首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
RFP134对UMR106细胞EGF受体酪氨酸蛋白激酶的调节作用   总被引:1,自引:0,他引:1  
以大鼠成骨肉瘤细胞(UMR106)为模型,研究了表皮生长因子(EGF)对其受体酪氨酸蛋白激酶(TPK)的调节作用。以及实验室从植物中提取纯化的二萜类活性物质(RFP134)为诱导分化剂,观察了RFP134对UMP106细胞EGF受体TPK的活性和磷酸化作用的影响。并与RA和RFP134+RA处理细胞做了比较。结果显示EGF与其受体结合后能激活TPK,使TPK活性增加2倍。RFP134,RA,RFP  相似文献   

2.
表皮生长因子(EGF)、转化生长因子-α(TGFα)、表皮生长因子受体(EGFR)和蛋白激酶C(PKC)与细胞生长、增殖分化调节和细胞癌变有密切关系。作者用免疫组织化学方法检测了细支气管肺泡细胞增生(BAH)和细支气管肺泡细胞癌(BAC)的EGF、TGFα、EGFR和PKC表达。结果表明:BAC中的EGF、TGFα阳性率和阳性强度以及EGFR、PKC阳性强度均明显高于BAH。BAH的重度不典型增生病例,其EGF、TGFα、EGFR和PKC均呈高表达。TGFα、EGFR和PKC三者在BAC和BAH中的表达存在明显相关性。提示:TGFα及其受体EGFR和PKC是细支气管肺泡细胞增生、恶性转化和肺泡癌细胞失控生长的重要因素。  相似文献   

3.
孤生受体COUP-TF和nur77的功能及其作用机理仍未阐明.以DNA瞬时转染和测定氯霉素乙酰转移酶(CAT)活性,以及凝胶阻抑测定,分析COUP-TF和nur77的相互作用对视黄酸应答元件(RAREs)的影响.实验表明,COUP-TF通过降低RAREs的基础活性,来增强RARE对视黄酸(RA)的敏感性,而nur77则拮抗COUP-TF的作用.nur77能够加强不同RAREs的转录活性,并且与RA的诱导无关.结果证实,nur77通过与COUP-TF的直接作用而对RAREs产生影响,从而抑制COUP-TF与RAREs结合和COUP-TF的转录活性  相似文献   

4.
通过培养的人主动脉平滑肌细胞(hASMC)及脐静脉内皮细胞(hUVEC),应用3H-TdR参入、Northernblot分析、逆转录多聚酶链反应(RT-PCR)、放射免疫分析(RIA)、和紫外比色法等技术观察了人主动脉中硫酸乙酰肝素蛋白聚糖(HSPG)对hASMC和hUVECDNA合成的作用及对血小板源生长因子(PDGF)、PDGF受体、转化生长因子β(TGF-β)、内皮素-1(ET-1)或碱性成纤维细胞生长因子(bFGF)基因表达和肾素-血管紧张系统(RAS)的影响,结果显示,HSPG明显抑制培养的hASMC基础的DNA合成(cpm值为:10385±3263vs,25541±6421,P<0.01)及外源性PDGF诱导的DNA合成(cpm值为:9878±1947vs.13481±44l0,P<0.05);抑制PDGFA链、TGF-Bp和ET-1mRNA表达,提高PDGFa和β受体mRNA的表达;显著降低hASMC培养液中血管紧张素Ⅱ(AngⅡ)的浓度和血管紧张素转换酶(ACE)的活性,推测HSPG抑制PDGFA链、TGF-β及ET-1mRNA表达,降低ACE活性及AngⅡ浓度是其抑制hASMC增殖的重要机  相似文献   

5.
通过培养的人主动脉平滑肌细胞(hASMC)及脐静脉内皮细胞(hUVEC),应用^3H-TdR参入、Northern blot分析、逆转录多聚酶链反应(RT-PCR)、放射免疫分析(RIA)、和紫外比色法等技术观察了人主动脉中硫酸乙酰肝素蛋白聚糖(HSPG)对hASMC和hUVEC DNA合成的作用及对血小板源生长因子(PGDF)、PGDF受体、转化生长因子β(TGF-β)、内皮素-1(ET-1)或  相似文献   

6.
李田昌  佟利家 《生理学报》1996,48(4):337-342
内皮素(endothelin,ET)是已知的体内活性最强的缩血管物质,其缩血管作用由G蛋白偶联受体所介导。但ET强大的促血管平滑肌细胞(VSMC)增生效应的机理尚未完全阐明。本研究选用培养的兔胸主动脉VSMC,探讨丝裂素活化蛋白激酶(MAPK)在ET促细胞增生中的作用。结果表明:ET-1呈时间和浓度依赖性地促进细胞摄取 ̄3H-TdR和激活MAPK,此作用可被蛋白激酶C(proteinkinaseC,PKC)抑制剂Staurosporine(STP),H-7和ET_A受体拮抗剂BQ123所抑制,但不被酪氨酸激酶抑制剂HerbimycinA(Herb)所抑制,用PKC激动剂PMA(Phorbolmyristateacetate)预处理VSMC,使其PKC活性下调,可显著减弱ET-1对MAPK的激活能力。本结果提示:(1)MAPK参与ET-1所致的VSMC增生;(2)ET-1促细胞增生与激活MAPK的作用是由ET_A受体和PKC介导的。  相似文献   

7.
文和群   《广西植物》1995,15(3):212-213
多叶猴耳环──猴耳环属一新种文和群(广西植物研究所分类研究室,桂林541006)PITHECELLOBIUMMULTIFOLIOLATUM-ANEWSPECIESOFPITHECELLOBIUMFROMGUANGXI,CHINAWenHequn(Gu...  相似文献   

8.
淡水红藻一新种——异孢奥杜藻   总被引:2,自引:0,他引:2  
淡水红藻一新种———异孢奥杜藻谢树莲凌元洁(山西大学生命科学系太原030006)ANEWSPECIESOFFRESHWATERREDALGAE———AUDOUINELLAHETEROSPORAFROMCHINAXIEShuLianLINGYuan...  相似文献   

9.
培养温度对春小麦花粉植株分化率的影响韩玉琴,于世选,刘文萍,赵日(黑龙江省农业科学院,生物技术研究中心哈尔滨,150096)INFLUENCEOFCULTURINGTEMPERATUREONTHEREGENERATIONFREQUENCYOFPOLL...  相似文献   

10.
方鼎 《植物分类学报》1998,36(3):276-278
广西树萝卜属一新种方鼎(广西中医药研究所南宁530022)ANEWSPECIESOFTHEGENUSAGAPETES(VACCINIACEAE)FROMGUANGXI,CHINAFANGDing(GuangxiInstituteofTraditio...  相似文献   

11.
本文研究了EGF、PTH和RA对UMR106细胞EGF受体的调节作用。结果显示PTH能上调EGF的受体,UMR106细胞经bPTH(1-34)处理3天,EGF受体的相对结合率与对照比较提高了40.3%,每个细胞的EGF受体数目从7.22×10~3增加到1.44×10~4,Kd从2.02×10~(-11)增加到3.68×10~(-11)mol/L。而RA则能下调EGF受体,以RA处理3天,EGF受体数目从7.22×10~3下降到4.28×10~3,Kd则从2.02×10~(-11)增加到4.17×10~(-11)mol/L。提示PTH和RA可能通过调变其EGF受体而分别起到正性和负性生长调节作用。  相似文献   

12.
癌细胞具有与正常细胞不同的膜脂流动性,导致细胞对生长因子和癌基因产物反应敏感;引起细胞增殖失控。本实验室从植物中发现一种二萜类活性物质──RFP134,在细胞周期和信号传递等多方面表现出有抑制癌细胞增殖,促进细胞分化的作用。本文以大鼠成骨肉瘤细胞(UMR106)和正常大鼠成骨细胞为模型,研究其对癌细胞膜脂流动性的影响。细胞系UMR106由美国麻省总医院内分泌室赠送。成骨细胞由本实验室分离培养。以不同浓度(20、40、60、80、100μM/L)的RFP134,在同一时间处理细胞,或以最适浓度(50μM/L)在不同时间作用于细胞。DPH为荧光标记物,测得的荧光偏振值和微粘度值为膜膜流动性指标。结果显示,无论在恒定的时间、以不同浓度的RFP134作用于UMR106细胞(Fig.1B),或以恒定的浓度、在不同时间处理UMR106细胞(Fig.1D),结果均表现为显著降低膜脂流动性。前者,RFP134作用于细胞时,细胞荧光偏振值与微粘度值逐步升高,其变化呈量效关系;而后者,呈时效关系。但在最适浓度与最佳作用时间,荧光偏振值和微粘度值达饱和状态。在同样条件下,RFP134对正常成骨细胞的膜脂流动性影响极小。即:荧光偏振值和微粘度值均在正常范围内保持恒定(Fig.1A;Fig.1C)。RFP134降低癌细胞的膜脂流动性  相似文献   

13.
Bone cells are subject to interstitial fluid flow (IFF) driven by venous pressure and mechanical loading. Rapid dynamic changes in mechanical loading cause transient gradients in IFF. The effects of pulsatile flow (temporal gradients in fluid shear) on rat UMR106 cells and rat primary osteoblastic cells were studied. Pulsatile flow induced a 95% increase in S-phase UMR106 cells compared with static controls. In contrast, ramped steady flow stimulated only a 3% increase. Similar patterns of S-phase induction were also observed in rat primary osteoblastic cells. Pulsatile flow significantly increased relative UMR106 cell number by 37 and 62% at 1.5 and 24 h, respectively. Pulsatile flow also significantly increased extracellular signal-regulated kinase (ERK1/2) phosphorylation by 418%, whereas ramped steady flow reduced ERK1/2 activation to 17% of control. Correspondingly, retinoblastoma protein was significantly phosphorylated by pulsatile fluid flow. Inhibition of mitogen-activated protein (MAP)/ERK kinase (MEK)1/2 by U0126 (a specific MEK1/2 inhibitor) reduced shear-induced ERK1/2 phosphorylation and cell proliferation. These findings suggest that temporal gradients in fluid shear stress are potent stimuli of bone cell proliferation.  相似文献   

14.
应用3H-TdR参入,流式细胞技术和Northernblot等方法,观察了EGF和IGF-Ⅰ对UMR106细胞增殖及β微管蛋白表达的影响。结果显示,两种生长因子分别处理UMR106细胞12h,在促进细胞DNA合成的同时,β微管蛋白mRNA的表达量明显提高。运用间接免疫荧光技术及Westernblotting方法,研究发现两种生长因子可使微管聚合及微管蛋白的表达有所增加。提示β微管蛋白的合成及聚合与细胞增殖间可能存在着一定的相互联系.  相似文献   

15.
Gastrin was recently shown to be phosphorylated on its single tyrosine by the epidermal growth factor (EGF)-stimulated tyrosine protein kinase (TPK). The TPK previously detected in the murine lymphoma (LSTRA) induced by the Moloney murine leukemia virus phosphorylates gastrin, the apparent Km is 65 μM and the maximum rate 1900 pmol/min per mg; the kinase is more efficeint with MnCl2 than with MgCl2, is stimulated by NaVO3 and inhibited by ZnCl2. Gastrin phosphorylation is observed only when a TPK is expressed by the cell: extracts of fibroblasts infected with a temperature-sensitive mutant of the Rous sarcoma virus had no gastrin kinase activity when grown at the non-permissive temperature whereas cells grown at the permissive temperature were transformed and disclosed a clear gastrin kinase activity. Gastrin kinases were detected in various transformed cells; human lymphomas, K562 cells, cells from a patient with acute proliferative leukemia, and normal cels; human T and B lymphocytes.  相似文献   

16.
K Mitsui  S Iwashita 《FEBS letters》1990,268(1):157-160
Forskolin-pretreatment of A431 cells reduced both intrinsic and epidermal growth factor (EGF)-induced EGF receptor phosphorylation, however, phosphorylation of phospholipase C-gamma (PLC-gamma) was stimulated under the same conditions. No significant difference was detected in the amount of phosphotyrosine of PLC-gamma between two cultures with or without forskolin treatment followed by EGF. On the other hand, phosphorylation of a 47 kDa protein (P47) which cross-reacted with an anti-PLC-gamma monoclonal antibody, was stimulated by both forskolin and EGF. Phosphorylation was exclusively on serine residues in this case. These results indicate that both PLC-gamma and P47 are phosphorylated by a cAMP-dependent protein kinase and the EGF-stimulated serine kinase, and suggest that serine phosphorylation of PLC-gamma has no effect on ligand-dependent coupling with the EGF receptor.  相似文献   

17.
Parathyroid hormone (PTH) is known to have both catabolic and anabolic effects on bone. The dual functionality of PTH may stem from its ability to activate two signal transduction mechanisms: adenylate cyclase and phospholipase C. Here, we demonstrate that continuous treatment of UMR 106-01 and primary osteoblasts with PTH peptides, which selectively activate protein kinase C, results in significant increases in DNA synthesis. Given that ERKs are involved in cellular proliferation, we examined the regulation of ERKs in UMR 106-01 and primary rat osteoblasts following PTH treatment. We demonstrate that treatment of osteoblastic cells with very low concentrations of PTH (10(-12) to 10(-11) m) is sufficient for substantial increases in ERK activity. Treatment with PTH-(1-34) (10(-8) m), PTH-(1-31), or 8-bromo-cAMP failed to stimulate ERKs, whereas treatment with phorbol 12-myristate 13-acetate, serum, or PTH peptides lacking the N-terminal amino acids stimulated activity. Furthermore, the activation of ERKs was prevented by pretreatment of osteoblastic cells with inhibitors of protein kinase C (GF 109203X) and MEK (PD 98059). Treatment of UMR cells with epidermal growth factor (EGF), but not PTH, promoted tyrosine phosphorylation of the EGF receptor. Transient transfection of UMR cells with p21(N17Ras) did not block activation of ERKs following treatment with low concentrations of PTH. Thus, activation of ERKs and proliferation by PTH is protein kinase C-dependent, but stimulation occurs independently of the EGF receptor and Ras activation.  相似文献   

18.
Phospholipase C-gamma 1 (PLC-gamma 1) is phosphorylated on three tyrosine residues: Tyr-771, Tyr-783, and Tyr-1253. With the use of antibodies specific for each of these phosphorylation sites, we have now determined the kinetics and magnitude of phosphorylation at each site. Phosphorylation of Tyr-783, which is essential for lipase activation, was observed in all stimulated cell types examined. The extent of phosphorylation of Tyr-1253 was approximately 50 to 70% of that of Tyr-783 in cells stimulated with platelet-derived growth factor (PDGF) or epidermal growth factor (EGF), but Tyr-1253 phosphorylation was not detected in B or T cell lines stimulated through B- and T-cell antigen receptors, respectively. Tyr-771 was phosphorylated only at a low level in all cells studied. In cells stimulated with PDGF, phosphorylation and dephosphorylation of Tyr-783 and of Tyr-1253 occurred with similar kinetics; the receptor kinase appeared to phosphorylate both sites, albeit with Tyr-783 favored over Tyr-1253, before the bound PLC-gamma 1 was released, and phosphorylation at the two sites occurred independently. PDGF and EGF induced similar levels of phosphorylation of Tyr-783 and of Tyr-1253 in a cell line that expressed receptors for both growth factors. However, only PDGF, not EGF, elicited substantial PLC activity, suggesting that Tyr-783 phosphorylation was not sufficient for enzyme activation. Finally, concurrent production of phosphatidylinositol 3,4,5-trisphosphate was found to contribute to the activation of phosphorylated PLC-gamma 1.  相似文献   

19.
Membranes prepared from A-431 human epidermoid carcinoma cells retained the ability to bind 125I-labeled epidermal growth factor (EGF) in a specific manner. In the presence of [gamma-32P]ATP and Mn2+ or Mg2+, this membrane preparation was capable of phosphorylating endogenous membrane components, including membrane-associated proteins; the major phosphorylated amino acid residue detected in partial acid hydrolysates was phosphothreonine. The binding of EGF to these membranes in vitro resulted in a severalfold stimulation of the phosphorylation reaction; again, the major phosphorylated amino acid residue detected in partial acid hydrolysates was phosphothreonine. Membrane-associated dephosphorylation reactions did not appear to be affected by EGF. The phosphorylation reaction was not stimulated by cyclic AMP or cyclic GMP in the absence or presence of EGF. The phosphorylation system of the membrane was able to utilize [gamma-32P]GTP in both the basal and EGF-stimulated reactions. The enhanced membrane phosphorylation was specific for EGF and its derivatives; a wide variety of other peptide hormones were ineffective. The A-431 membrane preparation also was capable of phosphorylating exogenous proteins, such as histone, phosvitin, and ribonuclease, by a process which was stimulated by EGF. These findings suggest that one of the biochemical consequences of the binding of EGF to membranes is a rapid activation of a cyclic AMP-independent phosphorylating system.  相似文献   

20.
Binding of EGF to cells expressing human EGF receptor stimulated rapid tyrosine phosphorylation of phospholipase C-II (PLC-II), as revealed by immunoblotting analysis with phosphotyrosine-specific antibodies. Tyrosine phosphorylation of PLC-II was stimulated by low physiological concentrations of EGF (1 nM), was quantitative, and was already maximal after a 30 sec incubation with 50 nM EGF at 37 degrees C. Interestingly, antibodies specific for PLC-II were able to coimmunoprecipitate the EGF receptor and antibodies against EGF receptor also coimmunoprecipitated PLC-II. According to this analysis, approximately 1% of EGF receptor molecules were associated with PLC-II molecules. The protein tyrosine kinase inhibitor tyrphostin RG50864, which blocks EGF-dependent cell proliferation, blocked EGF-induced tyrosine phosphorylation of PLC-II, its association with EGF receptor, and EGF-induced Ca2+ release. Hence, EGF-induced tyrosine phosphorylation of PLC-II may be a regulatory event linking the tyrosine kinase activity of EGF receptor to the PIP2 hydrolysis signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号