首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 286 毫秒
1.
AQP2(aquaporin-2)是一种水通道蛋白,表达于集合管的主细胞,其活性主要受抗利尿激素(arginin vasopressin,AVP)调控。AVP调节的AQP2数量和细胞内定位在维持机体水代谢平衡和尿液浓缩中发挥着决定性的作用。AQP2受多种修饰,如磷酸化、泛素化、糖基化等。本文根据最新的文献报道,着重介绍了AQP2翻译后修饰及调控机制。  相似文献   

2.
应用生物显微技术及免疫组织化学方法,对大鵟肾脏的组织结构进行观察,检测了AQP2、AQP3和Bax、Bcl-2蛋白在肾脏中的表达.结果 表明,大鵟肾脏红褐色,表面覆以极薄的结缔组织膜,无肾脂囊.相对体积比哺乳类大,占体重的2.1%.肾小球毛细血管分支少,结构简单.但是肾小球单位面积上的数目比哺乳类多,这对于在旺盛的新陈代谢过程中,迅速排除废物、保持水盐平衡是有利的.集合管是尿重吸收的重要部位,上皮细胞有AQP2、AQP3免疫反应阳性表达,提示AQP2和AQP3对大鵟肾脏水的平衡有重要的调节作用.近曲小管上皮细胞有Bax和Bcl-2免疫反应阳性表达,说明Bax和Bcl-2的协同表达参与正常大鵟肾脏细胞凋亡的调控.  相似文献   

3.
通过检测塔里木兔(Lepus yarcandensis)胰腺中水通道蛋白(aquaporin,AQP)1和4的表达和分布情况,以探讨水通道蛋白在塔里木兔适应干旱缺水环境中的作用,采用常规 H.E.染色观察塔里木兔胰腺组织学结构,采用免疫组织化学检测AQP1和AQP4在胰腺中的分布位置及表达,并与家兔进行比较。结果显示,AQP1在微血管内皮细胞,血细胞,泡心细胞和小叶内导管上皮细胞均有表达;AQP4在小叶间导管基底膜和胰岛细胞膜上有表达。与家兔相比,AQP1 在塔里木兔胰腺外分泌部的表达较弱,而在小叶内导管的表达较强;AQP4在塔里木兔胰腺内分泌部的表达较低。以上结果说明,AQP1在塔里木兔胰腺小叶内导管的表达上调,推测可能加强了浓缩胰液的能力,以尽量保住体内的水分,是塔里木兔对干旱缺水环境的适应性调节。与家兔相比,塔里木兔胰腺AQP1和AQP4的表达均较低,说明塔里木兔胰腺水液代谢能力比家兔低,这可能与塔里木兔所食食物营养匮乏有关。  相似文献   

4.
目的:1)从肺泡上皮水主动转运功能的角度探讨肺虚痰阻证的发生机理。2)通过观察肺虚痰阻证模型的AQP的活性及其相关基因、蛋白的表达和补肺化痰中药复方治疗前、后的对比,观察这一过程中上述指标的变化情况。方法:将雄性SD大鼠随机分为正常组、模型组、中药治疗组。模型组和治疗组造模40天,治疗组在造模26天后,药物灌胃治疗2周。采用组织化学染色法,对大鼠肺进行病理分析;RT-PCR的方法检测大鼠肺组织中AQP1、AQP5基因表达;western blot法检测大鼠肺组织中AQP1、AQP5蛋白水平。结果:1)与正常组相比,模型组局部出现明显炎症反应(P<0.01),治疗组局部炎症反应减轻(P<0.05)。2)mRNA结果显示,AQP1在正常组有表达,在模型组和治疗组未见表达。AQP5模型组与正常组相比,表达量显著增高(P<0.01);治疗组与模型组比较,表达量显著降低(P<0.01),但与正常组无显著差异。3)蛋白水平上,AQP1在模型组和治疗组与正常组相比差异显著(P<0.05),表达下降。AQP5模型组与正常组相比,显著升高(P<0.01);治疗组与模型组比较,显著下调(P<0.05);正常组表达低于治疗组,差异显著(P<0.05)。结论:1)AQP1和5基因及蛋白表达量变化是肺虚痰阻证的病理机制之一。2)补肺化痰中药复方可调节肺虚痰阻证模型大鼠肺组织AQP 5基因及蛋白表达。提示补肺化痰中药复方治疗肺虚痰阻证其作用机制与调节AQP5有关。  相似文献   

5.
应用免疫组织化学方法和体视学半定量方法检测了水通道蛋白1、2(aquaporin 1,2)在子午沙鼠(Meriones meridianus)子鼠肾中的表达,利用IPP专业图像分析软件对其表达强度进行了定量分析。结果显示,1、7、14、21、32日龄子午沙鼠仔鼠肾均有水通道蛋白1、2的阳性表达,AQP1表达部位为肾近曲小管上皮细胞的顶质膜和基底膜、髓袢细段;AQP2的表达位于集合管主细胞的游离面细胞膜;7日龄子午沙鼠仔鼠肾AQP1阳性表达的面密度增加显著(P0.05),光密度增加极显著(P0.01),7日龄子午沙鼠仔鼠肾AQP2阳性表达的面密度和光密度增加极显著(P0.01),7日龄后无差异(P0.05)。结果表明,7日龄后子午沙鼠子鼠肾AQP1、2的表达水平增强,近曲小管与髓袢细段、集合管对水的重吸收增强,以浓缩尿液,AQP1、2对子鼠尿的浓缩起重要作用,从而调节肾水的平衡。  相似文献   

6.
目的了解肾脏缺血再灌注损伤(ischemia reperfusion injury, IRI)时肾内水通道蛋白-2(aquaporin 2, AQP2)免疫组织化学表达特点。方法建立大鼠右侧肾IRI 45min模型,随机分为缺血再灌注1d、3d、5d、7d组和假手术1d组,检测尿常规、尿比重、尿素氮、血肌酐;HE染色观察肾脏病理形态学变化;免疫组织化学染色观察IRI时肾脏AQP2表达的变化。结果 IRI后,大鼠出现尿量增多,尿比重降低,血肌酐、尿素氮均增加;HE染色示右侧肾充血,水肿以及肾小管上皮细胞肿胀、坏死和脱落;免疫组织化学染色显示AQP2免疫反应性在右肾降低,左肾增强。肾组织的变化在第7d基本恢复正常。结论肾IRI时肾内AQP2表达降低,可能与IRI后尿量增多、尿比重降低相关。  相似文献   

7.
血管生成是肿瘤生长、浸润和转移的必要步骤. 肿瘤血管生成涉及瘤旁组织血管内皮细胞增殖、向肿瘤细胞团内迁移以及管腔形成,目前机理尚不完全清楚. 水通道 AQP1 在多种肿瘤血管内皮高表达,提示其可能参与肿瘤血管的生成过程. 应用 AQP1 敲除小鼠荷瘤实验证实了 AQP1 在黑色素瘤生长和血管新生中的作用. 结果表明,皮下接种的黑色素瘤在 AQP1 敲除小鼠的生长较之在野生型小鼠延迟近 30% (P<0.01). 免疫组化与肿 瘤病理形态学分析显示, AQP1 在野生型小鼠黑色素瘤血管内皮细胞上高表达,而在 AQP1 敲除小鼠黑色素瘤血管内皮细胞呈阴性表达. 在病理结构上,黑色素瘤细胞围绕血管分支呈岛状分布. 野生型小鼠黑色素瘤内血管管腔较细小,而 AQP1(-/-)小鼠黑色素瘤内血管床显著膨大. AQP1(-/-)小鼠肿瘤内平均微血管密度 (47/mm2) 较之 AQP1(+/+) 肿瘤 (142/mm2) 减少 67% (P<0.01). 围绕 AQP1(-/-) 肿瘤血管的肿瘤细胞岛周边坏死区域明显大于 AQP1(+/+)肿瘤. 上述结果提出确切证据表明, AQP1 缺失使肿瘤血管生成发生障碍,从而影响了肿瘤血液供应和肿瘤生长. AQP1参与肿瘤血管生成的机理值得深入研究.  相似文献   

8.
水通道蛋白(Aquaporin,AQP)广泛存在于生物体的各组织部位,影响着生物体水代谢的过程。为进一步研究水通道蛋白1(AQP1)和水通道蛋白3(AQP3)生物学功能,本文对牦牛(Bos grunniens)不同组织中AQP1和AQP3基因的表达与定位进行了研究。采用PCR方法扩增牦牛AQP1和AQP3基因,对其序列进行生物信息学分析,采用qPCR方法检测2个基因在牦牛不同种组织中的表达量,采用免疫组织化学的方法分析AQP1和AQP3蛋白在组织中的定位和表达。结果表明,牦牛AQP1和AQP3基因CDS区分别为816 bp和840 bp,与野牦牛的同源性最高为99%。AQP1和AQP3基因的表达量在肾脏中最高,显著高于心脏、肝脏、脾脏、肺脏、肌肉、小肠和瘤胃,AQP1基因在各组织中的表达均高于AQP3基因的表达。AQP1和AQP3蛋白定位发现其主要分布于肾脏近曲小管、小肠固有层细胞和瘤胃颗粒层细胞中,均在肾脏中的表达量最高。AQP1蛋白在脾脏、小肠和肌肉组织中的表达极显著高于AQP3蛋白表达。该研究结果对高寒低氧环境中动物的研究具有借鉴意义,有助于牦牛AQP1和AQP3功能研究。  相似文献   

9.
目的:探讨几种天然产物对高尿酸血症大鼠血清尿酸水平及尿酸排泄的影响.方法:对wistar大鼠灌胃氧嗪酸钾和酵母膏,制作高尿酸血症大鼠动物模型.灌胃给药褐藻糖胶、柠檬酸钾和东哥阿里提取物,2周后采血并进行代谢实验,检测血清尿酸、尿素氮,24小时尿液体积、pH值、尿酸浓度及总量,分析三种活性物质对机体尿酸水平、尿酸排泄、肾脏功能的影响.结果:三种物质均可显著降低高尿酸血症模型大鼠的血清尿酸水平,其中东哥阿里提取物组的24小时排泄尿酸总量较模型组显著降低,褐藻糖胶对实验大鼠的血清尿素氮水平升高有抑制作用.结论:三种活性物质对高尿酸血症大鼠血清尿酸浓度有降低作用,其中褐藻糖胶对肾脏功能有保护作用,从而保证尿酸的顺利排泄,而东哥阿里在降低血尿酸水平的同时,24小时尿液中排泄的尿酸总量也显著低于模型对照组,其机制可能与抑制尿酸生成有关.  相似文献   

10.
L PGDS是一种双功能蛋白 ,即催化PGD2产生和运输亲脂 疏水分子 .L PGDS主要分布于脑和男性生殖器官 ,并分泌到脑脊液、血清、精液、尿液等体液中 .测定体液中L PGDS的含量可辅助诊断一些神经系统疾病、生殖系统疾病、心血管疾病和肾脏疾病等 .在毕赤氏酵母中表达人睾丸前列腺素D合成酶 ,以利于进一步的生物学功能及临床应用研究 .用PCR的方法从质粒pGEX 2T htL PGDS上扩增出人睾丸L PGDS成熟肽基因编码序列 ,经测序证实后 ,将其插入到质粒pPIC9中 ,构建该基因的酵母表达质粒 .电转化毕赤氏酵母GS1 1 5 ,经甲醇诱导后 ,可实现L PGDS的高效、分泌性表达 .镍离子亲合层析法对表达上清进行纯化 ,SDS PAGE分析证实 ,在 2 7kD处有重组蛋白的表达 ,表达量为 2 7mg L .纯化蛋白可与视黄酸结合 ,使其紫外吸收波谱发生红移  相似文献   

11.
<正>虎鼬(Vormela peregusna)属哺乳纲(Mammalia)食肉目(Carnivora)鼬科(Mustelidae)虎鼬属(Vormela),是虎鼬属唯一一种小型哺乳动物,主要分布在东欧到中国西部的广大干燥地区,主要以啮齿动物为食(雷刚等,2009)。目前国内外有关虎鼬的研究比较少,包括核型分析(许可芬和高行宜,1986)、分子遗传学研究(Rozhnov et al.,  相似文献   

12.
Aquaporins (AQPs) play fundamental roles in water and osmolyte homeostasis by facilitating water and small solute movement across plasma membranes of epithelial, endothelial, and other tissues. AQP proteins are abundantly expressed in the mammalian kidney, where they have been shown to play essential roles in fluid balance and urine concentration. Thus far, the majority of studies on renal AQPs have been carried out in laboratory rodents and sheep; no data have been published on the expression of AQPs in kidneys of equines or other large mammals. The aim of this comparative study was to determine the expression and nephron segment localization of AQP1-4 in Equus caballus by immunoblotting and immunohistochemistry with custom-designed rabbit polyclonal antisera. AQP1 was found in apical and basolateral membranes of the proximal convoluted tubules and thin descending limbs of the loop of Henle. AQP2 expression was specifically detected in apical membranes of cortical, medullary, and papillary collecting ducts. AQP3 was expressed in basolateral membranes of cortical, medullary, and papillary collecting ducts. Immunohistochemistry also confirmed AQP4 expression in basolateral membranes of cells lining the distal convoluted and connecting tubules. Western blots revealed high expression of AQP1-4 in the equine kidney. These observations confirm that AQPs are expressed in the equine kidney and are found in similar nephron locations to mouse, rat, and human kidney. Equine renal AQP proteins are likely to be involved in acute and chronic regulation of body fluid composition and may be implicated in water balance disorders brought about by colic and endotoxemia.  相似文献   

13.
BACKGROUND INFORMATION: Phenotype analysis has demonstrated that AQP3 (aquaporin 3) null mice are polyuric and manifest a urinary concentration defect. In the present study, we report that deletion of AQP3 is also associated with an increased urinary sodium excretion. To investigate further the mechanism of the decreased urinary concentration and significant natriuresis, we examined the segmental and subcellular localization of collecting duct AQPs [AQP2, p-AQP2 (phosphorylated AQP2), AQP3 and AQP4], ENaC (epithelial sodium channel) subunits and Na,K-ATPase by immunoperoxidase and immunofluorescence microscopy in AQP3 null (-/-), heterozygous (+/-) mice, wild-type and unrelated strain of normal mice. RESULTS: The present study confirms that AQP3 null mice exhibit severe polyuria and polydipsia and demonstrated that they exhibit increased urinary sodium excretion. In AQP3 null mice, there is a marked down-regulation of AQP2 and p-AQP2 both in CNT (connecting tubule) and CCD (cortical collecting duct). Moreover, AQP4 is virtually absent from CNT and CCD in AQP3 null mice. Basolateral AQP2 was virtually absent from AQP3 null mice and normal mice in contrast with rat. Thus the above results demonstrate that no basolateral AQPs are expressed in CNT and CCD of AQP3 null mice. However, in the medullary-collecting ducts, there is no difference in the expression levels and subcellular localization of AQP2, p-AQP2 and AQP4 between AQP3 +/- and AQP3 null mice. Moreover, a striking decrease in the immunolabelling of the alpha1 subunit of Na,K-ATPase was observed in CCD in AQP3 null mice, whereas a medullary-collecting duct exhibited normal labelling. Immunolabelling of all the ENaC subunits in the collecting duct was comparable between the two groups. CONCLUSIONS: The results improve the possibility that the severe urinary concentrating defect in AQP3 null mice may in part be caused by the decreased expression of AQP2, p-AQP2 and AQP4 in CNT and CCD, whereas the increased urinary sodium excretion may in part be accounted for by Na,K-ATPase in CCD in AQP3 null mice.  相似文献   

14.
A new aquaporin (AQP10) was identified in human small intestine. This gene encoded a 264-amino-acid protein with high sequence identity with AQP3 (53%), 9 (52%), and 7 (43%). These AQPs constitute one subfamily of AQP family that is differentiated from the other subfamily of AQP (AQP0, 1, 2, 4, 5, 6, and 8) by sequence homology. Ribonuclease protection assay and Northern blotting demonstrated almost exclusive expression of AQP10 mRNA in the duodenum and jejunum. In situ hybridization localized it in absorptive jejunal epithelial cells. Xenopus oocytes expressing AQP10 exhibited an increased osmotic water permeability in a mercury-sensitive manner. Although AQP10 belongs to the AQP subfamily, which has been characterized by permeability to water and neutral solutes such as urea and glycerol, it was not permeable to urea nor glycerol. The specific expression of AQP10 suggests its contribution to the water transport in the upper portion of small intestine.  相似文献   

15.
Transepithelial water permeability was measured in LLC-PK1 cells stably transfected with aquaporins (AQPs): AQP1, AQP2, and a chimera of AQP1 and AQP2 containing 41 amino acids of the C-terminus of AQP2. Transepithelial water fluxes (Jw) were not previously reported in cells transfected with aquaporins. Jw were now recorded each minute using a specially developed experimental device. A significant increase in Posm after forskolin (FK) plus vasopressin (VP) was found in AQP2 transfected cells (39.9 ± 8.2 vs. 12.5 ± 3.3 cm · sec−1· 10−3), but not in cells transfected with AQP1 (15.3 ± 3.6 vs. 13.4 ± 3.6 cm · sec−1· 10−3). In the case of the AQP1/2 cells (chimera) the FK plus VP induced Posm was smaller than in AQP2 cells but significantly higher than in mock cells at rest (18.1 ± 4.8 vs. 6.7 ± 1.0 cm · sec−1· 10−3). The increases in Posm values were not paralleled by increases in 14C-Mannitol permeability. HgCl2 inhibited the hydrosmotic response to FK plus VP in AQP2 transfected epithelia. Results were comparable to those observed, in parallel experiments, in a native ADH-sensitive water channel containing epithelial barrier (the toad urinary bladder). Electron microscopy showed confluent LLC-PK1 cells with microvilli at the mucosal border. The presence of spherical or elongated intracellular vacuoles was observed in AQP2 transfected cells, specially after FK plus VP stimulus and under an osmotic gradient. These results demonstrate regulated transepithelial water permeability in epithelial cells transfected with AQP2. Received: 24 June 1997/Revised: 16 September 1997  相似文献   

16.
This study evaluates the effect of prolonged ethanol ingestion on the renal ability to concentrate urine. Suckling Wistar rats born to mothers given ethanol before and during gestation and suckling periods (ethanol-exposed offspring) were used and the results were compared with those obtained from offspring of dams given diets containing no ethanol. Comparisons were also made between progenitors with or without prolonged ethanol ingestion. Body and kidney weights; arginine-vasopressin (AVP) and aldosterone plasma levels; plasma, urine and renal papillary osmolality; urine outflow; kidney AQP2, AQP3 and AQP4 expression and diencephalon AVP mRNA expression were determined. As compared with control offspring, the ethanol-exposed offspring present i) lower body and kidney weights; ii) lower urine outflow; iii) higher renal AQP2 and AQP3 mRNA; iv) higher renal AQP2 protein content and v) higher urine and renal papillary osmolality. These changes were also observed in the ethanol-treated progenitors, although they were of smaller magnitude. Plasma osmolality, renal AQP4 mRNA, AVP plasma levels and diencephalon AVP mRNA expression were not affected by the ethanol treatment. Plasma levels of aldosterone were only significantly increased in the ethanol-exposed suckling rats. It is concluded that maternal ethanol ingestion before and during gestation and suckling periods affects the renal function of the offspring, up-regulating renal AQP2 expression by an AVP-independent mechanism. Ethanol-treated progenitors manifest similar renal changes, although of lesser magnitude than the offspring.  相似文献   

17.
The aquaporin7 (AQP7) water channel is known to be a member of the aquaglyceroporins, which allow the rapid transport of glycerol and water. AQP7 is abundantly present at the apical membrane of the proximal straight tubules in the kidney. In this paper, we review the physiological functions of AQP7 in the kidney. To investigate this, we generated AQP7 knockout mice. The water permeability of the proximal straight tubule brush border membrane measured by the stopped flow method was reduced in AQP7 knockout mice compared to wild-type mice (AQP7, 18.0+/-0.4 x 10(-3 )cm/s vs. wild-type, 20.0+/-0.3 x 10(-3) cm/s). Although AQP7 solo knockout mice did not show a urinary concentrating defect, AQP1/AQP7 double knockout mice showed reduced urinary concentrating ability compared to AQP1 solo knockout mice, indicating that the contribution of AQP7 to water reabsorption in the proximal straight tubules is physiologically substantial. On the other hand, AQP7 knockout mice showed marked glycerol in their urine (AQP7, 1.7+/-0.34 mg/ml vs. wild-type, 0.005+/-0.002 mg/ml). This finding identified a novel pathway of glycerol reabsorption that occurs in the proximal straight tubules. In two mouse models of proximal straight tubule injury, the cisplatin-induced acute renal failure (ARF) model and the ischemic-reperfusion ARF model, an increase of urine glycerol was observed (pre-treatment, 0.007+/-0.005 mg/ml; cisplatin, 0.063+/-0.043 mg/ml; ischemia, 0.076+/-0.02 mg/ml), suggesting that urine glycerol could be used as a new biomarker for detecting proximal straight tubule injury.  相似文献   

18.
Vasopressin-induced trafficking of aquaporin-2 (AQP2) water channels in kidney collecting duct cells is critical to regulate the urine concentration. To better understand the mechanism of subcellular trafficking of AQP2, we examined MDCK cells expressing AQP2 as a model. We first performed double-immunolabeling of AQP2 with endosomal marker proteins, and showed that AQP2 is stored at a Rab11-positive subapical compartment. After the translocation to the plasma membrane, AQP2 was endocytosed to EEA1-positive early endosomes, and then transferred back to the original Rab11-positive compartment. When Rab11 was depleted by RNA interference, retention of AQP2 at the subapical storage compartment was impaired. We next examined the role of cytoskeleton in the AQP2 trafficking and localization. By the treatment with microtubule-disrupting agent such as nocodazole or colcemid, the distribution of AQP2 storage compartment was altered. The disruption of actin filaments with cytochalasin D or latrunculin B induced the accumulation of AQP2 in EEA1-positive early endosomes. Altogether, our data suggest that Rab11 and microtubules maintain the proper distribution of the subapical AQP2 storage compartment, and actin filaments regulate the trafficking of AQP2 from early endosomes to the storage compartment.  相似文献   

19.
We determined the bile acid profiles in bile juice of snake gallbladders by HPLC on a silica gel RP-18 reversed-phase column. Cholic acid and chenodeoxycholic acid were predominant components in three of four snake species. To elucidate the toxic effect of snake bile acids on rats, a synthetic bile acid mixture was prepared mimicking the bile acid composition of a snake Naja naja atra bile juice. Twenty-four male Wistar rats were divided into four groups and treated orally at 3-day intervals with saline (control group) and different doses (1-3x doses) of the bile acid mixture. After treatment, the following parameters increased: the relative ratios of liver and kidney mass to body mass, the concentrations of red blood cell, hemoglobin and hematocrit in the blood, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, plasma urea nitrogen and creatinine in the plasma, and the levels of urine urea nitrogen and creatinine in the urine. Body mass of rats and the levels of Na+, K+, Ca++ in the urine of rats were significantly decreased, especially for groups treated with 2x and 3x doses of the bile acid mixture. Examination of liver and kidney pathology also showed cell enlargement and lesion in cell integrity in treated groups, especially for groups treated with 2x and 3x bile acid mixture, indicating that short-term toxicity of snake N. naja atra bile acids was significant in rats.  相似文献   

20.
The acyl-CoA binding protein (ACBP) is a small intracellular protein that specifically binds and transports medium to long-chain acyl-CoA esters. Previous studies have shown that ACBP is ubiquitously expressed but found at particularly high levels in lipogenic cell types as well as in many epithelial cells. Here we show that ACBP is widely expressed in human and mouse kidney epithelium, with the highest expression in the proximal convoluted tubules. To elucidate the role of ACBP in the renal epithelium, mice with targeted disruption of the ACBP gene (ACBP(-/-)) were used to study water and NaCl balance as well as urine concentrating ability in metabolic cages. Food intake and urinary excretion of Na(+) and K(+) did not differ between ACBP(-/-) and (+/+) mice. Interestingly, however, water intake and diuresis were significantly higher at baseline in ACBP(-/-) mice compared with that of (+/+) mice. Subsequent to 20-h water deprivation, ACBP(-/-) mice exhibited increased diuresis, reduced urine osmolality, elevated hematocrit, and higher relative weight loss compared with (+/+) mice. There were no significant differences in plasma concentrations of renin, corticosterone, and aldosterone between mice of the two genotypes. After water deprivation, renal medullary interstitial fluid osmolality and concentrations of Na(+), K(+), and urea did not differ between genotypes and cAMP excretion was similar. Renal aquaporin-1 (AQP1), -2, and -4 protein abundances did not differ between water-deprived (+/+) and ACBP(-/-) mice; however, ACBP(-/-) mice displayed increased apical targeting of pS256-AQP2. AQP3 abundance was lower in ACBP(-/-) mice than in (+/+) control animals. Thus we conclude that ACBP is necessary for intact urine concentrating ability. Our data suggest that the deficiency in urine concentrating ability in the ACBP(-/-) may be caused by reduced AQP3, leading to impaired efflux over the basolateral membrane of the collecting duct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号