首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
板栗芽内化学物质与抗栗瘿蜂的关系   总被引:5,自引:0,他引:5  
测定了不同栗瘿蜂抗性的板栗芽内化学物质。结果表明:栗芽内含水量、总糖、还原糖、蛋白质、花色素甙、邻苯二酚分别与栗树虫瘿百分率有明显的负相关性;氨基酸、淀粉、类黄酮、没食子酸含量与栗树受害率间无明显相关性。  相似文献   

2.
栗瘿蜂虫瘿形成及发育与发生量关系研究   总被引:4,自引:0,他引:4  
板栗瘿蜂是我国板栗主要害虫,虫瘿是该害虫危害产物.在自然状态下,虫瘿的形成和发育性状在个体间差异显著。本文对栗瘿蜂在直观上容易识别和观测的虫瘿的形成及其形态、生物学指标进行检测,并对其与虫室数和虫量的相互关系进行定量分析,结果表明,单瘿质量近似正态分布,变异系数为0.1712,峰度系数1.3853.个体质量最大和最小相差15.5倍,体积相差64倍。虫瘿质量(X1)、体积(X2)与瘿内虫室数和虫数(Y)呈正相关关系,相关系数分别为R1^2=0813,R2^2=0.874,达到显著水平。不同板栗品种对栗瘿蜂的抗性为处暑红>蜜蜂球>二水早。天敌主要是中华长尾小蜂,虫瘿寄生率72.7%,幼虫(虫室)寄生率24.06%。  相似文献   

3.
Wang G  Zhang Z  Kong D  Liu Q  Zhao G 《Plant cell reports》2012,31(9):1603-1610
In the chestnut "replaceable bud" cultivar 'Tima zhenzhu', the auxiliary bud formed on the fruiting branch dies after fruiting, giving rise to a morphology more suitable than the wild type's for intensive cultivation and heightened production. Here, we show that many of the hallmarks of programmed cell death (PCD) occur during the senescence of the replaceable bud, including DNA degradation, a high ratio of PCD cells and the breakdown of cell ultrastructure. The time course of the senescence was followed by sampling the developing bud from 20 to 40?days after flowering. In cv. 'Tima zhenzhu', DNA degradation was detectable prior to any visible sign of bud senescence, while it did not occur in the wild type (cv. 'Dabanhong'). The ratio of PCD cells (as determined by flow cytometry) rose over the sampling period and was consistently higher in cv. 'Tima zhenzhu' than in cv. 'Dabanhong'. After staining the bud cell nuclei with propidium iodide, it was clear that both their chromatin content and overall size fell over the sampling period in cv. 'Tima zhenzhu' while in cv. 'Dabanhong', no such decrease occurred. Other characteristics of PCD were noted in cv. 'Tima zhenzhu's bud cells, including chromatin condensation, tonoplast invagination and DNA cleavage. We conclude that the replaceable bud senescence phenomenon is driven by PCD. The manipulation of this trait may have potential for remodeling the pattern of development of the fruit-bearing branches of chestnut. Key message This paper first reported the occurrence of programmed cell death during the senescence of vegetative buds in a woody species, and the results extend the range of knowledge of PCD.  相似文献   

4.
红厚壳(Calophyllum inophyllum)为藤黄科红厚壳属多年生木本植物,有很高的药用价值。该研究以红厚壳带节茎段为外植体,探讨生长调节剂对腋芽萌发及丛生芽诱导、伸长和试管苗生根的影响。研究结果表明,外植体腋芽萌发和丛生芽诱导效果最好的培养基是MS+NAA1.0+TDZ0.5,在此条件下培养21天后,转入添加0.5 g·L–1活性炭且无生长调节剂的MS培养基,可有效促进不定芽的伸长。将带不定芽的外植体先在附加1.0 mg·L–1NAA的1/2MS培养基上进行生根诱导4周,之后转入附加1.0 g·L–1活性炭的无激素培养基进行根的伸长培养,这样的两步生根法能有效促进红厚壳生根。  相似文献   

5.
K. T. Chun  M. G. Goebl 《Genetics》1996,142(1):39-50
The yeast Saccharomyces cerevisiae reproduces by budding, and many genes are required for proper bud development. Mutations in some of these genes cause cells to die with an unusual terminal morphology--elongated or otherwise aberrantly shaped buds. To gain insight into bud development, we set out to identify novel genes that encode proteins required for proper bud morphogenesis. Previous studies screened collections of conditional mutations to identify genes required for essential functions, including bud formation. However, genes that are not susceptible to the generation of mutations that cause a conditional phenotype will not be identified in such screens. To identify a more comprehensive collection of mutants, we used transposon mutagenesis to generate a large collection of lethal disruption mutations. This collection was used to identify 209 mutants with disruptions that cause an aberrant terminal bud morphology. The disruption mutations in 33 of these mutants identify three previously uncharacterized genes as essential, and the mutant phenotypes suggest roles for their products in bud morphogenesis.  相似文献   

6.
栗瘿蜂在贵州的发生及相关生物学习性   总被引:1,自引:0,他引:1  
龙正权  王先华 《昆虫知识》2011,48(6):1860-1863
本文首次报道栗瘿蜂Dryocosmus kuriphilus Yasumatsu在贵州铜仁的发生为害情况,详细记述栗瘿蜂的生物学特性,特别是栗瘿蜂在瘿内的生活习性。2009年4月-2010年8月调查,在铜仁市桐木坪乡卜口村栽种的366.67hm2板栗中,株被害率达100%,当年新梢被害率达41%。该虫1年发生1代,3月底至4月初虫瘿出现,5月中旬虫瘿达最大,化蛹高峰期为5月下旬;成虫羽化高峰期为6月中旬,出瘿高峰期为6月15-22日。成虫孤雌生殖,产卵栗芽内,以幼龄幼虫在栗芽内虫室越冬。大龄幼虫有极强的耐饥性和耐旱性。用粘虫胶对成虫进行防治,有较好的防效,也使天敌得到了有效保护。  相似文献   

7.
The Asian chestnut gall wasp Dryocosmus kuriphilus (Hymenoptera: Cynipidae) is one of the most serious pests of chestnut trees worldwide. Wasps lay eggs into chestnut buds from mid Jane to late July, depending on latitude, and galls develop the following spring on new vegetation, reducing photosynthesis and nut production. We observed that modification of tissues surrounding D. kuriphilus eggs, which differentiate to form the larval chamber, started approximately 1 month after oviposition, shortly after eggs hatch. The larval chambers continued to increase slightly in size throughout the autumn months until January. After that, a period of stagnation, which corresponds to the plant's dormancy, occurred, followed by rapid growth from March to May, during the period from bud swelling to bud break. Galls continued to grow during the leaf expansion after bud break and stopped when plant organs achieved their final size. Our results have implications for the management of the pest, providing a better understanding of the critical time periods for the effective control.  相似文献   

8.
Seedlings of four deciduous tree species maple ( Acer pseudoplatanus ), beech ( Fagus sylvatica ), horse chestnut ( Aesculus hippocastanum ) and lime ( Tilia cordata ) were exposed to de-icing salt (NaCl) either through the soil or applied to the above ground plant parts. A soil solution of 1.65 g l−1 NaCl was maintained from the start of the experiment in January 1999 until termination in June 1999. The main effects caused by salt treatment through the soil were a reduction in photosynthesis of up to 50% and the development of leaf chlorosis or necrosis covering up to 50% of the total leaf area for the most sensitive species (lime and beech); maple and horse chestnut were relatively tolerant. There was no significant correlation between Cl or Na concentration in leaves and the relative sensitivity of the species. Saturated salt solution was applied to bark, buds or leaf scars on two occasions three weeks apart during the winter season. This affected the timing of bud break with delays of up to eight days compared with the controls. In the most sensitive species the above ground salt treatments partly prevented bud break (beech) or reduced photosynthesis (lime). Uptake through the bark was most important for the development of stress effects, compared with uptake through the other above ground plant parts.  相似文献   

9.
Carroll AL  Quiring DT 《Oecologia》2003,136(1):88-95
Herbivory by Zeiraphera canadensis Mut. & Free. (Lepidoptera: Tortricidae), an early season folivore of white spruce [ Picea glauca(Moench) Voss], has been associated with a shift in the timing of bud burst by its host during the subsequent year. We tested the hypothesis that a herbivory-induced shift in the phenology of bud development improves the window for colonisation of white spruce buds by Z. canadensis. Feeding on cortical tissue of elongating shoots caused the destruction of apical buds and an interruption of apical dominance in the year following herbivory. White spruce compensated for damage with the activation of dormant buds; mainly at proximal positions along shoots. As a result, half of all active buds on previously damaged branches were located immediately adjacent egg sites (i.e. previous year's bud scales), whereas <10% of active buds on intact shoots were situated there. More than 40% of newly emerged larvae colonised the basal buds of damaged shoots versus just 10% for intact shoots. Previous herbivory also influenced the initiation of bud burst. All buds flushed 2 days earlier on damaged shoots and date of bud burst was inversely correlated to bud density, indicating that short damaged shoots with large numbers of buds were stronger sinks for nutrients required for bud development. Egg hatch was best synchronized with early bursting buds on damaged branches. As a consequence, 89% of first-instar larvae successfully colonised buds on damaged branches while only 55% were successful on undamaged branches. Improved survival of larvae in the year following herbivory was a direct result of the evolved response by white spruce to the interruption of apical dominance. The pattern of herbivory by Z. canadensis may have evolved as a strategy to enhance the quality of white spruce for their offspring.  相似文献   

10.
The cotton plant, Gossypium hirsutum, hosts various pests that damage different structures. Among these pests, Spodoptera cosmioides (Walker) and Spodoptera eridania (Cramer) (Lepidoptera: Noctuidae) are considered important. The objectives of this study were to characterize and to quantify the potential damage of S. eridania and S. cosmioides feeding on different structures of cotton plants. For this purpose, newly-hatched larvae were reared on the following plant parts: leaf and flower bud; leaf and boll; flower bud or boll; and leaf, flower bud and boll. The survival of S. cosmioides and S. eridania was greater than 80% and 70% for larvae fed on cotton plant parts offered separately or together, respectively. One larva of S. eridania damaged 1.7 flower buds, but did not damage bolls, while one larva of S. cosmioides damaged 5.2 flower buds and 3.0 cotton bolls. Spodoptera eridania and S. cosmioides can be considered species with potential to cause economic damage to cotton plants because they can occur throughout cotton developmental stages causing defoliation and losses of reproductive structures. Therefore, the results validate field observations that these two species of Spodoptera are potential pests for cotton.  相似文献   

11.
板栗花芽分化和花序生长过程中的内源激素含量变化   总被引:1,自引:0,他引:1  
在板栗花芽分化期间,易于形成雌花的上部芽含有较高的ZT、GA和较低的ABA;下部芽则基本相反。在前2个分化期,上部芽的IAA含量均比下部芽的低,但进入第三分化期,尤其是随着萌芽期的到来,上部芽的IAA含量迅速急剧上升,远远超过下部芽。在花序生长期,1、2花序基部保持较高的ZT和GA水平,1、2花序顶部和5、6花序则保持较高的IAA和ABA水平。  相似文献   

12.
A mature, quiescent, primary axillary bud on the main axis of a flowering Nicotiana tabacum cv. Wisconsin 38 plant, when released from apical dominance and before forming its terminal flower, produced a number of nodes which was dependent upon its position on the main axis. Each bud produced about one more node than the next bud above it. The total number of nodes produced by an axillary bud was about 6 to 8 greater than the number of nodes present above this bud on the main axis. At anthesis of the terminal flower on the main axis, mature, quiescent, primary axillary buds had initiated 7 to 9 leaf primordia while secondary axillary buds, sometimes present in addition to the primary ones, had initiated 4 to 5 leaf primordia. When permitted to grow out independently, primary and secondary axillary buds located at the same node on the main axis produced the same number of nodes before forming their terminal flowers. In contrast, immature primary axillary buds which had produced only 5 leaf primordia and which were released from apical dominance prior to the formation of flowers on the main axis produced only as many nodes as would be produced above them on the main axis by the terminal meristem, i.e., “extra” nodes were not produced. Therefore, it is the physiological status of the plant and not the number of nodes on the bud at the time of release from apical dominance that influenced the node-counting process of a bud. When two axillary buds were permitted to develop on the same main axis, each produced the same number of nodes as single axillary buds developing at these nodes. Thus, the counting process in an axillary bud of tobacco is independent of other buds. Axillary buds on main axes of plants that had been placed horizontally produced the same number of nodes as identically-positioned axillary buds on vertical plants, indicating that gravity does not play a major role in the counting, by an axillary bud, of the nodes on the main axis.  相似文献   

13.
Ethylene is involved in at least two discrete mechanisms in the control of apical dominance: the release of lateral buds from inhibition and their subsequent growth and development. Generally, high levels of freely diffusible ethylene in the apical region of the shoot are conducive to lateral-bud-outgrowth, while high ethylene levels in the region of the lateral buds themselves tend to be inhibitory. Threshold ethylene levels concerned with the release of buds from inhibition and with the growth that follows may differ between species. Thus, in some species (e.g. Gossypium ) lateral-bud growth proceeds in the continuing presence of ethylene supplied to the whole plant, whereas in others (e.g. Petunia ) the growth of the released lateral buds occurs only when the ethylene is remaved.
When ethylene production in Pisum nodal sections is enhanced by exomgenous auxin, growth of the attached buds is suppressed. In the intact plant system, unequivocal evidence has not been established for a role of endogenous ethylene acting directly on lateral buds to effect their inhibition. Apical dominance is not affected by the apptication of ethylene antagonists to the lateral buds of intact plants. Results from different studies have been inconsistent regarding the changes in endogenous ethylene levels in the node/lateral-bud tissue when the plant is decapitated or when auxin is applied to the stump of the decapitated plant to maintain lateral bud inhibition.
While exogenous ethylene supplied to the lateral bud generally increases inhibition, the availability of ethylene, regulated endogenously, is essential to the released bud on the decapitated plant in order to sustain its subsequent development into a lateral shoot. There is evidence that, in certain instances, endogenous ethylene may also be essential in the initial stages of bud development, e.g. in thee early growth that is promoted bmy auxin in Phaseolus or by kinetin in Avena .  相似文献   

14.
The growth patterns of axillary buds of dayneutral tobacco (Nicotiana tabacum L. cv. Wisconsin 38) plants were assessed by using expiants of single buds attached to leafless stem cuttings and allowing the buds to grow to flowering without additional manipulation. Buds located 5, 10 and 15 nodes below the inflorescence were employed. For a given bud position, when a cutting had few internodes the growth pattern of a bud tended to fall into one of two groups: buds that produced few-noded shoots and buds that produced many-noded shoots. For example, in a group of 13 cuttings composed of bud 5 with 2 associated internodes, 11 buds produced 14.2 nodes (range, 11–17) and 2 buds produced 32.0 nodes (range, 30–34). As the number of internodes on the cutting increased, the number of buds producing few-noded shoots increased and the number of nodes produced decreased (e.g. in contrast to the data above, all 5th buds with 6 internodes produced 12.8 nodes; range 11–15). When cuttings from the 3 positions had the same number of internodes, the more apical cuttings had buds that produced fewer nodes (e.g. for cuttings with 6 internodes all 5th buds produced 12.8 nodes, all 10th buds produced 15.5 nodes and 85% of 15th buds produced few-noded shoots with 19.3 nodes). The number of nodes produced by a bud was a function of the original position of the stem piece and not the original position of the bud. That is, bud 5 associated with the 6 internodes below it produced 12.8 nodes and bud 10 associated with essentially the same 6 internodes (i.e. the 6 above it) produced 12.9 nodes while bud 10 associated with the 6 internodes below it produced 15.5 nodes. Thus, the number of nodes produced by a bud was dependent upon the original main-axis position of the cutting as well as the number of internodes on the cutting. Buds forced to grow out in situ on main axes devoid of leaves produced substantially more nodes than similar buds on cuttings. Buds isolated without associated internodes produced many-noded plants with a number of nodes similar to that of plants grown from seed. The simplest interpretation of these data is that stem pieces contain floral-stimulus activity and that this activity is present in a gradient with the highest activity being located in the apical part of the stem.We thank Susan Smith and Harry Roy (Rensselaer) for comments, and the National Science Foundation for financial support (IBN-9003739 to C.N.M.).  相似文献   

15.
The hormonal regulation of axillary bud growth in Arabidopsis   总被引:11,自引:0,他引:11  
Apically derived auxin has long been known to inhibit lateral bud growth, but since it appears not to enter the bud, it has been proposed that its inhibitory effect is mediated by a second messenger. Candidates include the plant hormones ethylene, cytokinin and abscisic acid. We have developed a new assay to study this phenomenon using the model plant Arabidopsis. The assay allows study of the effects of both apical and basal hormone applications on the growth of buds on excised nodal sections. We have shown that apical auxin can inhibit the growth of small buds, but larger buds were found to have lost competence to respond. We have used the assay with nodes from wild-type and hormone-signalling mutants to test the role of ethylene, cytokinin and abscisic acid in bud inhibition by apical auxin. Our data eliminate ethylene as a second messenger for auxin-mediated bud inhibition. Similarly, abscisic acid signalling is not to be required for auxin action, although basally applied abscisic can enhance inhibition by apical auxin and apically applied abscisic acid can reduce it. By contrast, basally applied cytokinin was found to release lateral buds from inhibition by apical auxin, while apically applied cytokinin dramatically increased the duration of inhibition. These results are consistent with cytokinin acting independently to regulate bud growth, rather than as a second messenger for auxin. However, in the absence of cytokinin-signalling mutants, a role for cytokinin as a second messenger for auxin cannot be ruled out.  相似文献   

16.
Foliar endophytic fungi are present in almost all vascular plants. The composition of endophyte communities varies among plant individuals. Likely, but understudied, sources of this variation are the species composition of the plant community and initial attacks by insect herbivores. We addressed these issues by characterizing fungal endophyte communities on leaves of chestnut (Castanea sativa) grown in pure vs. mixed stands. We used ITS metabarcoding methods to identify endophytic fungi associated with galls caused by the invasive gall wasp, Dryocosmus kuriphilus, and with surrounding chestnut leaf tissues. We found 1378 different OTUs. The richness, diversity and composition of endophyte communities differed between galls and surrounding leaf tissues but were independent of forest stand composition. Fungal endophyte richness was lower in galls than in surrounding leaf tissues. Most differences in the composition of fungal endophyte communities between galls and foliar tissues were due to OTU turnover. These results suggest that insect-induced galls provide a particular habitat condition for endophytic microorganisms, regardless of forest species composition. A better understanding of endophyte biology is important to improve their use as biocontrol agents of galling insects.  相似文献   

17.
Abstract:  The solanum fruit fly, Bactrocera latifrons (Hendel), is a major agricultural pest in Asia and Hawaii, and it is important to prevent its widespread invasion in plant quarantine. In this study we introduced a real-time polymerase chain reaction (PCR) essay, using SYBR Green I dye, to rapidly identify B. latifrons on an ABI PRISM 7700 sequence detection system. A latifron-specific PCR primer set was obtained based on mtDNA COI gene of B. latifrons . Nine Bactrocera fruit flies, B. latifrons , Bactrocera dorsalis , Bactrocera papayae , Bactrocera carambolae , Bactrocera philippinensis , Bactrocera occipitalis , Bactrocera correcta , Bactrocera cucurbitae and Bactrocera tau , were used to determine the specificity of primers lati1 and lati2. A series of genomic DNA dilutions of B. latifrons (0.01, 0.1, 1, 10, 20, 40 and 100 ng) were used to assess the sensitivity of the SYBR Green PCR. Template DNA concentration was one of the sources of variability in cycle threshold values (CT) and the optimum DNA concentration was between 1 and 20 ng. Genomic DNA isolated from larvae, pupae and adult specimens of B. latifrons were used to assess the specificity of the SYBR Green PCR. Melting curve analysis and agarose gel electrophoresis was employed to check the specificity of PCR products. Similar amplification plots were obtained using DNA from the three different stages of B. latifrons with primer set lati1/lati2. The melting temperature ( T m) of PCR products was 77.5 ± 0.1°C, and the length of the amplified fragment 366 bp. Given the specificity and sensitivity of the assay, combined with high speed, low cost and the possibility of automating, SYBR Green PCR can be used as a rapid and specific technique for pest species identification in plant quarantine.  相似文献   

18.
The effect of floral-bud removal at different stages of developmenton the plant height and on the total number of buds of Petuniawas studied. Continuous removal of all the floral buds 2 d beforeanthesis caused a marked decrease in plant height and also increasedthe total number of floral buds formed thereafter. At otherstages of floral bud development, bud removal had a lesser effecton both phenomena. Moreover, the plants did not respond to budremoval at anthesis. GA3 at 25 ppm applied to plants from which the buds had beenremoved, promoted stem elongation. The most pronounced effectwas on plants from which the buds were removed 2 d before anthesis,but it had no effect on plants from which the buds were removedat anthesis stage. The possible involvement of endogenous growth hormones in theresponse of Petunia plants to floral-bud removal and to applicationof GA3 is discussed. Bud removal, bud number, dwarfness, GA3, Petunia, plant height  相似文献   

19.
The impact of climate change on the advancement of plant phenological events has been heavily studied in the last decade. Although the majority of spring plant phenological events have been trending earlier, this is not universally true. Recent work has suggested that species that are not advancing in their spring phenological behavior are responding more to lack of winter chill than increased spring heat. One way to test this hypothesis is by evaluating the behavior of a species known to have a moderate to high chilling requirement and examining how it is responding to increased warming. This study used a 60‐year data set for timing of leaf‐out and male flowering of walnut (Juglans regia) cultivar ‘Payne’ to examine this issue. The spring phenological behavior of ‘Payne’ walnut differed depending on bud type. The vegetative buds, which have a higher chilling requirement, trended toward earlier leaf‐out until about 1994, when they shifted to later leaf‐out. The date of male bud pollen shedding advanced over the course of the whole record. Our findings suggest that many species which have exhibited earlier bud break are responding to warmer spring temperatures, but may shift into responding more to winter temperatures (lack of adequate chilling) as warming continues.  相似文献   

20.
The lateral buds of intact Brussels sprout plants containedless auxin and gibberellin than the main apex. When the apexwas removed the auxin content of the top lateral buds increasedwithin 2 days, but gibberellin activity did not increaseuntilshoot extension was apparent. Auxin application to the cut surfaceof decapitated plants caused lateral bud inhibition, but didnot completely prevent bud growth. Both auxin and gibberellinactivity in the plant apex decreased with increasing age, butonly gibberellin activity decreased in the lateral buds. Theauxin content of the lateral buds on intact plants increasedwith time. It is suggested that in Brussels sprouts, lateral bud inhibitionis due to sub-optimal auxin activity, and that decapitationinduces an auxin increase in these buds which then grow out.Lateral shoots are produced following decapitation of youngplants because the gibberellin content of the lateral buds isrelatively high. Only bud swelling occurs in decapitated olderplants because the gibberellin content of the buds is too lowto stimulate shoot extension. It is concluded that these results support the theory that hormone-inducednutrient diversion may control lateral bud development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号