首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Nicotiana tabacum 1 (NT-1) cells were transformed with four different expression cassettes of hepatitis B surface antigen (HBsAg). The transformed nature of the cells was confirmed by polymerase chain reaction (PCR). The expression levels were assayed by enzyme linked immunosorbent assay (ELISA). The expressivities varied among the different cassettes and the maximum expression of 16.6 ng g−1(f.m.) of cells was noted in pEFEHER transformed cells. Salicylic acid (100 μM) treatment resulted in 1.8 fold increase of expression in pEFEHBS transformed cells. The effect of different concentrations of kanamycin and geneticin was studied on the growth of transformed cells and HBsAg expression. The cell growth was optimum at lower concentrations of the antibiotics, and the maximum expression was noted at 200 mg dm−3 of kanamycin.  相似文献   

2.
Embryogenic cell suspension cultures of Santalum album were transformed with Agrobacterium tumefaciens harboring pD35SHER plant expression vector having hepatitis B small surface antigen (HBsAg) with a C-terminal ER retention signal. The transformed colonies were selected on culture medium supplemented with kanamycin and subsequently the transgenic nature of these colonies was confirmed by PCR analysis. The expression of HBsAg was confirmed by RT-PCR analysis and Western blot analysis and the expression was quantified using monoclonal antibody-based ELISA. Cell suspension cultures were initiated from the colony with expression of 11.09 μg(HBsAg) g−1(f.m.). To further increase the expression of HBsAg, transgenic S. album suspensions were cultured on media with various medium additives and cells growing in medium with 30 mM trehalose showed the expression of 19.95 μg(HBsAg) g−1(f.m.).  相似文献   

3.
4.
Lang Z  Zhou P  Yu J  Ao G  Zhao Q 《Planta》2008,227(2):387-396
SBgLR (Solanum tuberosum genomic lysine-rich) gene was isolated from a potato genomic library using SB401 (S. berthaultii 401) cDNA as probe. RT-PCR analysis of SBgLR gene expression profile and microscopic analysis of green fluorescent protein (GFP) expression in tobacco plants transformed with SBgLR promoter-GFP reporters indicate that SBgLR is a pollen-specific gene. A series of 5′deletions of SBgLR promoter were fused to the β-glucuronidase (GUS) gene and stably introduced into tobacco plants. Histochemical and quantitative assays of GUS expression in transgenic plants allowed us to localize an enhancer of SBgLR promoter to the region −345 to −269 relative to the translation start site. This 76 bp (−345 to −269) fragment enhanced GUS expression in leaves, stems and roots when fused to −90/+6 CaMV 35S minimal promoter. Deletion analysis showed that a cis-element, which can repress gene expression in root hairs, was located in the region −345 to −311. Further study indicated that the −269 to −9 region was sufficient to confer pollen-specific expression of GFP when fused to CaMV 35S enhancer. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Authors Zhihong Lang and Peng Zhou contributed equally to this work.  相似文献   

5.
Shoot apical meristem-derived calli were transformed with a hLF cDNA in an attempt to produce human lactoferrin (hLF) in transgenic cell suspension cultures of sweet potato [Ipomoea batatas (L.) Lam.]. Calli were bombarded with tungsten particles coated with the binary vector pLSM1 containing a hLF cDNA under the control of the 35S promoter and the neomycin phosphotransferase gene as a selection marker. Calli were then transferred to Murashige and Skoog (MS) medium supplemented with 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 100 mg dm−3 kanamycin. Kanamycin-resistant calli were selected at four-week intervals and subcultured. Cell suspension cultures were established in liquid MS medium with 4.52 μM 2,4-D. Southern and Northern blot analyses confirmed that hLF cDNA was incorporated into the plant genome and was properly expressed in the cells. ELISA analysis showed that transgenic cells produced hLF up to 3.2 μg mg−1 (total protein).  相似文献   

6.
A genetic transformation system has been developed for selected embryogenic cell lines of hybrids Abies alba × A. cephalonica (cell lines AC2, AC78) and Abies alba × A. numidica (cell line AN72) using Agrobacterium tumefaciens. The cell lines were derived from immature or mature zygotic embryos on DCR medium containing BA (1 mg l−1). The T-DNA of plant transformation vector contained the β-glucuronidase reporter gene under the control of double dCaMV 35S promoter and the neomycin phosphotransferase selection marker gene driven by the nos promoter. The regeneration of putative transformed tissues started approximately 1 week after transfer to the selection medium containing 10 mg geneticin l−1. GUS activity was detected in most of the geneticin-resistant sub-lines AN72, AC2 and AC78, and the transgenic nature of embryogenic cell lines was confirmed by PCR approach. Plantlet regeneration from PCR-positive embryogenic tissues has been obtained as well. The presence of both gus and nptII genes was confirmed in 11 out of 36 analysed emblings.  相似文献   

7.
Six different expression cassettes of hepatitis B surface antigen (HBsAg) were used to transform tobacco cell suspension cultures. The transgenic nature of the cells was confirmed by PCR. The secreted HBsAg was assayed by ELISA and analyzed by Western blotting. A maximum of 31 μg antigen/l was obtained in the spent medium from the transformed cells. The use of an ethylene-forming enzyme promoter and incorporation of C-terminal endoplasmic-reticulum-retention signal enhanced the secretion of HBsAg. Salicylic or jasmonic acid at 10 μM increased secretion of HBsAg by six fold.  相似文献   

8.
9.
Hong JK  Hwang BK 《Planta》2009,229(2):249-259
The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 was analyzed by an Agrobacterium-mediated transient expression assay in tobacco leaves. Several stress-related cis-acting elements (GT-1, W-box and ABRE) are located within the CaPIMP1 promoter. In tobacco leaf tissues transiently transformed with a CaPIMP1 promoter-β-glucuronidase (GUS) gene fusion, serially 5′-deleted CaPIMP1 promoters were differentially activated by Pseudomonas syringae pv. tabaci, ethylene, methyl jasmonate, abscisic acid, and nitric oxide. The −1,193 bp region of the CaPIMP1 gene promoter sequence exhibited full promoter activity. The −417- and −593 bp promoter regions were sufficient for GUS gene activation by ethylene and methyl jasmonate treatments, respectively. However, CaPIMP1 promoter sequences longer than −793 bp were required for promoter activation by abscisic acid and sodium nitroprusside treatments. CaPIMP1 expression was activated in pepper leaves by treatment with ethylene, methyl jasmonate, abscisic acid, β-amino-n-butyric acid, NaCl, mechanical wounding, and low temperature, but not with salicylic acid. Overexpression of CaPIMP1 in Arabidopsis conferred hypersensitivity to mannitol, NaCl, and ABA during seed germination but not during seedling development. In contrast, transgenic plants overexpressing CaPIMP1 exhibited enhanced tolerance to oxidative stress induced by methyl viologen during germination and early seedling stages. These results suggest that CaPIMP1 expression may alter responsiveness to environmental stress, as well as to pathogen infection. The nucleotide sequence data reported here has been deposited in the GenBank database under the accession number DQ356279.  相似文献   

10.
Expression of the Human Milk Protein sCD14 in Tobacco Plant Cell Culture   总被引:1,自引:0,他引:1  
The human milk protein sCD14 was expressed in tobacco plant cell cultures. Tobacco cells were transformed with a modified cd14 cDNA minus the GPI-tail and either the native human signal peptide (SP) or a plant SP, under the control of the CaMV-35S promoter. Transformants were screened using PCR and Southern blot analysis. The functionality of the inserted cDNA was checked by northern blot analysis for the presence of recombinant sCD14 mRNA. The detection of the protein has been observed by western blot analysis at an estimated level of 5 μg l−1 in a non-soluble fraction of the culture medium.  相似文献   

11.
The wound-induced expression of tpoxN1, encoding a tobacco peroxidase, is unique because of its vascular system-specific expression and insensitivity to known wound-signal compounds such as jasmonic acid, ethylene, and plant hormones [Sasaki et al. (2002) Plant Cell Physiol 43:108–117]. To study the mechanism of expression, the 2-kbp tpoxN1 promoter region and successive 5′-deletion of the promoter were introduced as GUS fusion genes into tobacco plants. Analysis of GUS activity in transgenic plants indicated that a vascular system-specific and wound-responsive cis-element (VWRE) is present at the −239/−200 region of the promoter. Gel mobility shift assays suggested that a nuclear factor(s) prepared from wounded tobacco stems binds a 14-bp sequence (−229/−215) in the −239/−200 region in a sequence-specific manner. A mutation in this 14-bp region of the −239 promoter fragment resulted in a considerable decrease in wound-responsive GUS activity in transgenic plants. An 11-bp sequence, which completely overlaps with the 14-bp sequence, was found in the 5′ distal region (−420/−410) and is thought to contribute to the wound-induced expression together with the 14-bp. The −114-bp core promoter of the tpoxN1 gene was indispensable for wound-induced expression, indicating that the 14-bp region is a novel wound-responsive cis-element VWRE, which may work cooperatively with other factors in the promoter.  相似文献   

12.
The wild-type gene encoding granule-bound starch synthase (GBSS) is capable of both complementing the amylosefree (amf) potato mutant and inhibiting the endogenous GBSS gene expression in wild-type potato. Co-suppression of the endogenous GBSS gene, easily visualised by staining the starch with iodine, occurred when the full-size GBSS sequence (genomic), GBSS cDNA or even the mutant amf allele were introduced into the wild-type potato. Conversely, introduction of the GBSS promoter sequence alone, did not result in co-suppression in the 80 analysed transformants. Neither the orientation of the GBSS gene with respect to kanamycin resistance nor the presence of an enhancer influenced the frequency of plants showing a co-suppression phenotype. After crossing a partially complemented amf mutant with a homozygous wild-type plant, the F1 offspring segregated into plant phenotypes with normal and decreased expression of the GBSS gene. This decreased expression correlated with the presence of a linked block of five T-DNA inserts which was previously shown to be correlated with partial complementation of the amf mutant. This crossing experiment indicates that co-suppression can cause inhibition of gene expression of both inserted and endogenous wild-type GBSS genes. The frequency of partially complemented amf plants was equal to the frequency of co-suppressed wild types when a construct, with an enhancer in front of the GBSS promoter, was used (pWAM 101E). This might suggest that partial complementation of the amf genotype caused by unstable expression of the transgene can be overcome by inserting an enhancer in front of the GBSS promoter.  相似文献   

13.
14.
Chimaeric genes of promoter sequences from the potato gene encoding granule-bound starch synthase (GBSS) and the -glucuronidase (GUS) reporter gene were used to study GBSS expression and regulation. Analysis of stable transformants revealed that a GBSS promoter sequence of 0.4 kb was sufficient to result in tissue-dependent GUS expression: levels in stably transformed microtubers exceeded levels in corresponding leaves by orders of magnitude. GBSS-GUS constructs could be transiently expressed in leaf protoplasts from wild-type and amylose-free potato lines, etuberosumSolanum brevidens, Nicotiana tabacum andArabidopsis thaliana. Transient expression levels in potato leaf protoplasts were clearly lower than in corresponding suspension cell protoplasts. This lower expression in leaf protoplasts could not be elevated by increasing DNA concentrations during transfection. Light incubation of electroporated suspension cell protoplasts reduced transient GBSS-GUS expression, whereas incubation of transfected protoplasts in media with different sucrose concentrations did not affect transient expression levels. However, electroporated protoplasts, isolated from suspensions, which had been grown on media with increasing amounts of sucrose showed a sucrose concentration-dependent transient expression profile. This indicates that studying GBSS regulation by transient expression experiments needs pre-treatment of the protoplast source. Sequence data of the GBSS promoter were compared to those of two other potato alleles.  相似文献   

15.
GLU1 encodes the major ferredoxin-dependent glutamate synthase (Fd-GOGAT, EC 1.4.7.1) in Arabidopsis thaliana (ecotype Columbia). With the aim of providing clues on the role of Fd-GOGAT, we analyzed the expression of Fd-GOGAT in tobacco (Nicotiana tabacum L. cv. Xanthi). The 5′ flanking element of GLU1 directed the expression of the uidA reporter gene in the palisade and spongy parenchyma of mesophyll, in the phloem cells of vascular tissue and in the roots of tobacco. White light, red light or sucrose induced GUS expression in the dark-grown seedlings in a pattern similar to the GLU1 mRNA accumulation in Arabidopsis. The levels of GLU2 mRNA encoding the second Fd-GOGAT and NADH-glutamate synthase (NADH-GOGAT, EC 1.4.1.14) were not affected by light. Both in the light and in darkness, 15NH4+ was incorporated into [5−15N]glutamine and [2−15N]glutamate by glutamine synthetase (GS, EC 6.3.1.2) and Fd-GOGAT in leaf disks of transgenic tobacco expressing antisense Fd-GOGAT mRNA and in wild-type tobacco. In the light, low level of Fd-glutamate synthase limited the [2−15N]glutamate synthesis in transgenic leaf disks. The efficient dark labeling of [2−15N]glutamate in the antisense transgenic tobacco leaves indicates that the remaining Fd-GOGAT (15–20% of the wild-type activity) was not the main limiting factor in the dark ammonium assimilation. The antisense tobacco under high CO2 contained glutamine, glutamate, asparagine and aspartate as the bulk of the nitrogen carriers in leaves (62.5%), roots (69.9%) and phloem exudates (53.2%). The levels of glutamate, asparagine and aspartate in the transgenic phloem exudates were similar to the wild-type levels while the glutamine level increased. The proportion of these amino acids remained unchanged in the roots of the transgenic plants. Expression of GLU1 in mesophyll cells implies that Fd-GOGAT assimilates photorespiratory and primary ammonium. GLU1 expression in vascular cells indicates that Fd-GOGAT provides amino acids for nitrogen translocation. The nucleotide sequence data of the GLU1 gene reported in the present study is available from GenBank with the following accession number: AY189525  相似文献   

16.
A functional analysis of the promoter of the S 2 -RNase gene from potato was performed in transgenic potato and tobacco plants, using a deletion series of S 2 -RNase promoter GUS fusions. A detailed histochemical and quantitative analysis of the transgenic tobacco plants revealed that S 2 promoter fragments ranging in size from 5.6 kb in length down to 0.2 kb mediate a weak developmentally regulated expression in the pistil, and strong ectopic expression in pollen. In the pistil, different expression patterns were seen depending on the transformant, the predominant one being characterised by expression in the stigma and the transmitting tract of the style, whereas a few plants showed expression exclusively either in the stigma or in the stylar transmitting tissue. All transformants also showed GUS expression in the placental epidermis of the ovary. Two sequences that are conserved between the potato S 1 -RNase and S 2 -RNase promoters, termed motif I and motif III, are located in a fragment of the S 2 promoter extending from position −200 to bp −100, and motif II, located between bp −498 and −480, was identified on the basis of sequence comparisons between pistil-specific promoters. Motif II was found to be dispensible for pistil-specific and for pollen-specific expression. Two submotifs, A and B, were identified within motif I. Both were essential for expression in the pistil but only B was necessary for expression in pollen. Although motif III has a similar bipartite structure and sequence to motif I, it was not sufficient to confer either pollen- or pistil-specific expression. However, deletion of motif III abolished pollen-specific expression in transient expression experiments, suggesting that an interaction between the two sequence motifs may be needed to specify cell type-specific expression. In transgenic potato the S 2 -RNase promoter also mediates expression in pollen and in the pistil; however, significantly fewer plants showed expression than in tobacco, with most plants also exhibiting GUS expression in other tissues. Received: 7 August 1997 / Accepted: 8 September 1997  相似文献   

17.
Luo K  Zhang G  Deng W  Luo F  Qiu K  Pei Y 《Plant cell reports》2008,27(4):707-717
Previous studies have shown that mRNA and protein encoded by late embryogenesis-abundant (LEA) gene D113 from Gossypium hirsutum L. accumulate at high levels in mature seeds and also in response to abscisic acid (ABA) in young embryo. In this study, we studied the expression of four promoter 5′ deletion constructs (−1383, −974, −578 and −158) of the LEA D113 gene fused to beta-glucuronidase (GUS). GUS activity analysis revealed that the −578 promoter fragment was necessary to direct seed-specific GUS expression in transgenic tobacco plants (Nicotiana tabacum L.). To further investigate the expression pattern of LEA D113 promoter under environmental stresses, 2-week-old transgenic tobacco seedlings were exposed to ABA, dehydration, high salinity and cold treatments. GUS activity in the seedlings was quantified fluorimetrically, and expression was also observed by histochemical staining. An apparent increase in GUS activity was found in plants harboring constructs −1383, −974 and −578 after 24 h of ABA or high-salinity treatments, as well as after 10 days of dehydration. By contrast, only a slight increase was observed in all the three lines after cold treatment. Virtually no change in expression was found in construct −158 in response to dehydration, salinity and cold, but there was a moderate response to ABA, suggesting that the region between −574 and −158 was necessary for dehydration- and salinity-dependent expression, whereas ABA-responsive cis-acting elements might be located in the −158 region of the promoter.  相似文献   

18.
The Glycine max sucrose binding protein (GmSBP2) promoter directs vascular tissue-specific expression of reporter genes in transgenic tobacco. Here we showed that an SBP2-GFP fusion protein under the control of the GmSBP2 promoter accumulates in the vascular tissues of vegetative organs, which is consistent with the proposed involvement of SBP in sucrose transport-dependent physiological processes. Through gain-of-function experiments we confirmed that the tissue-specific determinants of the SBP2 promoter reside in the distal cis-regulatory domain A, CRD-A (position −2000 to −700) that is organized into a modular configuration to suppress promoter activity in tissues other than vascular tissues. The four analyzed CRD-A sub-modules, designates Frag II (−1785/−1508), Frag III (−1507/−1237), Frag IV (−1236/−971) and Frag V (−970/−700), act independently to alter the constitutive pattern of −92pSBP2-mediated GUS expression in different organs. Frag V fused to −92pSBP2-GUS restored the tissue-specific pattern of the full-length promoter in the shoot apex, but not in other organs. Likewise, Frag IV confined GUS expression to the vascular bundle of leaves, whereas Frag II mediated vascular specific expression in roots. Strong stem expression-repressing elements were located at positions −1485 to −1212, as Frag III limited GUS expression to the inner phloem. We have also mapped a procambium silencer to the consensus sequence CAGTTnCaAccACATTcCT which is located in both distal and proximal upstream modules. Fusion of either repressing element-containing module to the constitutive −92pSBP2 promoter suppresses GUS expression in the elongation zone of roots. Together our results demonstrate the unusual aspect of distal sequences negatively controlling tissue-specificity of a plant promoter.  相似文献   

19.
GTP cyclohydrolase I (GTPCH) is a key enzyme in the de novo synthesis of tetrahydrobiopterin. Previously, the Drosophila melanogaster GTPCH gene has been shown to be expressed from two different promoters (P1 and P2). In our study, the 5′-flanking DNA regions required for P1 and P2 promoter activities were characterized using transient expression assay. The DNA regions between −98 and +31, and between −73 and +35 are required for efficient P1 and P2 promoter activities, respectively. The regions between −98 and −56 and between −73 and −41 may contain critical elements required for the expression of GTPCH in Drosophila. By aligning the nucleotide sequences in the P1 and P2 promoter regions of the Drosophila melanogaster and Drosophila virilis GTPCH genes, several conserved elements including palindromic sequences in the regions critical for P1 and P2 promoter activities were identified. Western blot analysis of transgenic flies transformed using P1 or P2 promoter-lacZ fusion plasmids further revealed that P1 promoter expression is restricted to the late pupae and adult developmental stages but that the P2 promoter driven expression of GTPCH is constitutive throughout fly development. In addition, X-gal staining of the embryos and imaginal discs of transgenic flies suggests that the P2 promoter is active from stage 13 of embryo and is generally active in most regions of the imaginal discs at the larval stages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号