首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
Zheng HZ  An GS  Nie SH  Tang CS  Liu NK  Wang SH 《生理学报》1998,50(4):379-384
培养的家兔胸主动脉血管平滑肌细胞(VSMC)分别以内皮素(ET-1)、一氧化氮(NO)前体L-Arg和NO供体SIN-1刺激,或用ET-1+L-Arg、ET-1+SIN-1联合刺激,测VSMC^3H-TdR掺入、丝裂素活化蛋白激酶(MAPK)活性及蛋白激酶C(PKC)活性的改变,以研究NO抑制ET-1促VSMC增殖作用的信号转导途径。结果表明:(1)ET-1 10^-8mol/L单独刺激,^3H-  相似文献   

2.
Liu D  Lu JS  Yin XL 《生理学报》2000,52(6):483-486
观察pp60c-src在血管紧张素Ⅱ(AngⅡ)诱导血管平滑肌细胞(VSMCs)内丝裂原活化蛋白激酶(MAPK)激活中的作用,以了解AngⅡ促VSMCs增殖的信号转导过程。将合成的反义c-src寡脱氧核苷酸(oligodeoxynucle-otides,ODNs)以脂质体包裹转染培养的大鼠VSMCs,用Western印迹测得细胞裂解液中pp60c-src含量明显下降,免疫沉淀方法测得pp60c-s  相似文献   

3.
内皮素-1对缺氧肺动脉平滑肌细胞的增殖作用   总被引:2,自引:0,他引:2  
内皮素(ET)是至今所发现的最强的内源性血管收缩肽,近年来发现ET-1能促进血管平滑肌细胞增殖。本研究表明ET-1对缺氧培养的肺动脉平滑肌细胞(PASMC)有剂量依赖的增殖作用,缺氧可促进PASMC的DNA合成且增加ET-1的丝裂原作用。ET-1的丝裂原作用主要由其A型受体(ETR_A)所介导,ETR_A的特异拮抗剂BQ123可显著抑制缺氧以及缺氧与ET-1协同所产生的增殖作用,而且发现ETR_A在缺氧培养的PASMC中的表达显著高于常氧对照组PASMC。本研究表明ET-1参与了缺氧性肺动脉结构重组,而缺氧可增强PASMC对ET-1的增殖反应性。  相似文献   

4.
Luo ZQ  Sun XH  Qin XQ 《生理学报》1999,51(3):241-245
应用反义技术探讨c-fos基因ET-1调控肺泡Ⅱ型细胞(ATⅡ)表面活性物质(PS)合成的胞内信号转导中的作用,结果显示:(1)内皮素-1(ET-1)可提高ATⅡ细胞的^3H-胆碱掺入。(2)蛋白激酶C(PKC)激活剂PMA可使ATⅡ细胞的^3H-胆碱掺入量增加,PKC抑制剂H7可抑制ET-1的促PS合成效应。(3)ET-1和PMA可显著提高Fos蛋白表达量,H7和c-fos反义寡核苷酸(ODN)  相似文献   

5.
在人肝癌细胞7721中研究了酪氨酸蛋白激酶(TPK)和蛋白激酶C(PKC)的激活剂[分别为表皮生长因子(EGF)和佛波酯(PMA)]和各种蛋白激酶抑制剂对N-乙酰氨基葡萄糖转移酶V(GnT-V)活力的影响,以探讨TPK和PKC对GnT-V的调节。结果发现,EGF或PMA处理细胞48h后,GnT-V的活力明显增高;蛋白激酶的非特异性抑制剂槲皮素和染料木黄酮(genistein)在抑制TPK和PKC的同时,抑制GnT-V的基础活力,并完全阻断EGF或PMA对GnT-V的增高作用;TPK的特异性抑制剂Tyrphostin-25和PKC的特异性抑制剂D-鞘氨醇分别应用时,各自只能部分地取消EGF或PMA对GnT-V的诱导。但当Tyrphostin-25和D-鞘氨醇同时加入培养基中则可完全阻断EGF或PMA对GnT-V的诱导激活。蛋白质合成抑制剂环己亚胺和蛋白激酶抑制剂作用相仿,不但可抑制GnT-V的基础活力,也可完全消除EGF或PMA对GnT-V的激活。以上结果提示EGF或PMA通过蛋白激酶调节GnT-V的酶蛋白合成,并且GnT-V受到膜性TPK和PKC的双重调节,其中m-TPK较m-PKC更为重要。  相似文献   

6.
AVP(4 ̄8)是精氨酸加压素(AVP)在脑内的天然酶解产物,具有增强学习记忆的功能。为了进一步阐明其作用的分子机制,以SK-N-SH成神经瘤细胞(SK细胞)为模型进行研究。放射性配基结合实验表明,在SK细胞上存在AVP(4 ̄8)的特异性结合位点。AVP(4 ̄8)可以刺激SK细胞中蛋白激酶C(PKC)和促细胞分裂原活化的蛋白激酶(MAPK)尖性的升高,并可以被AVP(4 ̄8)的受体拮抗剂ZDC(C  相似文献   

7.
内皮素(ET)是迄今所发现的最强的内源性血管收缩肽,它有三种异构体,其中ET-1不仅缩血管活性最强,而且对血管平滑肌细胞(VSMC)具有丝裂原作用。本文从ET-1的合成和分泌,对VSMC的增殖作用以及丝裂原信息传递途径三方面,综述了目前ET-1对VSMC增殖作用的研究进展。  相似文献   

8.
内皮素(ET)是迄今所发现的最强的内源性血管收缩肽,它有三种异构体,其中ET-1不仅缩血管活性最强,而且对血管平滑肌细胞(VSMC)具有丝裂原作用。本文从ET-1的合成和分泌,对VSMC的增殖作用以及丝裂原信息传递途径三方面,综述了目前ET-1对VSMC增殖作用的研究进展。  相似文献   

9.
蛋白激酶C的激活转位和它介导的信号通路   总被引:4,自引:0,他引:4  
蛋白激酶C是一系列丝氨酸/苏氨酸蛋白激酶家族,已发现了至少十二种同功酶。在静止细胞中,它主要以非活化形式存在于胞浆中,由受体-G蛋白耦联的PLCβ激活便裂细胞膜上的磷脂而释放DAG;与PKC的结合引起了PKC的别构激活;而通过其它信号途径激活的PLD水解胞膜的磷脂酰胆碱(PC)产生的磷脂酸经磷脂酸酯酶产生的DAG可能是PKC持续激活的必要条件。在体外实验中,PKC的持续激活是一些细胞分化所必须的。蛋白激酶C的激活首先引起了它转位到膜,有时转位到核,并在转位后继续保持磷酸化活性,同时对它的下游底物进行磷酸化导致它们的活化。PKC可活化RafSer/Thr蛋白激酶及NF-kB,介导细胞对外界的反应,包括对核基因表达的调节,引起细胞生长或分化等。由于Raf可与活化的Ras—GTP结合从而定位到胞膜,说明蛋白激酶C与Ras介导的Raf-1/MEK/MAPK信号通路间存在着“对话”。  相似文献   

10.
G蛋白偶联受体激活丝裂原活化蛋白激酶的机理   总被引:2,自引:1,他引:1  
Zhu WZ  Han QD 《生理科学进展》1998,29(2):141-144
多种G蛋白偶联受体的均能激活丝裂原活化蛋白激酶。Gi蛋白偶联受体主要通过其βγ亚基,依赖Ras蛋白途径;在大多数哺乳类细胞中Gs蛋白偶联受体通过PKA途径抑制Ras依赖的MAPK活化,但在COS-7细胞,Gs蛋白偶联受体通过PKA途径使表达的MAPK活化;Gq蛋白偶联受体主要通过PKC途径依赖或非依赖于Ras使MAPK活化。MAPK信号途径中EGF受体,酪氨酸激酶及调节蛋白Shc等联级反应蛋白可能  相似文献   

11.
Effects of growth hormone (GH), insulin-like growth factor I (IGF-I), and endothelin-1 (ET-1) on endothelial cell migration and the underlying molecular mechanisms were explored using a human umbilical cord endothelial cell line, ECV304 cells, in vitro. Treatment of the cells with IGF-I or ET-1, but not GH, stimulated the cell migration. Interestingly, however, ET-1-induced, but not IGF-I-induced, migration of the cells was inhibited by GH. Both ET-1 and IGF-I caused activation of mitogen-activated protein kinase (MAPK) in the cells, and GH eliminated the MAPK activation produced by ET-1 but not that produced by IGF-I. On the other hand, migration of the cells was stimulated by protein kinase C (PKC) agonist, phorbol 12-myristate 13-acetate. ET-1 promoted PKC activity, and a PKC inhibitor, GF-109203X, blocked ET-1-induced cell migration. Although GH inhibited ET-1-induced cell migration and MAPK activity, it did not block ET-1-induced PKC activation. Thus ET-1 stimulation of endothelial cell migration appears to be mediated by PKC/MAPK pathway, and GH may inhibit the MAPK activation by ET-1 at the downstream of PKC.  相似文献   

12.
The p38 mitogen-activated protein kinase (MAPK) cascade transduces multiple extracellular signals from cell surface to nucleus and is employed in cellular responses to cellular stresses and apoptotic regulation. The involvement of the p38 MAPK cascade in opioid- and opioid receptor-like receptor-1 (ORL1) receptor-mediated signal transduction was examined in NG108-15 neuroblastoma x glioma hybrid cells. Stimulation of endogenous delta-opioid receptor (DOR) or ORL1 resulted in activation of p38 MAPK. It also induced the activation of extracellular signal-regulated kinases (ERKs), another member of the MAPK family, with slower kinetics. Activation of p38 MAPK was abolished by selective antagonists of DOR or ORL1, pretreatment with pertussis toxin, or SB203580, a specific inhibitor of p38 MAPK. Inhibition of p38 MAPK had no significant effect on opioid-induced ERK activation, indicating that p38 MAPK activity was not required for ERK activation, though its stimulation preceded ERK activation. Inhibition of protein kinase A (PKA) strongly diminished p38 activation mediated by DOR or ORL1 but had no significant effect on ERK activation, and protein kinase C (PKC) inhibitors potentiated stimulation of p38 while inhibiting activation of ERKs. Taken together, our results provide the first evidence for coupling of DOR and ORL1 to the p38 MAPK cascade and clearly demonstrate that receptor-mediated activation of p38 MAPK both involves PKA and is negatively regulated by PKC.  相似文献   

13.
Yao XH  Wang PY  Pang YZ  Su JY  Tang CS 《生理学报》1998,50(2):188-192
本工作在二磷酸腺苷(ADP)活化的大鼠血小板上,观察精-甘-天冬-丝上肽(RGDS肽)对血小板聚集、蛋白磷酸化、蛋白激酶C和丝裂素活化蛋白激酶活性的影响。结果发现,50μmol/LADP引起血小板聚集时,蛋白激酶C(PKC0及丝裂经蛋白激酶(MAPK)活性增加,并引起95和66kD蛋白磷酸化。应用50,100和200μmol/LRGDS肽与基共同孵育,呈浓度依赖地抑制ADP引起的血小板聚集和对PK  相似文献   

14.
Abstract: Astrocytes have been shown to express endothelin (ET) receptors functionally coupled, via different heterotrimeric G proteins, to several intracellular pathways. To assess the relative contribution of each subtype in the astrocytic responses to ET-1, effects of BQ123, an antagonist selective for the ET receptor subtype A (ETA-R), and IRL1620, an agonist selective for the ET receptor subtype B (ETB-R), were investigated in primary cultures of rat astrocytes. Binding experiments indicated that the ETB-R is the predominant subtype in these cells. Inhibition of forskolin-stimulated cyclic AMP production was observed under ETB-R stimulation. Bordetella pertussis toxin (PTX) pretreatment completely abolished this effect, indicating that this pathway is coupled to the ETB-R via Gi protein. Increases of tyrosine phosphorylation of cellular proteins, stimulation of mitogen-activated protein kinase (MAPK), and DNA synthesis were also found to be mediated by the ETB-R, but through PTX-insensitive G protein. IRL1620-induced MAPK activation involved the adapter proteins Shc and Grb2 and the serine/threonine kinase Raf-1. This study reveals that the various effects of ET-1 in astrocytes are mediated by the ETB-R, which couples to multiple signaling pathways including the MAPK cascade.  相似文献   

15.
Endothelin-1 (ET-1) affects glucose uptake in adipocytes and may play an important role in adipose physiology. One of the principal functions of adipose tissue is the provision of energy substrate through lipolysis. In the present study, we investigated the effects of ET-1 on lipolysis in 3T3-L1 adipocytes. When glycerol release in the culture medium was measured as an index of lipolysis, the results showed that ET-1 caused a significant increase that was time and dose dependent. With a concentration of 10 nM ET-1, stimulation of glycerol release plateaued after 4 h of exposure. This effect was inhibited by the ETA receptor antagonist BQ-610 (10 microM) but not by the ETB receptor antagonist BQ-788 (10 microM). To further explore the underlying mechanisms of ET-1 action, we examined the involvement of the cAMP-dependent protein kinase A-mediated, phospholipase A2 (PLA2)-mediated, protein kinase C (PKC)-mediated, phosphatidylinositol 3 (PI 3)-kinase-mediated, and the mitogen-activated protein kinase (MAPK)-mediated pathways. Inhibition of adenylyl cyclase activation by SQ-22536 (100 microM) did not block ET-1-induced lipolysis. Pretreatment of adipocytes with the PLA2 inhibitor dexamethasone (100 nM), the PKC inhibitor H-7 (6 microM), or the PI 3-kinase inhibitor wortmannin (100 nM) also had no effect. ET-1-induced lipolysis was blocked by inhibition of extracellular signal-regulated kinase (ERK) activation using PD-98059 (75 microM), whereas a p38 MAPK inhibitor (SB-203580; 20 microM) had no effect. Results of Western blot further demonstrated that ET-1 induced ERK phosphorylation. These data show that ET-1 induces lipolysis in 3T3-L1 adipocytes via a pathway that is different from the conventional cAMP-dependent pathway used by isoproterenol and that involves ERK activation.  相似文献   

16.
It has been suggested that bradykinin (BK) plays an important role in regulating neointimal formation after vascular injury. However, implication of BK in the growth of rat vascular smooth muscle cells (VSMCs) is controversial. Therefore, we examined the mitogenic effect of BK on VSMCs associated with activation of mitogen-activated protein kinase (MAPK). Both [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation were activated by BK in time- and concentration-dependent manners. Pretreatment of these cells with neither pertussis toxin nor cholera toxin attenuated the BK-induced responses. Pretreatment of VSMCs with Hoe 140 (a selective B(2) receptor antagonist), U73122 (an inhibitor of phospholipase C), and BAPTA/AM (an intracellular Ca(2+) chelator) inhibited both [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation in response to BK. BK-induced [(3)H]thymidine incorporation and p42/p44 MAPK phosphorylation were inhibited by pretreatment of VSMCs with tyrosine kinase inhibitors (genistein and herbimycin A), protein kinase C (PKC) inhibitors (staurosporine, Go-6976, and Ro-318220), an MAPK kinase inhibitor (PD98059), and a p38 MAPK inhibitor (SB203580). Overexpression of the dominant negative mutants, H-Ras-15A and Raf-N4, suppressed p42/p44 MAPK activation induced by BK and PDGF-BB, indicating that Ras and Raf may be required for activation of these kinases. From these results, we concluded that the mitogenic effect of BK is mediated through activation of the Ras/Raf/MEK/MAPK pathway similar to that of PDGF-BB. BK-mediated MAPK activation was modulated by Ca(2+), PKC, and tyrosine kinase all of which are associated with cell proliferation in rat cultured VSMCs.  相似文献   

17.
S Eguchi  Y Hirata  M Ihara  M Yano  F Marumo 《FEBS letters》1992,302(3):243-246
The effects of a novel cyclic pentapeptide (BQ-123), an endothelin (ET) antagonist selective for the ETA receptor subtype, on phosphoinositide breakdown and DNA synthesis stimulated by ET-1 were studied in cultured rat vascular smooth muscle cells (VSMC). BQ-123 competitively inhibited the binding of [125I]ET-1 to VSMC with the apparent Ki of 4 x 10(-9) M. BQ-123 dose-dependently inhibited formation of inositol-1,4,5-trisphosphate and [3H]thymidine uptake stimulated by ET-1. These data suggest that the ET-1-induced DNA synthesis in VSMC is mainly mediated by ETA receptor subtype.  相似文献   

18.
Abstract: Full and functionally selective M1 muscarinic agonists (carbachol and AF102B, respectively) activate secretion of the soluble form of amyloid precursor protein (APPs) in PC12 cells expressing the m1 muscarinic receptor (PC12M1 cells). This activation is further augmented by neurotrophins such as nerve growth factor and basic fibroblast growth factor. Muscarinic stimulation activates two transduction pathways that lead to APPs secretion: protein kinase C (PKC)-dependent and mitogen-activated protein kinase (MAPK)-dependent pathways. These pathways operate in parallel and converge with transduction pathways of neurotrophins, resulting in enhancement of APPs secretion when both muscarinic agonist and neurotrophins stimulate PC12M1 cells. These conclusions are supported by the following findings: (a) Only partial blockade of APPs secretion is observed when PKC, p21ras, or MAPK is fully inhibited by their respective specific inhibitors, GF109203X, S-trans,trans -farnesylthiosalicylic acid, and PD98059. (b) K252a, which blocks PKC and phorbol 12-myristate 13-acetate-induced APPs secretion, enhances both muscarinic-stimulated MAPK activation and APPs secretion. (c) Activation of MAPK in PC12M1 cells by muscarinic agonists is Ras-dependent but PKC-independent and is enhanced synergistically by neurotrophins. These results suggest that muscarinic stimulation of APPs secretion is mediated by at least two independent pathways that converge and enhance the signal for APPs secretion at the convergence point.  相似文献   

19.
Ou HS  Yan LM  Fu MG  Wang XH  Pang YZ  Su JY  Tang CS 《生理学报》1999,51(3):315-320
血红素加氧酶(heme oxygenase,HO)是血红素分解代谢过程中的限速酶,它能使细胞内的血红素降解成胆绿素和一氧化碳(carbonmonoxide,CO),近来资料表明内源性一氧化碳对生理和病理状态下的血管张力有重要的调节作用,目前尚不不禁内源性HO/CO刘否参与平滑肌细胞增殖过程的调节,本实验在体内培养的大鼠主动脉平滑肌细胞模型上,用血色素加氧酶抑制剂卟啉锌-9(zinc protopo  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号