram analysis highlighted the presence of ultradian and circadian components where the longest periods were observed with the highest luminous intensity. In addition, the locomotor activity rhythm was statistically more defined and individuals of Talitrus saltator were significantly more active under the lowest luminous intensity.  相似文献   

4.
Summary Ion-selective microelectrodes inserted into the compound eyes of Calliphora were used to monitor the changes in extracellular concentration of Ca2+ and Na+ (Cao, Nao) brought about by a 1-min exposure to white light (maximal luminous intensity 0.1 cd/cm2).Using Ringer solution as the reference (Ca2+ = 1 mM), the dark concentration of the calcium in the retina was found to be (1.4 ± 0.4) mM (n=12). Stimulation with light reduces Cao. At intensities near maximal the Cao signal is phasic, reaching a transient minimum about 6 s after light onset and then rising to a nearly stable plateau below the dark level (-3.3% ± 2.6%). Cao signals measured in the white-eyed mutant (chalky), which lacks pigment granules, are comparable to those in the wild type.Conclusions: (a) There are no extracellular Ca2+ binding sites that regulate light adaptation, such as were postulated by Hochstrate and Hamdorf (1985). (b) Ca2+ influx into the photoreceptors seems to be necessary for light adaptation, (c) The pigment granules have no major function in intracellular calcium regulation.The time course of the Nao signals resembles that of the Cao signals. Because the percentage concentration change is small, light-induced extracellular Na+-depletion cannot contribute to a reduced response amplitude at light adaptation.Abbreviations Ca i intracellular Ca2+ concentration - Ca o extracellular Ca2+ concentration - Kino extracellular K+ concentration - Na o extracellular Na+ concentration  相似文献   

5.
The static and dynamic characteristics of phototransduction were studied in photoreceptors of the compound eye of the fly Phormia regina (Calliphoridae) using a green light emitting diode driven by a controlled current source. The LED provides sufficiently intense light to investigate the behaviour of the receptors over about half of the dark adapted range of the response versus log intensity curve. The effects of constant adapting light intensities upon the step response and upon the frequency response and coherence functions were examined. Using both methods the effect of light adaptation upon receptor sensitivity can be closely approximated by a similar linear dependence of log sensitivity upon log adapting intensity. However, there was no reliably detectable effect of light adaptation upon the time constant of the response over the range of adapting intensities used.Abbreviation LED Light Emitting Diode  相似文献   

6.

Background

Retinitis pigmentosa (RP) is a progressive retinal degenerative disease that causes deterioration of rod and cone photoreceptors. A well-studied animal model of RP is the transgenic P23H rat, which carries a mutation in the rhodopsin gene. Previously, I reported that blocking retinal GABAC receptors in the P23H rat increases light responsiveness of retinal ganglion cells (RGCs). Because activation of metabotropic glutamate 1 (mGlu1) receptors may enhance the release of GABA onto GABAC receptors, I examined the possibility that blocking retinal mGlu1 receptors might in itself increase light responsiveness of RGCs in the P23H rat.

Methodology/Principal Findings

Electrical recordings were made from RGCs in isolated P23H rat retinas. Spike activity of RGCs was measured in response to brief flashes of light over a range of light intensities. Intensity-response curves were evaluated prior to and during bath application of the mGlu1 receptor antagonist JNJ16259685. I found that JNJ16259685 increased light sensitivity of all ON-center RGCs and most OFF-center RGCs studied. RGCs that were least sensitive to light showed the greatest JNJ16259685-induced increase in light sensitivity. On average, light sensitivity increased in ON-center RGCs by 0.58 log unit and in OFF-center RGCs by 0.13 log unit. JNJ16259685 increased the maximum peak response of ON-center RGCs by 7% but had no significant effect on the maximum peak response of OFF-center RGCs. The effects of JNJ16259685 on ON-center RGCs were occluded by a GABAC receptor antagonist.

Conclusions

The results of this study indicate that blocking retinal mGlu1 receptors in a rodent model of human RP potentiates transmission of any, weak signals originating from photoreceptors. This augmentation of photoreceptor-mediated signals to RGCs occurs presumably through a reduction in GABAC-mediated inhibition.  相似文献   

7.
 Numerous careful behavioral studies of visual persistence have reported a variety of apparently contradictory effects. Variation of flash intensity has particularly been found to have both direct and inverse effects on subjective duration. This conflict has been addressed by theories which contain both sensory and cognitive components. Depending on the weight given to these components, one obtains theories which emphasize intensity dependence or task dependence. Few comparably detailed physiological studies of persistence exist. To clarify the issues raised by these theories, we examined the responses evoked in the model photoreceptor of the Limulus lateral eye. To explore the role of sensory variables, we manipulated adaptation state and flash intensity. To explore cognitive variables, the durations of the photoreceptor potentials (RPs) evoked in this model system were assessed by a mutually complementary and complete set of candidate sensory codes. Accordingly, sharp microelectrodes were used to record RPs intracellularly from single photoreceptor cells in response to 40-ms flashes whose intensity was varied over at least 3.6 log units. Two light adaptation states were used which differed in sensitivity by 3.5 log units. This model system made it possible to employ stringent objective assessments of data quality which ensured that only cells which had remained stable for several hours contributed to the present data. A variety of code-dependent trends were found: direct, inverse, invariant, and U-shaped trends related flash intensity to RP duration, while adaptation state interacted with some of these trends. Only some of the expectations which had generated this research were qualitatively corroborated and numerous quantitative discrepancies were found between data and theory. While caution is necessary when generalizing from neural responses to perception, these data indicate that two major gaps now exist in this field. First, both task and stimulus variables need to be exhaustively explored in more complete behavioral experiments. The present data make it more likely that sensory models and cognitive models simply address different aspects of the same phenomenon. Second, similarly detailed questions need to be posed to more central neural loci, particularly to those in the various visual cortices. Received: 5 July 2000 / Accepted in revised form: 14 February 2001  相似文献   

8.
Homocontinuous cultures of the cyanobacterium Anacystis nidulans (syn. Synechococcus sp. PCC 6301) were grown at white light intensities of 2 and 20 W/m2, and supplied with 0.03 and 3 % CO2 enriched air. The mutual influence of these growth factors on the development of the photosynthetic apparatus was studied by analyses of the pigment content, by low temperature absorbance and fluorescence spectroscopy, by analyses of oxygen evolution light-saturation curves, and by SDS PAGE of isolated phycobilisomes. The two growth factors, light and CO2, distinctly affect the absorption cross section of the photosynthetic apparatus, which is expressed by its pigment pattern, excitation energy distribution and capacity. In response to low CO2 concentrations, the phycocyanin / allophycocyanin ratios were lower and one linker polypeptide L30R, of the phycobilisomes was no longer detectable in SDS PAGE. Apparently, low CO2 adaptation results in shorter phycobilisome rods. Specifically, upon adaptation to low light intensities, the chlorophyll and the phycocyanin content on a per cell basis increase by about 50% suggesting a parallel increase in the amount of phycobilisomes and photosystem core-complexes. Low light adaptation and low CO2 adaptation both cause a shift of the excitation energy distribution in favor of photosystem I. Variations in the content of the “anchor” polypeptides L60CM and L75CM are possibly related to changes in the excitation energy transfer from phycobilisomes to the photosystem II and photosystem I core-complexes.  相似文献   

9.
The Adaptation of Plankton Algae   总被引:4,自引:0,他引:4  
The various aspects of the adaptation of plankton algae lo light and temperature are discussed. The shape of a light intensity-photosynthesis curve is shown to be an important means of describing the physiological adjustment of an algal population. If the algae are not exposed to adverse influences such as poisons, pronounced nutrient deficiency or light shocks, the rate of real photosynthesis per mg chlorophyll a at 1 Klux (incandescent light) should be about 0.4–0.6 mg C/hour. Hence this rate presents an excellent means of judging the quality of experiments. Experiments are presented where Chlorella pyrenoidosa was adapted to light intensities between 0.32 klux and 21 Klux. This alga adapts to different light intensities by varying the amount of pigments per cell. Algae grown at 1 Klux have about 10 times more chlorophyll per cell than those grown at 21 klux. Other species of algae—but by no means all—are shown to behave in the same way. The problem of algal resistance to photo-oxidation at high light intensities is discussed. Adaplation is shown to he one of the mechanisms which make the algae resistent. “Chlorophyll inactivation” is another. Experiments with the diatom Skeletonema costatum concerning adaptation to different temperatures have been performed. The fact that the alga has essentially the same rate of photosynthesis per cell at all light intensities at 20°C and 7°C, may be attributed to an increase of all the enzymes at the low temperature. The amount of protein per cell was twice as high at 7°C as at 20°C.  相似文献   

10.
Photosynthetic adaptation to light intensity has been studied in clones of populations from shaded and exposed habitats of Rumex acetosa and Geum rivale. Clones of the shade species Lamium galeobdolon and the sun species Plantago lanceolata were also included for comparison. The plants were grown under controlled conditions at a high and a low light intensity. The capacity of photosynthetic carbon dioxide uptake at low as well as at saturating light intensities was determined on single attached leaves. As was previously demonstrated in Solidago virgaurea, clones of populations native to shaded and to exposed environments show differences in the photosynthetic response to light intensity during growth. The data provide evidence that populations of the same species native to habitats with contrasting light intensities differ in their photosynthetic properties in an adaptive manner Ln a similar mode as sun and shade species.  相似文献   

11.
Neural and Photochemical Mechanisms of Visual Adaptation in the Rat   总被引:20,自引:13,他引:7       下载免费PDF全文
The effects of light adaptation on the increment threshold, rhodopsin content, and dark adaptation have been studied in the rat eye over a wide range of intensities. The electroretinogram threshold was used as a measure of eye sensitivity. With adapting intensities greater than 1.5 log units above the absolute ERG threshold, the increment threshold rises linearly with increasing adapting intensity. With 5 minutes of light adaptation, the rhodopsin content of the eye is not measurably reduced until the adapting intensity is greater than 5 log units above the ERG threshold. Dark adaptation is rapid (i.e., completed in 5 to 10 minutes) until the eye is adapted to lights strong enough to bleach a measurable fraction of the rhodopsin. After brighter light adaptations, dark adaptation consists of two parts, an initial rapid phase followed by a slow component. The extent of slow adaptation depends on the fraction of rhodopsin bleached. If all the rhodopsin in the eye is bleached, the slow fall of threshold extends over 5 log units and takes 2 to 3 hours to complete. The fall of ERG threshold during the slow phase of adaptation occurs in parallel with the regeneration of rhodopsin. The slow component of dark adaptation is related to the bleaching and resynthesis of rhodopsin; the fast component of adaptation is considered to be neural adaptation.  相似文献   

12.
Experiments were conducted to examine whether leaf adaptation to light in Fragaria virginiana (Rosaceae) was determined by peak photon-flux density or by total quanta received during the day. Leaf structure and apparent photosynthesis rates were similar under environments where total energy received was the same even though peak photon-flux density was different. When peak photon-flux density was held constant and total quanta varied, significant differences were noted in apparent photosynthesis, leaf thickness, specific leaf weight, mesophyll cell volume, and Ames/A ratio. High total quanta produced high-light or sun-type leaves even at relatively low peak intensities. Thus, total light energy received during the day has a greater influence on leaf adaptation to light than does peak photon-flux density.  相似文献   

13.
Although spike-frequency adaptation is a commonly observed property of neurons, its functional implications are still poorly understood. In this work, using a leaky integrate-and-fire neural model that includes a Ca2+-activated K+ current (I AHP), we develop a quantitative theory of adaptation temporal dynamics and compare our results with recent in vivo intracellular recordings from pyramidal cells in the cat visual cortex. Experimentally testable relations between the degree and the time constant of spike-frequency adaptation are predicted. We also contrast the I AHP model with an alternative adaptation model based on a dynamical firing threshold. Possible roles of adaptation in temporal computation are explored, as a a time-delayed neuronal self-inhibition mechanism. Our results include the following: (1) given the same firing rate, the variability of interspike intervals (ISIs) is either reduced or enhanced by adaptation, depending on whether the I AHP dynamics is fast or slow compared with the mean ISI in the output spike train; (2) when the inputs are Poisson-distributed (uncorrelated), adaptation generates temporal anticorrelation between ISIs, we suggest that measurement of this negative correlation provides a probe to assess the strength of I AHP in vivo; (3) the forward masking effect produced by the slow dynamics of I AHP is nonlinear and effective at selecting the strongest input among competing sources of input signals.  相似文献   

14.
Photosynthesis was measured by the 14C method on natural as well as low light adapted populations of Chloroflexus (a photosynthetic bacterium) and Synechococcus (a blue-green alga) from hot springs in Yellowstone National Park (Wyoming U.S.A.), to test the ability of these phototrophs to photosynthesize at a variety of light intensities. The herbicide 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) was used to distinguish uptake of the blue-green alga from that of the photosynthetic bacterium, while measurements of chlorophyll a and bacterio-chlorophyll c served to quantitate the standing crops of these organisms.Natural populations of Synechococcus were found to be slightly inhibited by full sunlight intensities (summer values can surpass 90000 Lux), whereas the Chloroflexus populations were not. Populations of both phototrophs subjected to reduced light intensities through the use of neutral density filters were found to adapt to low light, and then become severely inhibited by high light intensities. Adaptation to various light regimes may be an important ecological phenomenon to the survival of these hot spring phototrophs.  相似文献   

15.
Drift, selection, or their combined effects commonly drive geographic variation in traits. Clarifying the relative roles of each process is a long‐standing research goal in evolutionary biology. Acoustic signals of bats are a phenotypic characteristic that plays an important role in social organization and species recognition. We extensively sampled the Chinese rufous horseshoe bat (Rhinolophus sinicus) throughout China and Vietnam and reconstructed a species phylogeny to better understand the patterns and causes of the geographic variation of acoustic signals. Our results showed that the resting frequency (RF) of calls varied with latitude, sex, and distance among different colony locations. RF differences were not correlated with genetic distance (based on only one nuclear locus and the mitochondrial locus), climatic factors (mean annual temperature and mean annual precipitable water), or body size, although differences in calls increased with distance among various populations. This suggests that cultural drift may play more important roles than genetic drift and acoustic adaptation in shaping acoustic differences within regions in R. sinicus.  相似文献   

16.
Industrial chicory, Cichorium intybus L., is cultivated for the production of inulin. Most varieties of industrial chicory exhibit rather poor early growth, which limits further yield improvements in their European cultivation area. The poor early growth could be due to suboptimum adaptation of the gene pool to growth at low temperatures, sometimes in combination with high light intensities, which is typical of early-spring mornings. We have used chlorophyll (Chl) a fluorescence to evaluate the response of young plants of the cultivar ‘Hera’ to low temperatures and high light intensities. Plants were grown at three temperatures: 16°C (reference), 8°C (intermediate), and 4°C (cold stress). Light-response measurements were carried out at different light intensities in combination with different measurement temperatures. Parameters that quantify the photosystem II (PSII) operating efficiency (including PSII maximum efficiency and PSII efficiency factor) and nonphotochemical quenching (NPQ) are important to evaluate the stress in terms of severity, the photosynthetics processes affected, and acclimation to lower growth temperatures. The results clearly demonstrate that in young industrial chicory plants the photosynthetic system adapts to lower growth temperatures. However, to fully understand the plant response to the stresses studied and to evaluate the long-term effect of the stress applied on the growth dynamics, the subsequent dark relaxation dynamics should also be investigated.  相似文献   

17.
Songbirds learn individually unique songs through vocal imitation and use them in courtship and territorial displays. Previous work has identified a forebrain auditory area, the caudomedial nidopallium (NCM), that appears specialized for discriminating and remembering conspecific vocalizations. In zebra finches (ZFs), only males produce learned vocalizations, but both sexes process these and other signals. This study assessed sex differences in auditory processing by recording extracellular multiunit activity at multiple sites within NCM. Juvenile female ZFs (n = 46) were reared in individual isolation and artificially tutored with song. In adulthood, songs were played back to assess auditory responses, stimulus‐specific adaptation, neural bias for conspecific song, and memory for the tutor's song, as well as recently heard songs. In a subset of females (n = 36), estradiol (E2) levels were manipulated to test the contribution of E2, known to be synthesized in the brain, to auditory responses. Untreated females (n = 10) showed significant differences in response magnitude and stimulus‐specific adaptation compared to males reared in the same paradigm (n = 9). In hormone‐manipulated females, E2 augmentation facilitated the memory for recently heard songs in adulthood, but neither E2 augmentation (n = 15) nor E2 synthesis blockade (n = 9) affected tutor song memory or the neural bias for conspecific song. The results demonstrate subtle sex differences in processing communication signals, and show that E2 levels in female songbirds can affect the memory for songs of potential suitors, thus contributing to the process of mate selection. The results also have potential relevance to clinical interventions that manipulate E2 in human patients. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 302–314, 2015  相似文献   

18.
The two most common mechanisms of pupillary screening-pigment migration in arthropod superposition eyes are the cone and longitudinal pigment migration mechanisms. The dynamics of each were investigated by optical modelling and by determining experimentally the relationship between eye glow brightness and screening pigment position within the eyes of two representative insect species: the noctuid moth Agrotis infusa and the dung beetle Copris elphenor. During dark adaptation, in both mechanisms, the screening pigment is contracted distally to expose the proximal half of each crystalline cone. During light adaptation the pigment migrates proximally and reduces light flux in the retina. In the longitudinal mechanism, pigment migrates into the clear zone of the eye. In the cone mechanism, pigment never enters the clear zone and is instead restricted to the proximal half of each crystalline cone: a migrating sleeve of pigment creates a small aperture at the end of the crystalline cone, the area of which depends on the degree of light adaptation. According to the model, the cone mechanism provides a limited range of light attenuation (ca. 0.6 log units) for which both good spatial resolution and accuracy of control are maintained, and within this range attenuation is controlled very finely. Beyond this range, whilst attenuation is still possible, diffraction at the pigment aperture and increasing coarseness of control worsen visual performance significantly. In contrast, the longitudinal mechanism provides a much larger useful range of light attenuation (up to several log units) and maintains reasonable fineness of attenuation control over the entire range (although not as fine as the cone mechanism). The experimental results support the model. An extensive survey of arthropods with superposition eyes reveals that the cone mechanism is almost exclusively possessed by those animals experiencing a narrow range of light intensities, and the longitudinal mechanism by those experiencing a wide range.Dedicated to Professor Rolf Elofsson on the occasion of his retirement from the Chair of Zoology in Lund  相似文献   

19.
Lockhart , James A. (U. Hawaii, Honolulu.) Photoinhibition of stem elongation by full solar radiation. Amer. Jour. Bot. 48(5): 387–392. Illus. 1961.—Stem growth response of ‘Pinto’ bean (Phaseolus vulgaris) to full solar radiation and to various degrees of shading has been studied. Maximum stem elongation occurred at light intensities of approximately 40,000 lux, under the conditions used here. Lower growth rates were found when light intensities were greater or less than this level. When the plants are saturated with gibberellin A3, stem growth is maximum at the highest light intensity, and less at all lower light intensities. Sucrose sprays promoted growth at low light intensities. Apparently, slower growth at low light intensities is due to a deficiency of photosynthetic products, while growth inhibition at high intensities is due to a deficiency of gibberellin. Growth of ‘Alaska’ peas, which are more nearly saturated with endogenous gibberellin, is much less inhibited by high light—or much less promoted by partial shading. This appears to be a general relationship. Dwarf Zea mays (d1), which is very deficient in gibberellin, responds markedly to shading, but the normal segregate (D1) responds little to shading. When the dwarfs are saturated with gibberellin they, too, respond little to shading. Experiments are presented indicating that the high-intensity light inhibition of stem growth and low-energy red light inhibition act on the same step in the gibberellin system.  相似文献   

20.
Schooling behaviour and histological retinal light adaptation in juvenile Pacific bluefin tuna Thunnus orientalis were examined under various light intensities to determine the effect of light intensity on behaviour. After monitoring the schooling behaviour of juveniles 35–36 and 45–46 days post hatching, schooling variables such as nearest neighbour distance and separation swimming index were measured under different light intensities. Furthermore, retinal indices of light adaptation were investigated histologically for each experimental light intensity. Under intensities >5 lx, schooling variables in the two juvenile growth stages were nearly constant, allowing schooling. In contrast, the schooling variables indicated that the fish gradually swam more widely and randomly with decreasing light intensities <5 lx. The retinal indices also showed a shift from light adaptation to dark adaptation at light levels <5 lx. From 5 to 0·01 lx, retinal adaptation and fish schooling behaviour changed with light intensity. These data suggest that the schooling behaviour of juvenile Pacific bluefin tuna is greatly affected by retinal adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号