首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
本文对近年来有关植物向光性反应的研究结果作一综述:1) 向光素和隐花色素是植物向光反应中的主要光受体,光敏色素在植物向光性反应中也起一定的作用; 2) 对植物的光辐照度-弯曲度曲线的分析,可知植物的正向光性运动有两种反应,即第一次正向光性弯曲和第二次正向光性弯曲; 3) 拟南芥(Arabidopsis thaliana)和水稻(Oryza sativa)等植物的根系具有负向光性的特性,根的负向光性倾斜生长角度为负向光性生长和向重性生长相互作用的矢量和; 4) 生长素的胞间运输依赖于生长素载体,生长素载体的不对称分布和动态运动是生长素极性运输和向性运动的分子基础。  相似文献   

2.
植物向光弯曲生长主要是由于其向光和背光面生长素的不对称分布引起。近年来研究发现,在不同强度的蓝光单侧照射下,植物可能存在不同的向光弯曲调节机制。目前,关于向光素PHOT1介导弱蓝光引起的下胚轴弯曲研究较为详细,即PHOT1感受蓝光后,与其下游的信号蛋白NPH3、RPT2和PKS1相互作用,调控生长素运输蛋白的活性及定位,诱导生长素的不对称分布引起向光弯曲。PHOT1和PHOT2以功能冗余方式调节强蓝光引起的植物下胚轴向光弯曲,NPH3可能作为共享调节因子,引发不同的信号转导通路实现功能互补。此外,其他光受体、激素、蛋白激酶、蛋白磷酸酶以及Ca2+也参与了植物向光弯曲的调节。本文就近年来有关植物下胚轴向光弯曲信号组分及可能的网络关系进行总结,并对该研究领域存在的问题及今后可能的研究方向进行展望。  相似文献   

3.
水稻根的负向光性及其影响因素   总被引:7,自引:0,他引:7  
用水培法观察水稻根的生长, 发现: (ⅰ) 水稻的种子根和不定根, 以及由这些根上长出的分枝根都有负向光倾斜生长的习性. 稻根的负向光倾斜度一般在25° ~ 60°之间, 通常高节位不定根的负向光倾斜度大于低节位不定根的, 更大于种子根的. (ⅱ) 稻根的负向光倾斜生长是由于根尖受光侧细胞的生长量大于背光侧细胞的生长量所致. (ⅲ) 感受光的部位是根冠. 对根冠遮光而给根其他部分照光时根的生长不表现出负向光性; 剥除根冠而保留根尖分生区和伸长区时根会失去负向光性; 剥除根冠而保留根冠原始细胞时稻根在新根冠长出时会恢复背光生长的习性. (ⅳ) 稻根的生长量和负向光倾斜度受光强影响, 在0~100 mmol/(m2·s)的范围内, 根的生长量随光强的提高而减少, 根负向光性角度随光强的提高而增大. (ⅴ) 在10℃ ~ 40℃的温度处理中, 30℃时稻根生长量和负向光性角度最大. (ⅵ) 蓝紫光能显著诱导稻根的负向光性反应, 而红光则无效. (ⅶ) 水培液中的生长素浓度对稻根的生长和向性反应有显著影响. 在0~100 mg/L浓度范围中, 随着生长素浓度的提高对根的伸长生长、负向光性和向重性反应的抑制程度加剧, 当生长素浓度≥10 mg/L时稻根的负向光性反应消失.  相似文献   

4.
生长素对植物不同器官的影响   总被引:1,自引:0,他引:1  
高中生物 (全一册必修 )第 12 2页 ,解释植物的向光性时说 :“光线能够使生长素在背光一侧比向光一侧分布多。因此 ,背光一侧比向光一侧生长得快。结果 ,茎就朝向生长慢的一侧弯曲 ,即朝向光源的一侧弯曲 ,使植物的茎显示出向光性。”这表明较高浓度的生长素使植物生长快 ,低浓度时植物生长慢 ;而第 12 3页又说 :“生长素对植物生长的作用 ,与其浓度的高低有一定的关系。一般地说 ,低浓度促进植物生长 ,高浓度抑制植物生长。”并以此解释顶端优势现象 ,似乎与前者形成矛盾。究竟是高浓度促进生长还是低浓度促进生长 ,生长素对植物不同器官生…  相似文献   

5.
钱芳 《生物学通报》2003,38(5):61-61
中学课本中 ,通过燕麦胚芽鞘的向光性实验说明 :“胚芽鞘的尖端能产生生长素 ,并从尖端运输到下部 ,能促使下部生长”。而对生长素为什么能使植物显示出向光性是这样解释的 :“这与单侧光引起的生长素分布不均匀有关。光线能改变生长素的分布 :向光的一侧生长素分布得少 ,背光的一侧生长素分布得多。因此 ,向光的一侧 ,细胞生长得慢 ,背光的一侧 ,细胞生长得快。结果 ,茎朝向生长慢的一侧弯曲 ,也就是朝向光源的一侧弯曲 ,使植物的茎表现出向光性。”受单侧光的照射发生生长素分布不均的部位究竟是胚芽鞘尖端、胚芽鞘下部、还是整个部分 ,在…  相似文献   

6.
每期5题     
一、非选择题1.有一实验现象:将生理状况相同的胚芽鞘分成甲、乙两组,甲组给单侧光照,乙组不给光照。同样培养一段时间后,甲组向光弯曲生长,乙则直立向上生长。请简答下列问题:  (1)本实验结果能证明胚芽鞘具有的生理特性。(2)实验中胚芽鞘的生长方式与植物生长素的调节作用有关。甲组受到单侧光照后,胚芽鞘上部生长素分布的特点是,由于生长素的生理作用而使其向光弯曲生长;此时乙组未受到光照,生长素在胚芽鞘中可能分布,因而导致其直立向上生长。(3)作为对照,若要使乙组同时也受到光照,你会如何设计乙组实验装置?请将你的设计图示于下,并…  相似文献   

7.
植物的向性,即植物对光或重力等环境刺激信号产生的定向生长反应。在向重力性反应中,植物器官将重力感知为定向环境信号,来控制其器官的生长方向以促进生存。植物激素生长素及其极性运输在植物向重力反应中起着决定性的调控作用。质膜定位的生长素输出蛋白PIN-FORMED(PIN)通过动态的亚细胞极性定位,改变生长素运输的方向以响应环境刺激,由此植物器官间建立的生长素浓度梯度是细胞差异化伸长和器官弯曲的基础,来调控植物的形态建成和生长发育过程。本文主要讨论发生在植物重力感受细胞内早期重力感知和信号转导机制的最新研究进展、PIN介导的生长素极性运输、PIN的极性定位以及质膜蛋白丰度的调控机制等。  相似文献   

8.
生长素极性运输输出载体OsPIN1基因家族可能参与调控水稻根负向光性,其中OsPIN1a和OsPIN1b参与水稻根负向光性已得到证实。为了研究OsPIN1d基因与水稻根负向光性形成的关系,依据GenBank数据库中OsPIN1d(Accession number:BR000830)的核苷酸序列,设计特异性引物,通过RT-PCR从水稻根尖的cDNA中扩增出完整的OsPIN1d基因全长。生物信息学分析表明,OsPIN1d的序列全长为1 497bp,编码554个氨基酸,GC含量为64.08%;氨基酸序列多重比对及系统发育树构建表明,OsPIN1d与水稻OsPIN1b、玉米OsPIN4以及拟南芥AtPIN2、OsPIN1c、OsPIN1a和AtPIN1等基因的遗传距离较近。通过构建融合超表达载体pCAMBIA-1301-OsPIN1d∷GFP,转化并获得其转基因水稻,经RT-PCR检测和GUS染色结果显示,外源片段已成功整合到水稻基因组内,并在根部高效表达;受单侧光照射后,转基因水稻种子的根负向光性明显大于野生型,且向光侧OsPIN1d-GFP荧光密度明显弱于背光侧。研究表明,OsPIN1d参与了水稻根负向光性的IAA和NAA的运输,从而促进了根负向光性的形成。  相似文献   

9.
1 “植物向性运动”的实验设计1.1 实验设计前的准备 植物的向性运动是由于受到单向外界刺激引起植物两侧的生长状况不同。单侧的光照、地心引力、水和肥都可以引起植物的向性运动。向性运动的类型有 :向光性、向重力性 (根有正向重力性 ,茎有负向重力性 )、向水性和向肥性。其中向光性、向重力性是由于单向外界刺激引起植物两侧的生长素分布不均匀所致 ;向水性、向肥性则是由于生长素分布不均匀与单侧的营养供给不均匀共同作用所致。1.1.1 选择实验材料 教材中使用的实验材料不一定是最实用的 ,效果也不一定最好。因此 ,实验材料的选…  相似文献   

10.
20世纪 2 0年代提出的Cholodny_Went植物向性假说认为 ,植物的向性运动是由于生长素 (auxin)的侧向运输引起的。研究表明 ,可能存在一种特殊的运输系统来对生长素进行侧向再定位 ,引起差异生长 (differentialgrowth) ,最终导致芽或根的弯曲。但 70多年来 ,一直没有从分子或细胞机理上得到证实。近年来 ,德国马普植物育种研究所Palme研究小组从拟南芥pin_1突变体中克隆出多个PIN基因 ,它们能编码运输生长素的必须物质。现已证明 ,茎中PIN1及根中PIN2对生长素极性运输和向性运动起着关…  相似文献   

11.
The interaction of tropisms is important in determining the final growth form of the plant body. In roots, gravitropism is the predominant tropistic response, but phototropism also plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism that is mediated by the phototropin family of photoreceptors. In contrast, red light induces a positive phototropism in Arabidopsis roots. Because this red-light-induced response is weak relative to both gravitropism and negative phototropism, we used a novel device to study phototropism without the complications of a counteracting gravitational stimulus. This device is based on a computer-controlled system using real-time image analysis of root growth and a feedback-regulated rotatable stage. Our data show that this system is useful to study root phototropism in response to red light, because in wild-type roots, the maximal curvature detected with this apparatus is 30 degrees to 40 degrees, compared with 5 degrees to 10 degrees without the feedback system. In positive root phototropism, sensing of red light occurs in the root itself and is not dependent on shoot-derived signals resulting from light perception. Phytochrome (Phy)A and phyB were severely impaired in red-light-induced phototropism, whereas the phyD and phyE mutants were normal in this response. Thus, PHYA and PHYB play a key role in mediating red-light-dependent positive phototropism in roots. Although phytochrome has been shown to mediate phototropism in some lower plant groups, this is one of the few reports indicating a phytochrome-dependent phototropism in flowering plants.  相似文献   

12.
Phototropism and gravitropism in lateral roots of Arabidopsis   总被引:4,自引:0,他引:4  
Gravitropism and, to a lesser extent, phototropism have been characterized in primary roots, but little is known about structural/functional aspects of these tropisms in lateral roots. Therefore, in this study, we report on tropistic responses in lateral roots of Arabidopsis thaliana. Lateral roots initially are plagiogravitropic, but when they reach a length of approximately 10 mm, these roots grow downward and exhibit positive orthogravitropism. Light and electron microscopic studies demonstrate a correlation between positive gravitropism and development of columella cells with large, sedimented amyloplasts in wild-type plants. Lateral roots display negative phototropism in response to white and blue light and positive phototropism in response to red light. As is the case with primary roots, the photoresponse is weak relative to the graviresponse, but phototropism is readily apparent in starchless mutant plants, which are impaired in gravitropism. To our knowledge, this is the first report of phototropism of lateral roots in any plant species.  相似文献   

13.
In general, phototropic responses in land plants are induced by blue light and mediated by blue light receptor phototropins. In many cryptogam plants including the fern Adiantum capillus-veneris, however, red as well as blue light effectively induces a positive phototropic response in protonemal cells. In A. capillus-veneris, the red light effect on the tropistic response is mediated by phytochrome 3 (phy3), a chimeric photoreceptor of phytochrome and full-length phototropin. Here, we report red and blue light-induced negative phototropism in A. capillus-veneris rhizoid cells. Mutants deficient for phy3 lacked red light-induced negative phototropism, indicating that under red light, phy3 mediates negative phototropism in rhizoid cells, contrasting with its role in regulating positive phototropism in protonemal cells. Mutants for phy3 were also partially deficient in rhizoid blue light-induced negative phototropism, suggesting that phy3, in conjunction with phototropins, redundantly mediates the blue light response.  相似文献   

14.
赵翔  赵青平  杨煦  慕世超  张骁 《植物学报》2015,50(1):122-132
蓝光受体向光素(PHOT1/PHOT2)调节蓝光诱导的植物运动反应, 包括植物向光性、叶绿体运动、气孔运动和叶片伸展等。其中, 向光素介导的植物向光性能够促使植物弯向光源, 确保其以最佳取向捕获光源, 优化光合作用。光敏色素和隐花色素作为光受体也参与植物的向光性调节。该文综述了向光素介导的拟南芥(Arabidopsis thaliana)下胚轴向光弯曲信号转导及其与光敏色素、隐花色素协同作用的分子机制, 以期为改造植物光捕获能力及提高光利用效率提供理论基础。  相似文献   

15.
Light is one of the most important environmental parameters for a plant and plays a critical role throughout the life cycle. Plants sense light using the red-light-absorbing phytochromes and the blue-light-absorbing cryptochromes and phototropins. In this report, we examine the role of phytochromes in phototropism and gravitropism in inflorescence stems of Arabidopsis thaliana . Tropisms and growth responses were assayed in wild-type (WT) plants, and these responses were compared with those of the mutants phyA , phyB , phyAB , phyD and phyE . After considering growth differences, we found that phototropism of the phyE mutant is significantly less ( P  < 0.05) and that gravitropism of phyB and phyE is significantly greater ( P  < 0.05) compared with the WT responses. Interestingly, while phyE plays a positive role in phototropism, this pigment (along with phyB) attenuates gravitropism in inflorescence stems. This study adds to the growing literature demonstrating that phytochromes can play a role in blue-light-mediated responses such as phototropism.  相似文献   

16.
Gravitropism and phototropism of the primary inflorescence stems were examined in a dominant Aux/IAA mutant of Arabidopsis, axr2/iaa7, which did not display either tropism in hypocotyls. axr2-1 stems completely lacked gravitropism in the dark but slowly regained it in light condition. Though wild-type stems showed positive phototropism, axr2 stems displayed negative phototropism with essentially the same light fluence-response curve as the wild type (WT). Application of 1-naphthaleneacetic acid-containing lanolin to the stem tips enhanced the positive phototropism of WT, and reduced the negative phototropism of axr2. Decapitation of stems caused a small negative phototropism in WT, but did not affect the negative phototropism of axr2. p-glycoprotein 1 (pgp1) pgp19 double mutants showed no phototropism, while decapitated double mutants exhibited negative phototropism. Expression of auxin-responsive IAA14/SLR, IAA19/MSG2 and SAUR50 genes was reduced in axr2 and pgp1 pgp19 stems relative to that of WT. These suggest that the phototropic response of stem is proportional to the auxin supply from the shoot apex, and that negative phototropism may be a basal response to unilateral blue-light irradiation when the levels of auxin or auxin signaling are reduced to the minimal level in the primary stems. In contrast, all of these treatments reduced or did not affect gravitropism in wild-type or axr2 stems. Tropic responses of the transgenic lines that expressed axr2-1 protein by the endodermis-specific promoter suggest that AXR2-dependent auxin response in the endodermis plays a more crucial role in gravitropism than in phototropism in stems but no significant roles in either tropism in hypocotyls.  相似文献   

17.
Kiss JZ  Millar KD  Edelmann RE 《Planta》2012,236(2):635-645
While there is a great deal of knowledge regarding plant growth and development in microgravity aboard orbiting spacecraft, there is little information available about these parameters in reduced or fractional gravity conditions (less than the nominal 1g on Earth). Thus, in these experiments using the European Modular Cultivation System on the International Space Station, we studied the interaction between phototropism and gravitropism in the WT and mutants of phytochrome A and B of Arabidopis thaliana. Fractional gravity and the 1 g control were provided by centrifuges in the spaceflight hardware, and unidirectional red and blue illumination followed a white light growth period in the time line of the space experiments. The existence of red-light-based positive phototropism in hypocotyls of seedlings that is mediated by phytochrome was confirmed in these microgravity experiments. Fractional gravity studies showed an attenuation of red-light-based phototropism in both roots and hypocotyls of seedlings occurring due to gravitational accelerations ranging from 0.l to 0.3 g. In contrast, blue-light negative phototropism in roots, which was enhanced in microgravity compared with the 1g control, showed a significant attenuation at 0.3 g. In addition, our studies suggest that the well-known red-light enhancement of blue-light-induced phototropism in hypocotyls is likely due to an indirect effect by the attenuation of gravitropism. However, red-light enhancement of root blue-light-based phototropism may occur via a more direct effect on the phototropism system itself, most likely through the phytochrome photoreceptors. To our knowledge, these experiments represent the first to examine the behavior of flowering plants in fractional or reduced gravity conditions.  相似文献   

18.
Plants can be adapted to the changing environments through tropic responses, such as light and gravity. One of them is root negative phototropism, which is needed for root growth and nutrient absorption. Here, we show that the auxin efflux carrier PIN-FORMED (PIN) 1 is involved in asymmetric auxin distribution and root negative phototropism. In darkness, PIN1 is internalized and localized to intracellular compartments; upon blue light illumination, PIN1 relocalize to basal plasma membrane in root stele cells. The shift of PIN1 localization induced by blue light is involved in asymmetric auxin distribution and root negative phototropic response. Both blue-light-induced PIN1 redistribution and root negative phototropism is mediated by a BFA-sensitive trafficking pathway and the activity of PID/PP2A. Our results demonstrate that blue-light-induced PIN1 redistribution participate in asymmetric auxin distribution and root negative phototropism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号