首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 500 毫秒
1.
天山北坡积雪消融对不同冻融阶段土壤温湿度的影响   总被引:2,自引:0,他引:2  
积雪作为一种特殊的覆被,直接影响着土壤温度、土壤水分分布及其冻结深度、冻结速率等,影响当地的生态水文过程。利用2017年11月1日至2018年3月31日天山北坡伊犁阿热都拜流域的土壤含水率资料,划分土壤不同冻融阶段,结合积雪不同阶段,进而分析积雪消融对季节性冻土温湿度的影响。结果表明:在整个土壤冻融期间,土壤温湿度的变化取决于积雪深度、大气温度和雪面温度的高低,且与其稳定性有关。土壤冻结阶段,土壤温湿度持续下降,表层土壤温湿度受气温影响较大,且波动明显,而深层土壤的温湿度变化平缓;土壤完全冻结时,有稳定积雪覆盖,由于积雪的高反射性、低导热性,影响着地气之间的热量传递,因此土壤的温湿度变化较为平稳,积雪有一定的保温作用;冻土消融阶段,气温回升,积雪消融,地表出露,各层土壤温度随气温变化而变化,且越靠近地表,土壤温度越高,变幅越大,与冻结期完全相反。由于融雪水的下渗,土壤湿度快速增加。进一步分析积雪与土壤温湿度的相关性得出,积雪对土壤温湿度的影响分不同时期,对土壤温度的影响主要在积雪覆盖时,对土壤湿度的影响主要是在积雪消融时期,这对于研究该地生态水文循环及后续融雪性洪水的模拟与预报具有一定的参考价值。  相似文献   

2.
常娟  王根绪  高永恒  王一博 《生态学报》2012,32(23):7289-7301
有无积雪覆盖下浅层土壤水热过程是青藏高原多年冻土区水能循环中的一个重要不确定因素.为了研究积雪覆盖对高寒沼泽、草甸浅层土壤水热过程的影响,在青藏高原多年冻土区选择了典型的有无积雪覆盖的沼泽、草甸建立观测场,观测浅层土壤的温度和水分状况.通过分别研究积雪对高寒沼泽、草甸浅层土壤温度和水分的影响,结果表明:高寒沼泽、草甸在有积雪覆盖下浅层土壤开始冻结和消融的时间都有所滞后,且冻结持续时间相应有所增加.由于积雪覆盖,浅层土壤温度变化速率略有减小而水分变化速率略有增加,积雪起到了抑制土壤温度变化速率和促进土壤水分变化速率的作用.积雪覆盖对秋季冻结过程和夏季融化过程浅层土壤的温度和水分的影响明显大于冬季冻结降温过程和春季升温过程,且对融化过程的影响较冻结过程明显.通过对比分析有无雪盖沼泽和草甸土壤,说明积雪的覆盖对沼泽土壤温度的影响要大于草甸土壤,对土壤水分融升过程的影响大于冻降过程,且对沼泽浅层土壤的影响大于草甸浅层土壤.  相似文献   

3.
翟胜  梁银丽  王巨媛 《应用生态学报》2005,16(12):2344-2348
研究了秸秆、地膜和秸秆+地膜覆盖对日光温室嫁接与未嫁接黄瓜生长发育、产量及土壤环境的影响.结果表明,地面覆盖不仅能促进雌花分化、缩短成瓜时间、增加单瓜重、提高黄瓜产量,而且能降低畸形瓜比例,提高产品的商品性.其中以覆盖秸秆+地膜作用最明显、增产幅度最大,覆盖秸秆和覆盖地膜次之;嫁接黄瓜的处理效果优于未嫁接黄瓜.此外,地面覆盖对土壤环境也具有重要影响,但不同处理之间差异较大.地温日变化呈单峰曲线, 5cm、10 cm地温的波峰出现在14:30,随着土层的加深而波峰推迟出现,峰值也逐渐减小.秸秆覆盖具有降低最高地温和提高最低地温的作用,使土壤温度保持相对稳定;地膜覆盖对最高地温的增幅最大、对最低地温的增幅最小,从而使地温变幅最大;秸秆+地膜覆盖既增温又保温.地面覆盖的土壤呼吸速率均显著高于对照(P<0.01),并以秸秆+地膜覆盖的土壤呼吸速率最高,地膜覆盖与秸秆覆盖次之,土壤呼吸速率日变化也呈单峰曲线,与 5cm、10 cm地温日变化趋势一致,峰值出现在14:30左右,土壤呼吸速率与 5cm、10 cm地温达显著或极显著相关.秸秆覆盖与秸秆+地膜覆盖的0~20 cm土层土壤容重显著小于地膜覆盖与对照(P<0.01),地膜覆盖的土壤容重略小于对照,随着土层的加深,各处理间土壤容重差异渐小.  相似文献   

4.
日光温室结构设计需兼顾安全稳固和经济成本,这与温室最大雪荷载量(最大雪深和雪压)有直接关系。本文利用东北地区179个气象站1981—2010年的雪深资料,采用极值Ⅰ型分布函数分别计算了5、10、20、30年一遇(重现期)的雪深和雪压极值,分析其地理分布特征;根据各地日光温室结构特点及雪被类型,确定了日光温室所能承受的最大雪压,得出了东北地区日光温室暴雪垮棚灾害的临界雪压和雪深指标。结果表明:东北地区最大积雪深度和雪压呈自西向东增加的趋势,黑龙江东部和北部、吉林东部地区为高值区,雪深和雪压分别大于50 cm和0.45 k N·m~(-2);黑龙江西南部、吉林西部、辽宁西部和南部地区为低值区,雪深和雪压分别小于30 cm和0.25 k N·m~(-2);温室雪灾致灾指标因雪被类型和温室坡度而异,纯雪的致灾雪深明显大于雪-水混合雪深;日光温室的坡度角(30°—40°)越大,致灾雪被深度越大,抗灾性越强;从暴雪致灾指标、各地最大雪深、雪压和光热条件综合来看,东北地区的西、南部比东、北部更适合蔬菜日光温室的发展。  相似文献   

5.
采用土壤温度连续观测和土壤原位培养,研究了长白山高山苔原带雪斑地段牛皮杜鹃群落的土壤温度、土壤氮矿化及净初级生产力.结果表明: 在非生长季的积雪期(10月下旬-5月上旬),土壤养分呈上升趋势,土壤以氮矿化为主,为翌年植物的生长提供了充足的氮素.其中雪斑地段土壤(平均温度-3.0 ℃)的氮矿化能力更强,速效氮增加量为3.88 g·m-2,非雪斑地段(平均温度-7.5 ℃)为1.21 g·m-2. 在生长季节(5月中旬-8月下旬),土壤氮素含量下降,以固持为主;秋季植物停止生长后,土壤速效氮又呈上升趋势;到冬季,由于积雪的作用,雪斑地段土壤温度维持在0 ℃左右或略低,促进了土壤氮的矿化,而非雪斑地段土壤温度则处于冻结状态.氮素矿化能力的差异是雪斑地段牛皮杜鹃群落净初级生产力高于非雪斑地段群落的主要原因,也是植被空间分异的重要驱动因子.  相似文献   

6.
气候变化引发的季节性雪被改变可能对高寒森林土壤氮循环产生深刻影响.以遮雪棚去除雪被,研究了雪被去除样方和对照样方在不同关键时期(雪被初期、深雪被期和雪被融化期)土壤氮库和矿化速率的变化.结果表明: 季节性雪被对土壤具有良好的保温作用,雪被去除使得5 cm深度土壤平均温度和最低温度分别降低0.33和1.17 ℃,并明显增加了土壤冻结深度和冻融循环.土壤活性氮在不同雪被时期存在显著差异.雪被去除使得冬季土壤铵态氮、硝态氮和可溶性有机氮增加38.6%、23.5%和57.3%.此外,雪被去除也促进了融化期土壤硝化和矿化速率的增加.因此,未来气候变暖引起的雪被减少可能加快川西亚高山森林冬季土壤氮循环.  相似文献   

7.
尹鹏  胡霞  廖金花  吴彦 《生态科学》2015,34(1):91-96
为了进一步了解气候变化背景下高山土壤生态过程, 2010 年11 月-2011 年4 月在青藏高原东缘采用PVC 管原位培养土壤的方法, 研究了雪况(积雪厚度和积雪周期)对土壤微生物生物量和土壤酶活性的影响。结果显示, 土壤温度和土壤含水量与覆雪状况具有显著的相关性。积雪厚度显著影响了微生物生物量和土壤蔗糖酶、过氧化氢酶、纤维素酶活性, 表现为30 cm 积雪时微生物生物量和三种酶活均明显高于50 cm 和100 cm 的值。积雪周期对微生物生物量和酶活没有显著影响。而两者的交互作用在微生物生物量和酶活性上均表现出显著的效应。说明了气候变暖背景下冬季覆雪的变化会显著改变土壤微生物生物量和活性, 进而对土壤C、N 相关的生物化学过程产生影响。  相似文献   

8.
高寒草甸地下根系生长动态对积雪变化的响应   总被引:1,自引:0,他引:1  
2013年11月至2014年8月在青藏高原东缘红原县高寒草甸通过人工堆积的方法,进行了积雪量野外控制试验。以自然降雪的积雪量为对照(CK),设置了S1、S2和S3(积雪量分别为自然对照的2倍、3倍和4倍)3个处理,运用微根窗法追踪研究了积雪量改变后高寒草甸植被根系生长动态,并测定了积雪变化对土壤温度的影响。结果表明:高寒草甸植被根系生长存在明显的季节性变化,随着时间的推移,根系表面积、根尖数量及现存量逐渐增加并在8—9月达到最大值;当冬季积雪量达到143.4mm(S1),对根系生长最为有利(根系表面积、根尖数量、现存量及生产量最大),根系生长旺盛期(净生产速率较高)有所提前和延长,但随着积雪量进一步增加,积雪对根系生长的正效应逐渐降低,根系生长旺盛期逐渐推迟甚至消失;研究还发现,随着积雪量增加,0—10 cm土层土壤温度逐渐降低,相似的变化规律也出现在10—20 cm土层,但在时间上有所延迟;相关性分析表明,在不同土层中,根系生长与土壤温度均呈正相关。因此,积雪变化通过改变土壤温度影响高寒草甸植物根系的生长发育,最终可能会影响高寒草甸生态系统的碳分配与碳循环过程。  相似文献   

9.
西北旱地春小麦不同覆盖措施的温度和产量效应   总被引:4,自引:0,他引:4  
在西北半干旱雨养条件下,以春小麦为材料,研究了夏季覆膜(T1)、秋季覆膜(T2)、春季覆膜(T3)、小麦碎秆覆盖(T4)、小麦整秆覆盖(T5)、夏季覆膜+麦秆还田(T6)和无覆盖对照(CK)7个处理间0—20 cm土壤温度、产量和重要农艺指标的差异。结果表明:处理间在不同生育时期、不同土层的土壤温度存在显著差异。生育时期间比较,处理间土壤温度差异以播种期—分蘖期最大、蜡熟期—成熟期次之、拔节期—灌浆中期较小;土层间比较,处理间土壤5 cm处的温度差异依次大于10 cm、15 cm、20 cm处。T6在各时期、各土层均表现出突出的增温效应,全生育期土壤平均温度较CK高0.57℃,以成熟期、播种期及分蘖期增温效果较大;其它覆盖处理存在增温和降温的双重效应,增温效应覆膜秸秆覆盖,而降温效应则秸秆覆盖覆膜,各处理的32个土壤温度测试点中,增温点次以T4最少(仅有9个),降温点次为23个,且T4降温幅度最大,全生育期0—20 cm土壤平均温度较CK低0.63℃,降温效果在播种期和分蘖期尤为突出。覆盖处理全生育期土壤平均温度表现为覆膜CK秸秆覆盖。温差最高值出现在分蘖期土壤5 cm处的T6与T4间,T6高出T44.23℃。T6可以平抑生育期间土壤温度的变化,其它5个覆盖处理则加剧土壤温度的波动,以T4处理的土壤温度波动最明显(CV为32.4%)。处理间产量、单位面积穗数、穗粒数间差异显著,而千粒重差异不显著。无论覆膜还是秸秆覆盖,都较CK穗粒数显著增加(17.4%—36.3%)。除T5较CK显著减产14.1%外,其它覆盖处理均较CK显著增产21.7%—37.3%,其中以全膜覆土穴播基础上的秋季覆膜(T2)增产最显著,适宜在西北旱地春小麦产区推广应用。土壤温度主要影响营养生长,拔节—开花期0—20 cm的土壤温度与株高高度正相关(0.77*—0.92**),但覆盖引起土壤温度的变化最终对西北旱地春小麦产量没有关键影响。  相似文献   

10.
黄土丘陵区三种典型退耕还林地土壤固碳效应差异   总被引:3,自引:0,他引:3  
探讨了黄土丘陵区退耕种植10—40a的柠条、沙棘及刺槐林地土壤总有机碳库及其活性组分密度随退耕时间、土层分布及相对比例的变化差异。结果表明:100 cm深土壤碳库在退耕10a时仅柠条林地碳库未比坡耕地显著增加,但退耕20—40a3种林地比退耕10a时都已有显著增加,且增幅均为刺槐>沙棘>柠条,其中总有机碳的最大增幅分别达到90.92、27.87、14.89Mg/hm2,活性有机碳的分别达到30.28、10.51、9.67 Mg/hm2。各还林地碳库增加在退耕10a时主要来自0—40 cm浅层土,而40—100 cm深层土碳库到退耕20a起才开始显著增加。对比退耕10a时,到退耕40a时柠条、沙棘及刺槐林地0—20 cm表层土分别平均累积了35.4%、27.9%、27.1%的总有机碳,20.2%、45.1%、23.1%的活性有机碳,而20—100 cm各土层间对碳库累积比例大小变化无一致规律,平均每20 cm厚土层累积了17.4%的总有机碳和17.6%活性有机碳。并且相比坡耕地,各林地均使100 cm深土壤活性有机碳占总有机碳的比例提高,改良了碳库质量。综上分析,长期退耕下3种林地固碳效应有明显差异,以刺槐林地碳累积效应较强。  相似文献   

11.
《植物生态学报》2017,41(9):964
Aims Seasonal snow cover is one of the most important factors that control winter soil respiration in the cold biomes. The warming-induced decreases in snowpack could affect winter soil respiration of subalpine forests. The aim of this study was to explore the effects of snow removal on winter soil respiration in a Picea asperata forest.Methods A snow removal experiment was conducted in a P. asperata forest stand in western Sichuan during the winter of 2015/2016. The snow removal treatment was implemented using wooden roof method. Soil temperatures, snow depth and soil respiration rate were simultaneously measured in plots of snow removal and controls during the experimental period.Important findings Compared to the control, snow removal increased the fluctuations of soil temperatures. The average daily temperature of the soil surface and that at 5 cm depth were 1.12 °C and 0.34 °C lower, respectively, and the numbers of freeze-thaw cycles of the soil surface and that at 5 cm depth were increased by 39 and 12, respectively, in plots of snow removal than in the controls. The average rate of winter soil respiration and CO2 efflux were 0.52 μmol·m-2·s-1 and 88.44 g·m-2, respectively. On average, snow removal reduced soil respiration rate by 21.02% and CO2 efflux by 25.99%, respectively. More importantly, the snow effect mainly occurred in the early winter. The winter soil respiration rate had a significant exponential relationship with soil temperature. However, snow removal significantly reduced temperature sensitivity of the winter soil respiration. Our results suggest that seasonal snow reduction associated with climate change could inhibit winter soil respiration in the subalpine forests of western Sichuan, with significant implications for the carbon dynamics of the subalpine forests.  相似文献   

12.
Climate change might alter annual snowfall patterns and modify the duration and magnitude of snow cover in temperate regions with resultant impacts on soil microclimate and soil CO2 efflux (Fsoil). We used a 5‐year time series of Fsoil measurements from a mid‐elevation forest to assess the effects of naturally changing snow cover. Snow cover varied considerably in duration (105–154 days) and depth (mean snow depth 19–59 cm). Periodically shallow snow cover (<10 cm) caused soil freezing or increased variation in soil temperature. This was mostly not reflected in Fsoil which tended to decrease gradually throughout winter. Progressively decreasing C substrate availability (identified by substrate induced respiration) likely over‐rid the effects of slowly changing soil temperatures and determined the overall course of Fsoil. Cumulative CO2 efflux from beneath snow cover varied between 0.46 and 0.95 t C ha?1 yr?1 and amounted to between 6 and 12% of the annual efflux. When compared over a fixed interval (the longest period of snow cover during the 5 years), the cumulative CO2 efflux ranged between 0.77 and 1.18 t C ha?1 or between 11 and 15% of the annual soil CO2 efflux. The relative contribution (15%) was highest during the year with the shortest winter. Variations in snow cover were not reflected in the annual CO2 efflux (7.44–8.41 t C ha?1) which did not differ significantly between years and did not correlate with any snow parameter. Regional climate at our site was characterized by relatively high amounts of precipitation. Therefore, snow did not play a role in terms of water supply during the warm season and primarily affected cold season processes. The role of changing snow cover therefore seems rather marginal when compared to potential climate change effects on Fsoil during the warm season.  相似文献   

13.
Climate-induced changes in snow cover can greatly impact winter soil microclimate and spring water supply. These effects, in turn, can influence plant and microbial activity and the strength of leaching processes, potentially altering the distribution and storage of soil organic carbon (SOC) across different soil depths. However, few studies have examined how changes in snow cover will affect SOC stocks, and even less is known about the impact of snow cover on SOC dynamics along soil profiles. By selecting 11 snow fences along a 570 km climate gradient in Inner Mongolia, covering arid, temperate, and meadow steppes, we measured plant and microbial biomass, community composition, SOC content, and other soil parameters from topsoil to a depth of 60 cm. We found that deepened snow increased aboveground and belowground plant biomass, as well as microbial biomass. Plant and microbial carbon input were positively correlated with grassland SOC stocks. More importantly, we found that deepened snow altered SOC distribution along vertical soil profiles. The increase in SOC caused by deepened snow was much greater in the subsoil (+74.7%; 40–60 cm) than that in the topsoil (+19.0%; 0–5 cm). Additionally, the controls on SOC content under deepened snow differed between the topsoil and subsoil layers. The increase in microbial and root biomass jointly enhanced topsoil C accumulation, while the increase in leaching processes became critical in promoting subsoil C accumulation. We conclude that under deepened snow, the subsoil had a high capacity to sink C by incorporating C leached from the topsoil, suggesting that the subsoil, originally thought to be climate insensitive, could have a higher response to precipitation changes due to vertical C transport. Our study highlights the importance of considering soil depth when assessing the impacts of snow cover changes on SOC dynamics.  相似文献   

14.
高山/亚高山森林灌木层植物凋落物的分解对于系统物质循环等过程具有重要意义, 并可能受到冬季不同厚度雪被斑块下冻融格局的影响。该文采用凋落物分解袋法, 研究了高山森林典型灌层植物华西箭竹(Fargesia nitida)和康定柳(Salix paraplesia)凋落物在沿林窗-林下形成的冬季雪被厚度梯度(厚型雪被斑块、较厚型雪被斑块、中型雪被斑块、薄型雪被斑块、无雪被斑块)上在第一年不同关键时期(冻结初期、冻结期、融化期、生长季节初期和生长季节后期)的质量损失特征。在整个冻融季节, 华西箭竹和康定柳凋落叶的平均质量损失分别占全年的(48.78 ± 2.35)%和(46.60 ± 5.02)%。冻融季节雪被覆盖斑块下凋落叶的失重率表现出厚型雪被斑块大于薄型雪被斑块的趋势,而生长季节无雪被斑块的失重率明显较高。尽管如此, 华西箭竹凋落物第一年分解表现出随冬季雪被厚度增加而增加的趋势, 但康定柳凋落物第一年失重率以薄型雪被斑块最高, 而无雪被斑块最低。同时, 相关分析表明冻融季节凋落叶的失重率与平均温度和负积温呈极显著正相关, 生长季节凋落叶的失重率与所调查的温度因子并无显著相关关系, 但全年凋落物失重率与平均温度和正/负积温均显著相关。这些结果清晰地表明, 未来冬季变暖情境下高山森林冬季雪被格局的改变将显著影响灌层植物凋落物分解, 影响趋势随着物种的差异具有明显差异。  相似文献   

15.
Kreyling J  Haei M  Laudon H 《Oecologia》2012,168(2):577-587
Snow regimes affect biogeochemistry of boreal ecosystems and are altered by climate change. The effects on plant communities, however, are largely unexplored despite their influence on relevant processes. Here, the impact of snow cover on understory community composition and below-ground production in a boreal Picea abies forest was investigated using a long-term (8-year) snow cover manipulation experiment consisting of the treatments: snow removal, increased insulation (styrofoam pellets), and control. The snow removal treatment caused longer (118 vs. 57 days) and deeper soil frost (mean minimum temperature −5.5 vs. −2.2°C) at 10 cm soil depth in comparison to control. Understory species composition was strongly altered by the snow cover manipulations; vegetation cover declined by more than 50% in the snow removal treatment. In particular, the dominant dwarf shrub Vaccinium myrtillus (−82%) and the most abundant mosses Pleurozium schreberi (−74%) and Dicranum scoparium (−60%) declined strongly. The C:N ratio in V. myrtillus leaves and plant available N in the soil indicated no altered nitrogen nutrition. Fine-root biomass in summer, however, was negatively affected by the reduced snow cover (−50%). Observed effects are attributed to direct frost damage of roots and/ or shoots. Besides the obvious relevance of winter processes on plant ecology and distribution, we propose that shifts in the vegetation caused by frost damage may be an important driver of the reported alterations in biogeochemistry in response to altered snow cover. Understory plant performance clearly needs to be considered in the biogeochemistry of boreal systems in the face of climate change.  相似文献   

16.
Aim Winter snow has been suggested to regulate terrestrial carbon (C) cycling by modifying microclimate, but the impacts of change in snow cover on the annual C budget at a large scale are poorly understood. Our aim is to quantify the C balance under changing snow depth. Location Non‐permafrost region of the northern forest area. Methods Here, we used site‐based eddy covariance flux data to investigate the relationship between depth of snow cover and ecosystem respiration (Reco) during winter. We then used the Biome‐BGC model to estimate the effect of reductions in winter snow cover on the C balance of northern forests in the non‐permafrost region. Results According to site observations, winter net ecosystem C exchange (NEE) ranged from 0.028 to 1.53 gC·m?2·day?1, accounting for 44 ± 123% of the annual C budget. Model simulation showed that over the past 30 years, snow‐driven change in winter C fluxes reduced non‐growing season CO2 emissions, enhancing the annual C sink of northern forests. Over the entire study area, simulated winter Reco significantly decreased by 0.33 gC·m?2·day?1·year?1 in response to decreasing depth of snow cover, which accounts for approximately 25% of the simulated annual C sink trend from 1982 to 2009. Main conclusion Soil temperature is primarily controlled by snow cover rather than by air temperature as snow serves as an insulator to prevent chilling impacts. A shallow snow cover has less insulation potential, causing colder soil temperatures and potentially lower respiration rates. Both eddy covariance analysis and model‐simulated results show that both Reco and NEE are significantly and positively correlated with variation in soil temperature controlled by variation in snow depth. Overall, our results highlight that a decrease in winter snow cover restrains global warming as less C is emitted to the atmosphere.  相似文献   

17.
侯磊  任毅华  卢杰  薛会英 《生态学报》2023,43(6):2348-2356
为了解雪被覆盖对青藏高原高寒森林土壤线虫群落的影响,选取藏东南色季拉山急尖长苞冷杉林为研究区,采用高通量测序技术分析不同雪被厚度0、10、20、30 cm下土壤线虫群落特征。结果表明:随着雪被增厚,有机质和全氮含量显著降低(P<0.05),全钾含量显著升高(P<0.05)。雪被增厚对线虫群落Shannon指数、Simpson指数、Pielou指数以及成熟度指数、线虫通路比值(NCR)均未产生显著影响,但NCR值有升高的趋势。雪被增厚使刺嘴纲(Enoplea)及食细菌性线虫的相对丰度增多,同时使20 cm和30 cm雪被下土壤线虫群落结构发生显著变化(P<0.05)。土壤有机质、全氮和全钾含量是影响土壤线虫群落的最关键的3个土壤环境因子。研究表明雪被厚度会对青藏高原色季拉山急尖长苞冷杉林土壤线虫群落产生影响,雪被增厚意味着较为稳定和温暖的土壤环境,利于土壤细菌数量增加,继而利于土壤有机质分解及钾的释放,为刺嘴纲及食细菌性线虫的增多提供了资源与环境条件。目前仍需对青藏高原地区土壤进行系统调查,以更深入的了解该生态脆弱区土壤线虫分布及其响应环境变化的规律。  相似文献   

18.
Complex non-linear relationships exist between air and soil temperature responses to climate change. Despite its influence on hydrological and biogeochemical processes, soil temperature has received less attention in climate impact studies. Here we present and apply an empirical soil temperature model to four forest sites along a climatic gradient of Sweden. Future air and soil temperature were projected using an ensemble of regional climate models. Annual average air and soil temperatures were projected to increase, but complex dynamics were projected on a seasonal scale. Future changes in winter soil temperature were strongly dependent on projected snow cover. At the northernmost site, winter soil temperatures changed very little due to insulating effects of snow cover but southern sites with little or no snow cover showed the largest projected winter soil warming. Projected soil warming was greatest in the spring (up to 4°C) in the north, suggesting earlier snowmelt, extension of growing season length and possible northward shifts in the boreal biome. This showed that the projected effects of climate change on soil temperature in snow dominated regions are complex and general assumptions of future soil temperature responses to climate change based on air temperature alone are inadequate and should be avoided in boreal regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号