首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   933780篇
  免费   99757篇
  国内免费   1211篇
  2018年   18004篇
  2017年   16508篇
  2016年   17519篇
  2015年   16867篇
  2014年   18901篇
  2013年   25772篇
  2012年   32721篇
  2011年   39603篇
  2010年   29480篇
  2009年   24927篇
  2008年   33794篇
  2007年   35570篇
  2006年   24684篇
  2005年   23597篇
  2004年   23865篇
  2003年   22876篇
  2002年   21905篇
  2001年   35880篇
  2000年   36133篇
  1999年   28960篇
  1998年   11049篇
  1997年   11539篇
  1996年   11074篇
  1995年   10794篇
  1994年   10585篇
  1993年   10422篇
  1992年   24256篇
  1991年   23535篇
  1990年   23068篇
  1989年   22437篇
  1988年   20662篇
  1987年   20316篇
  1986年   18639篇
  1985年   18788篇
  1984年   15605篇
  1983年   13656篇
  1982年   10929篇
  1981年   9710篇
  1980年   9246篇
  1979年   15014篇
  1978年   12044篇
  1977年   10930篇
  1976年   10299篇
  1975年   11224篇
  1974年   12090篇
  1973年   11829篇
  1972年   10848篇
  1971年   10063篇
  1970年   8482篇
  1969年   8092篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
During epithelial cell polarization, Yurt (Yrt) is initially confined to the lateral membrane and supports the stability of this membrane domain by repressing the Crumbs-containing apical machinery. At late stages of embryogenesis, the apical recruitment of Yrt restricts the size of the apical membrane. However, the molecular basis sustaining the spatiotemporal dynamics of Yrt remains undefined. In this paper, we report that atypical protein kinase C (aPKC) phosphorylates Yrt to prevent its premature apical localization. A nonphosphorylatable version of Yrt dominantly dismantles the apical domain, showing that its aPKC-mediated exclusion is crucial for epithelial cell polarity. In return, Yrt counteracts aPKC functions to prevent apicalization of the plasma membrane. The ability of Yrt to bind and restrain aPKC signaling is central for its role in polarity, as removal of the aPKC binding site neutralizes Yrt activity. Thus, Yrt and aPKC are involved in a reciprocal antagonistic regulatory loop that contributes to segregation of distinct and mutually exclusive membrane domains in epithelial cells.  相似文献   
2.
Human mast cells (MCs) contain TG-rich cytoplasmic lipid droplets (LDs) with high arachidonic acid (AA) content. Here, we investigated the functional role of adipose TG lipase (ATGL) in TG hydrolysis and the ensuing release of AA as substrate for eicosanoid generation by activated human primary MCs in culture. Silencing of ATGL in MCs by siRNAs induced the accumulation of neutral lipids in LDs. IgE-dependent activation of MCs triggered the secretion of the two major eicosanoids, prostaglandin D2 (PGD2) and leukotriene C4 (LTC4). The immediate release of PGD2 from the activated MCs was solely dependent on cyclooxygenase (COX) 1, while during the delayed phase of lipid mediator production, the inducible COX-2 also contributed to its release. Importantly, when ATGL-silenced MCs were activated, the secretion of both PGD2 and LTC4 was significantly reduced. Interestingly, the inhibitory effect on the release of LTC4 was even more pronounced in ATGL-silenced MCs than in cytosolic phospholipase A2-silenced MCs. These data show that ATGL hydrolyzes AA-containing TGs present in human MC LDs and define ATGL as a novel regulator of the substrate availability of AA for eicosanoid generation upon MC activation.  相似文献   
3.
Helices are the most common elements of RNA secondary structure. Despite intensive investigations of various types of RNAs, the evolutionary history of the formation of new helices (novel helical structures) remains largely elusive. Here, by studying the nuclear ribosomal Internal Transcribed Spacer 2 (ITS2), a fast-evolving part of the eukaryotic nuclear ribosomal operon, we identify two possible types of helix formation: one type is “dichotomous helix formation”—transition from one large helix to two smaller helices by invagination of the apical part of a helix, which significantly changes the shape of the original secondary structure but does not increase its complexity (i.e., the total length of the RNA). An alternative type is “lateral helix formation”—origin of an extra helical region by the extension of a bulge loop or a spacer in a multi-helix loop of the original helix, which does not disrupt the pre-existing structure but increases RNA size. Moreover, we present examples from the RNA sequence literature indicating that both types of helix formation may have implications for RNA evolution beyond ITS2.  相似文献   
4.
5.
Theory suggests that spatial structuring should select for intermediate levels of virulence in parasites, but empirical tests are rare and have never been conducted with castration (sterilizing) parasites. To test this theory in a natural landscape, we construct a spatially explicit model of the symbiosis between the ant-plant Cordia nodosa and its two, protecting ant symbionts, Allomerus and Azteca . Allomerus is also a castration parasite, preventing fruiting to increase colony fecundity. Limiting the dispersal of Allomerus and host plant selects for intermediate castration virulence. Increasing the frequency of the mutualist, Azteca , selects for higher castration virulence in Allomerus , because seeds from Azteca -inhabited plants are a public good that Allomerus exploits. These results are consistent with field observations and, to our knowledge, provide the first empirical evidence supporting the hypothesis that spatial structure can reduce castration virulence and the first such evidence in a natural landscape for either mortality or castration virulence.  相似文献   
6.
The passive properties of skeletal muscle are often overlooked in muscle studies, yet they play a key role in tissue function in vivo. Studies analyzing and modeling muscle passive properties, while not uncommon, have never investigated the role of fluid content within the tissue. Additionally, intramuscular pressure (IMP) has been shown to correlate with muscle force in vivo and could be used to predict muscle force in the clinic. In this study, a novel model of skeletal muscle was developed and validated to predict both muscle stress and IMP under passive conditions for the New Zealand White Rabbit tibialis anterior. This model is the first to include fluid content within the tissue and uses whole muscle geometry. A nonlinear optimization scheme was highly effective at fitting model stress output to experimental stress data (normalized mean square error or NMSE fit value of 0.993) and validation showed very good agreement to experimental data (NMSE fit values of 0.955 and 0.860 for IMP and stress, respectively). While future work to include muscle activation would broaden the physiological application of this model, the passive implementation could be used to guide surgeries where passive muscle is stretched.  相似文献   
7.
More than 50 hereditary lysosomal storage disorders (LSDs) are currently described. Most of these disorders are due to a deficiency of certain hydrolases/glycosidases and subsequent accumulation of nonhydrolyzable carbohydrate-containing compounds in lysosomes. Such accumulation causing hypertrophy of the lysosomal compartment is a characteristic feature of affected cells in LSDs. The investigation of biochemical and cellular parameters is of particular interest for understanding “life” of lysosomes in the normal state and in LSDs. This review highlights the wide spectrum of biochemical and morphological changes during developing LSDs that are extremely critical for many metabolic processes inside the various cells and tissues of affected persons. The data presented will help establish new complex strategies for metabolic correction of LSDs.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号