首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
羽扇豆醇因其具有抗癌抗炎等生理活性而广泛应用于医药领域。本研究分别利用源自木榄和蓖麻的羽扇豆醇合酶(LUS)在解脂耶氏酵母(Yarrowia lipolytica)中构建生物合成羽扇豆醇途径(GLU-1、GLU-2),并由对该途径中关键限速酶3-羟基-3-甲基戊二酰辅酶a还原酶(tHMGR)和异戊烯基二磷酸异构酶(IDI)过表达的工程菌(GLU-1M、GLU-2M)调控MVA途径,实现了羽扇豆醇在解脂耶氏酵母中从无到有的生成,其产量为11.74 mg/L。为提高其产量而构建了过表达角鲨烯合成酶(SQS)及角鲨烯氧化酶(SQE)的工程菌(GLU-1MSS),羽扇豆醇的产量达到了24.62 mg/L,较前构建的工程菌(GLU-1M)产量提高了1倍。  相似文献   

2.
高杰  韩建伟  关凯  杨彤涛  李放 《生物磁学》2013,(30):5855-5859
目的:研究miRNAs在人骨髓来源间充质干细胞软骨诱导分化过程中的表达情况。方法:以从骨髓中分离培养的MSCs及软骨诱导培养后的细胞为实验对象,利用基因芯片检测miRNAs的表达情况,由SAM分析得到MSCs较其诱导培养细胞中差异表达的miRNAs,再进行生物信息学分析。结果:①分离培养出的MSCs经软骨诱导培养21天后,已具有软骨细胞特性,经芯片检测并SAM分析,软骨诱导培养的细胞较MSCs高表达的miRNAs有6个:hsa-miR-572、hsa-miR-130b、hsa-miR-193b、hsa-miR-28、hsa-miR-152、hsa-miR-560;软骨诱导培养的细胞较MSCs低表达的miRNAs有2个:hsa-miR-424、hsa-miR-122a。②利用TargetScan预测其靶基因,并行生物信息学分析,其中hsa-miR-130b、hsa-miR-193b、hsa-miR-152及hsa-miR-424的预测靶基因中多为参与细胞分化、骨形成、软骨形成及干细胞表型相关的基因。结论:hsa-miR-130b、hsa-miR-193b、hsa-miR-152和hsa-miR-424等对人骨髓来源间充质干细胞的软骨分化起着重要调控作用。  相似文献   

3.
目的寻找可作为肾透明细胞癌(ccRCC)生物标志物的miRNA,以及ccRCC与正常组织间miRNA差异表达情况。 方法利用TCGA数据库下载ccRCC中miRNA表达数据,分析肿瘤与正常组织间差异表达miRNA。使用Kaplan-Meier曲线对患者进行生存分析,筛选出表达情况与临床预后相关的miRNA。通过生物信息学对miRNA的靶基因进行预测,然后运用FunRich软件和ClueGO对靶基因进行GO和KEGG富集分析。 结果通过TCGA数据库分析发现,ccRCC较正常组织差异表达miRNA共54个,其中上调33个,下调21个。通过生存分析发现hsa-miR-21和hsa-miR-155与患者预后相关,P≤0.05。进一步通过Perl软件在Targetscan、miRDB、miRTarBase、miRPath这四个数据库中预测miRNA靶基因并将结果取交集,共发现129个靶基因。GO和KEGG分析结果表明,这些靶基因主要与转录因子活性、信号转导以及FoxO、TNF等信号通路密切相关。 结论通过生物信息学分析发现了ccRCC与正常组织的差异表达miRNA;其中hsa-miR-21和hsa-miR-155与患者总体生存率相关,并通过调控靶基因参与相关的信号通路进而影响ccRCC的发生发展进程,提示hsa-miR-21和hsa-miR-155可能是ccRCC潜在的生物标志物。  相似文献   

4.
程燕  陈琳  曹忻  哈斯其美格  谢小冬 《遗传》2014,36(2):119-128
研究表明, Hsa-miR-125b在人胃癌耐氟尿嘧啶细胞株BGC823/Fu中表达下降。为进一步探讨hsa-miR-125b在获得性耐药中所起的作用, 文章应用miRbase、靶基因预测软件、Gene Ontology数据库及KEGG数据库对hsa-miR-125b的序列特征、进化保守性、靶基因及功能以及靶基因所参与的信号通路等进行了深入的生物信息学分析。结果显示:has-miR-125b在多个物种之间具有高度序列保守性; 通过软件预测获得hsa-miR- 125b 靶基因79个, 其分子功能包括转录调节、蛋白质结合和肽酶类活性等(P<0.001), 其所参与的生物学过程主要有细胞周期、细胞增殖、细胞凋亡的正性或负性调控以及细胞因子刺激反应性、药物反应性、DNA损伤反应性等(P<0.001), 调控包括MAPK、Wnt、p53等多条信号转导通路(P<0.01)。上述结果表明hsa-miR-125b可能参与调控多个生物学过程和信号转导通路, 而其中细胞增殖、细胞凋亡、细胞周期等生物学过程以及MAPK、Wnt、p53等信号通路已被证实与肿瘤耐药的发生有关。因此, hsa-miR-125b可能通过调控上述环节中的靶基因来影响肿瘤细胞对药物的敏感性, 从而为hsa-miR-125b在肿瘤耐药中的作用机制提供新的研究线索。  相似文献   

5.
乳腺癌的发生、发展与miRNA 31、miRNA 195、miRNA 892b等的异常表达明显相关。因此,miRNA 31、miRNA 195、miRNA 892b可作为乳腺癌的生物标志物及治疗预后指标。本文研究了一种对乳腺癌早期检测的新方法:设计探针(probe)并使用α-溶血素(αHL)纳米孔道单分子检测方法检测乳腺癌miRNAs。DNA探针与miRNA的中间序列完全匹配,特异性识别目标miRNA。miRNA·probe复合物分子穿过纳米孔道时,由于probe序列不同导致复合物分子与αHL相互作用不同,以至于miRNA 31·probe 31、miRNA 195·probe 195、miRNA 892b·probe 892b有不同形状和不同堵塞时间特征信号,可以有效区分该三种miRNAs。因此,未来有望实现乳腺癌的早期检测。  相似文献   

6.
EV71诱导人神经细胞SH-SY5Y自噬的分子机制   总被引:1,自引:1,他引:0  
【背景】EV71感染所致的重症手足口病易导致神经系统并发症,使患儿预后较差,甚至死亡。【目的】从EV71可诱导神经细胞自噬这一现象出发,探索该病毒诱导神经细胞自噬的miRNA机制,探讨EV71损伤神经细胞可能的分子机制。【方法】通过RT-PCR及Westernblot技术,在感染EV71病毒的人神经母细胞瘤细胞SH-SY5Y中检测细胞自噬变化;通过芯片分析细胞感染前后差异表达的miRNA分子,再使用miRNA mimics调节工具明确与EV71诱导神经细胞自噬有关的miRNA分子。【结果】EV71可诱导SH-SY5Y细胞自噬增加,下调细胞内miRNA29b(miR29b)分子的表达水平;当上调细胞内miR29b的表达后,EV71诱导细胞自噬增加的现象可被逆转,病毒复制水平下降。【结论】EV71诱导神经细胞自噬是通过下调miR29b分子的表达水平实现;miR29b不仅与自噬相关,它与EV71病毒复制也存在密切关系。因此,该研究不仅有助于阐明EV71导致神经系统损伤的具体分子机制,还为miR29b成为治疗EV71感染可能的新药物靶点奠定了理论基础。  相似文献   

7.
microRNAs(miRNAs)是一类普遍存在于真核细胞的非编码小分子RNA,通常在转录后水平抑制靶基因的表达。miRNA表达失调与许多疾病相关,如Ⅱ型糖尿病(T2D)。Ⅱ型糖尿病是一种复杂的疾病,显著特征是高血糖。近年来的研究表明,miRNA在Ⅱ型糖尿病的发生发展中扮演着不同的角色。本研究通过miRNA微阵列芯片和实时荧光定量PCR的方法,发现hsa-miR-1249和hsa-miR-486-5p在Ⅱ型糖尿病患者血浆中较之于正常对照组表达显著降低,显示了hsa-miR-1249和hsa-miR-486-5p可能在Ⅱ型糖尿病的发病过程中起着重要的作用。本研究揭示了hsa-miR-1249和hsa-miR-486-5p有可能成为Ⅱ型糖尿病的新的诊断标志物和治疗靶标。  相似文献   

8.
目的:利用CRISPR/Cas9技术构建人Ku70基因稳定敲除的HeLa细胞株,并检测其生物学功能。方法:设计并构建向导RNA载体p Cas-g RNA和同源重组供体DNA载体p Back Zero-T-Ku70,2种重组质粒共转染HeLa细胞,加入潮霉素B进行抗性筛选,通过基因组PCR和Western印迹检验Ku70基因是否被敲除;进而,选择Ku70稳定敲除的细胞株,分别采用CCK-8和Transwell实验检测细胞增殖和迁移能力;此外,提取细胞总RNA,反转录成c DNA后用荧光定量PCR仪检测5种miRNA(hsa-miR-649、hsa-miR-544a、hsa-miR-562、hsa-miR-548a、hsa-miR-492)的表达水平。结果:g RNA表达质粒p Cas-g RNA和DNA供体质粒p Back Zero-T-Ku70构建成功;2种重组质粒共转染HeLa细胞,基因组PCR扩增出特异的基因重组DNA片段,Western印迹结果显示Ku70蛋白已基本无表达。细胞增殖和迁移实验显示敲除Ku70基因的HeLa细胞增殖和迁移能力均有所减弱。q RT-PCR结果显示,敲除Ku70基因致hsa-miR-649、hsa-miR-544a和hsa-miR-562水平有所升高,而hsa-miR-548a和hsa-miR-492水平未有明显变化。结论:获得Ku70基因稳定敲除的细胞株;Ku70蛋白可能参与了HeLa细胞增殖和迁移过程;其还可能调节部分miRNA的表达。  相似文献   

9.
目的: 探究干燥综合征合并特发性肺纤维化患者血清中miRNA表达谱之间的差异关系。方法: 选择在云南省第一人民医院确诊为干燥综合征的3例患者作为对照组,平均年龄为(55.67±4.78) 岁,病程为(10.67±1.70)月;3例干燥综合征合并特发性肺纤维化患者作为观察组,平均年龄为(57.67±3.68) 岁,病程为(11.00±2.45) 月;6例患者均为女性。两组基本资料没有差异(P>0.05)。利用芯片检测两组患者血清中miRNA表达谱的差异。通过GO富集分析,筛选出13个免疫细胞功能相关的聚类;表达差异明显的基因集中于免疫调节的信号通路。采用qRT-PCR验证其中5个表达有差异的miRNA。结果: 芯片检测结果共筛选出差异表达基因13个,其中6个miRNA上调:hsa-miR-6740-5p,hsa-miR-4507,hsa-miR-6775-5p,hsa-miR-4281,hsa-miR-4459,hsa-miR-6089,7个miRNA下调:hsa-miR-6873-3p,hsa-miR-4290,hsa-miR-6858-3p,hsa-miR-574-3p,hsa-miR-92b-3p,hsa-miR-3151-3p,hsa-miR-6886-3p。qRT-PCR结果验证了5个最明显的差异miRNA,结果和芯片趋势一致,差异显著,具有统计学意义。结论: 干燥综合征与干燥综合征合并特发性肺纤维化血清中miRNA表达存在差异,其中miR-6886-3p,miR-6873-3p,miR-574-3p,miR-6740-5p和miR-4507特异性和敏感度较高,可能作为干燥综合征特发性肺纤维化区别于原发性干燥综合征的生物标志物。  相似文献   

10.
子宫内膜癌(uterine corpus endometrial carcinoma, UCEC)是危害女性健康的癌症之一,但其发生发展机制尚不完全清楚。基因的异常表达在细胞癌变过程中发挥着重要的作用。本研究利用生物信息学方法对UCEC中异常表达的基因进行网络调控分析,为UCEC的机制研究及预后治疗提供理论依据。首先,利用"limma"包筛选得到差异表达的RNA分子;接着,利用R软件中的"GDCRNATools"包构建lncRNA-miRNA-mRNAceRNA网络;最后,利用DAVID(TheDatabasefor Annotation,Visualization and Integrated Discovery)、R软件中的"survival"包、MCODE(Molecular COmplex Detection)插件、StarBase数据库等对ceRNA网络中的RNA分子进行综合分析。结果显示,在UCEC中,我们鉴定了1 319个mRNA、68个lncRNA及100个miRNA为差异表达的RNA分子。同时,利用这些UCEC中的差异表达RNA分子,成功构建了ceRNA网络,结果表明,HCG11、LINC00958、LINC00667、MAGI2-AS3和AC093010.3可能具有ceRNA的功能。通过进一步对该网络成员的分析,结果发现,该网络中的mRNA分子聚集于内皮细胞增殖、细胞骨架和锌离子结合负调控等生物学过程中。生存分析显示,hsa-miR-449a、LINC00958、PKIA和DPYSL2等19个差异表达的RNA分子与UCEC患者预后显著相关。最后,利用MCODE插件对ceRNA网络进行筛选,共获得一个子网络,其成员分别是LINC00667、hsa-miR-449a、hsa-miR-34a-5p和RECK。该研究结果提示,在UCEC的发生发展中存在lncRNA、miRNA和mRNA的差异表达,并且这些RNA分子之间存在ceRNA网络模式的调控,其中一些关键分子与患者的预后相关,这将为进一步研究与理解UCEC的发病机制及预后提供理论依据。  相似文献   

11.
Two new triterpene synthase cDNAs, named as OEW and TRW, were cloned from olive leaves (Olea europaea) and from dandelion roots (Taraxacum officinale), respectively, by the PCR method with primers designed from the conserved sequences found in the known oxidosqualene cyclases. Their ORFs consisted of 2274 bp nucleotides and coded for 758 amino acid long polypeptides. They shared high sequence identity (78%) to each other, while they showed only about 60% identities to the known triterpene synthases LUPI (lupeol synthase clone from Arabidopsis thaliana) and PNY (beta-amyrin synthase clone from Panax ginseng) at amino acid level. To determine the enzyme functions of the translates, they were expressed in an ERG7 deficient yeast mutant. Accumulation of lupeol in the cells of yeast transformants proved both of these clones code for lupeol synthase proteins. An EST (expression sequence tag) clone isolated from Medicago truncatula roots as a homologue of cycloartenol synthase gene, exhibits high sequence identity (75-77%) to these two lupeol synthase cDNAs, suggesting it to be another lupeol synthase clone. Comparatively low identity (approximately 57%) of LUP1 from Arabidopsis thaliana to either one of these clones leaves LUP1 as a distinct clone among lupeol synthases. From these sequence comparisons, now we propose that two branches of lupeol synthase gene have been generated in higher plants during the course of evolution.  相似文献   

12.
Pentacyclic triterpenoids are a large group of secondary metabolites found in many different plant species, either as glycoside conjugates or as aglycones. The latter in many cases accumulate to high amounts in the cuticular wax and hence at the surface of plant organs. In the present work, the cuticle-specific formation of triterpenoids was investigated in Ricinus communis stems, combining analytical and molecular genetic methods. Two phenotypes of castor bean could be distinguished based on the glaucous or glossy appearance of the surfaces of all stem portions including the hypocotyls, and were due to the presence or absence of thread-shaped epicuticular wax crystals, respectively. Comparative studies showed that these crystals are formed by the triperpenoid lupeol, present in high amounts on all stem surfaces. On the hypocotyl portion of stems, lupeol was found to accumulate rapidly during early development of the surface (10-15 days after emergence). Mature hypocotyls of glossy individuals were covered with 12.5 microg/cm2 of wax containing approximately 1% of lupeol, whereas the glaucous phenotype had a wax load of 51.9 microg/cm2 with 56% of lupeol. Two oxidosqualene cyclases from castor bean were cloned, functionally expressed in yeast, and characterized as a cycloartenol synthase (RcCAS) and a lupeol synthase (RcLUS). Phylogenetic analyses revealed that RcLUS is similar to two clades of known lupeol synthases, but also exhibits some similarities with beta-amyrin synthases. Both the organ-specific expression of RcLUS and the expression pattern during hypocotyl development exactly matched the accumulation of cuticular lupeol in castor bean. In contrast, RcCAS was constitutively expressed in all organs at various times. We conclude that the RcLUS enzyme is responsible for formation of the cuticular lupeol, and thus for the characteristic surface properties of R. communis stems.  相似文献   

13.
The weak hydrosolubility of betulinic acid (3) hampers the clinical development of this natural anticancer agent. In order to circumvent this problem and to enhance the pharmacological properties of betulinic acid (3) and the lupane-type triterpenes lupeol (1), betulin (2), and methyl betulinate (7), glycosides (beta-D-glucosides, alpha-L-rhamnosides, and alpha-D-arabinosides) were synthesized and in vitro tested for cytotoxicity against three cancerous (A-549, DLD-1, and B16-F1) and one healthy (WS1) cell lines. The addition of a sugar moiety at the C-3 or C-28 position of betulin (2) resulted in a loss of cytotoxicity. In contrast, the 3-O-beta-D-glucosidation of lupeol (1) improved the activity by 7- to 12-fold (IC50 14-15.0 microM). Moreover, the results showed that cancer cell lines are 8- to 12-fold more sensitive to the 3-O-alpha-L-rhamnopyranoside derivative of betulinic acid (IC50 2.6-3.9 microM, 22) than the healthy cells (IC50 31 microM). Thus, this study indicates that 3-O-glycosides of lupane-type triterpenoids represent an interesting class of potent in vitro cytotoxic agents.  相似文献   

14.
Oleanane-type triterpene is one of the most widespread triterpenes found in plants, together with the lupane type, and these two types often occur together in the same plant. Bruguiera gymnorrhiza (L.) Lamk. and Rhizophora stylosa Griff. (Rhizophoraceae) are known to produce both types of triterpenes. Four oxidosqualene cyclase cDNAs were cloned from the leaves of B. gymnorrhiza and R. stylosa by a homology-based PCR method. The ORFs of full-length clones termed BgbAS (2280 bp, coding for 759 amino acids), BgLUS (2286 bp, coding for 761 amino acids), RsM1 (2280 bp, coding for 759 amino acids) and RsM2 (2316 bp coding for 771 amino acids) were ligated into yeast expression plasmid pYES2 under the control of the GAL1 promoter. Expression of BgbAS and BgLUS in GIL77 resulted in the production of beta-amyrin and lupeol, suggesting that these genes encode beta-amyrin and lupeol synthase (LUS), respectively. Furthermore, RsM1 produced germanicol, beta-amyrin, and lupeol in the ratio of 63 : 33 : 4, whereas RsM2 produced taraxerol, beta-amyrin, and lupeol in the proportions 70 : 17 : 13. This result indicates that these are multifunctional triterpene synthases. Phylogenetic analysis and sequence comparisons revealed that BgbAS and RsM1 demonstrated high similarities (78-93%) to beta-amyrin synthases, and were located in the same branch as beta-amyrin synthase. BgLUS formed a new branch for lupeol synthase that was closely related to the beta-amyrin synthase cluster, whereas RsM2 was found in the first branch of the multifunctional triterpene synthase evolved from lupeol to beta-amyrin synthase. Based on these sequence comparisons and product profiles, we discuss the molecular evolution of triterpene synthases and the involvement of these genes in the formation of terpenoids in mangrove leaves.  相似文献   

15.
In our earlier communication we have shown that Lupeol inhibits early responses of tumour induction in murine skin. The free radical mediated damage to the cellular macromolecules such as DNA, proteins, lipids and alteration in the activities of quinone reductase and xanthine oxidase are important biochemical parameters of tumor development. The suppression of free radical mediated damage to cellular macromolecules and induction of quinone reductase along with depletion of xanthine oxidase are prominent characteristics of chemopreventive agents. In the present investigation, we have elucidated the mechanism of action of lupeol (Lup-20 (29)-en-3beta-ol), a triterpene found in moderate amount in many vegetables, fruits and anti-tumor herbs. In the present investigation, lupeol significantly reduced the free radical mediated DNA-sugar damage and microsomal lipid peroxidation in an iron/ascorbate free radical generating system in vitro. Benzoyl peroxide, a known free radical generating tumor promoter mediated oxidation of proteins and modulation in the activities of quinone reductase as well as xanthine oxidase was significantly prevented by lupeol when tested on murine skin in vivo. It was concluded from this study that lupeol acts as an effective chemopreventive agent against cutaneous toxicity.  相似文献   

16.
Siddique HR  Saleem M 《Life sciences》2011,88(7-8):285-293
Since ancient times, natural products have been used as remedies to treat human diseases. Lupeol, a phytosterol and triterpene, is widely found in edible fruits, and vegetables. Extensive research over the last three decades has revealed several important pharmacological activities of lupeol. Various in vitro and preclinical animal studies suggest that lupeol has a potential to act as an anti-inflammatory, anti-microbial, anti-protozoal, anti-proliferative, anti-invasive, anti-angiogenic and cholesterol lowering agent. Employing various in vitro and in vivo models, lupeol has also been tested for its therapeutic efficiency against conditions including wound healing, diabetes, cardiovascular disease, kidney disease, and arthritis. Lupeol has been found to be pharmacologically effective in treating various diseases under preclinical settings (in animal models) irrespective of varying routes of administration viz; topical, oral, intra-peritoneal and intravenous. It is noteworthy that lupeol has been reported to selectively target diseased and unhealthy human cells, while sparing normal and healthy cells. Published studies provide evidence that lupeol modulates the expression or activity of several molecules such as cytokines IL-2, IL4, IL5, ILβ, proteases, α-glucosidase, cFLIP, Bcl-2 and NFκB. This minireview discusses in detail the preclinical studies conducted with lupeol and provides an insight into its mechanisms of action.  相似文献   

17.
Homology based PCRs with degenerate primers designed from the conserved sequences among the known oxidosqualene cylases (OSCs) have resulted in cloning of a triterpene synthase (KcMS) from the young roots of Kandelia candel (L.) Druce (Rhizophoraceae). KcMS consists of a 2286 bp open reading frame, which codes for 761 amino acids. The deduced amino acid sequence showed 79% homology to a lupeol synthase from Ricinus communis suggesting it to be a lupeol synthase of K. candel. KcMS was expressed in a lanosterol synthase deficient yeast with the expression vector pYES2 under the control of GAL1 promoter. GC-MS analysis showed that the transformant accumulated a mixture of lupeol, beta-amyrin and alpha-amyrin in a 2:1:1 ratio, indicating that KcMS encodes a multifunctional triterpene synthase, although it showed high sequence homology to a R. communis lupeol synthase. This is the first OSC cloning from mangrove tree species.  相似文献   

18.
We examined the signaling mechanisms involved in the differentiation-inducing activity of lupeol toward B16 2F2 melanoma cells. alpha-Melanocyte stimulating hormone (alpha-MSH), forskolin and dibutyryl cAMP, which are believed to be cAMP-elevating agents and analogues, enhanced lupeol-induced B16 2F2 cell differentiation. However, H89, an inhibitor of protein kinase A, completely abolished B16-2F2 cell differentiation induced by lupeol. Furthermore, we studied the role of mitogen-activated protein kinases (MAPKs) in lupeol-induced B16 2F2 cell differentiation. U0126, an inhibitor of MAPK kinases, induced B16 2F2 cell differentiation and enhanced the cell differentiation induced by lupeol. However, SB203580, a selective inhibitor of p38 MAPK, completely blocked lupeol-induced B16 2F2 cell differentiation. Western blot analysis revealed that 10 microM lupeol transiently elevated the level of phosphorylation of p38 MAPK. The phosphorylation of p38 MAPK was detected on the addition of 1 microM lupeone, another lupane triterpene, but was not induced by 1 microM lupeol. These results suggested that lupeol induced B16 2F2 cell differentiation through activation of p38 MAPK, and that the structural differences at C-3 of lupane triterpenes played an important role in the activation of p38 MAPK.  相似文献   

19.
Cuticular waxes were extracted from the leaves of a coconut mapping population generated by the controlled cross of an East African Tall and a Rennell Island Tall genotype for the construction of molecular linkage maps. The wax composition was analyzed by capillary gas chromatography/mass spectrometry, and for eight of the wax compounds, their absolute and relative amounts were determined. As reported previously for a different coconut ecotype (Malayan Yellow Dwarf), lupeol methyl ether, isoskimmiwallin, and skimmiwallin were identified as the major components of coconut cuticular wax. The additional compounds were characterized as 3-β-methoxy lupane (lupane methyl ether), lupeol and the acetic acid esters of lupeol, skimmiwallinol, and isoskimmiwallinol, respectively. Minor, nonidentified compounds amounted to some 5% of total wax content and included triterpenoids, sterols, primary alcohols, and fatty acids. The variation detected for parents and progeny with respect to the wax components allowed quantitative trait locus (QTL) analyses for their biosynthetic pathways. A total of 46 QTLs could be mapped onto the coconut linkage map which was extended by amplified fragment length polymorphism and single sequence repeat markers into a high density map with more than 1,000 mapped DNA markers. Several colocated QTLs for different traits were detected reflecting the observed correlations among characters.  相似文献   

20.
Aflatoxins are potent hepatotoxic and hepatocarcinogenic agents. Reactive oxygen species and consequent peroxidative damage caused by aflatoxin are considered to be the main mechanisms leading to hepatotoxicity. The present investigation aims at assessing the hepatoprotective effect of lupeol, a pentacyclic triterpene isolated from the stem bark of Crataeva nurvala, on aflatoxin B(1) (AFB(1))-induced hepatotoxicity in a rat model. The hepatoprotection of lupeol is compared with silymarin, a well known standard hepatoprotectant. Lactate dehydrogenase, alkaline phosphatase, alanine and aspartate aminotransferases were found to be significantly increased in the serum and decreased in the liver of AFB(1) administered (1 mg/kg body mass, orally) rats, suggesting hepatic damage. Marked increase in the lipid peroxide levels and a concomitant decrease in the enzymic (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and glutathione-S-transferase) and nonenzymic (reduced glutathione, vitamin C and vitamin E) antioxidants in the hepatic tissue were observed in AFB(1) administered rats. Pretreatment with lupeol (100 mg/kg body mass, orally) and silymarin (100 mg/kg body mass, orally) for 7 days reverted the condition to near normalcy. Hepatoprotection by lupeol is further substantiated by the normal histologic findings as against degenerative changes in the AFB(1) administered rats. The results of this study indicate that lupeol is a potent hepatoprotectant as silymarin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号