首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
【目的】利用核糖体DNA联合序列探讨天牛总科高阶元分子系统发育。【方法】本研究采用分子标记技术,分析测定了63种天牛核糖体28S rDNA D2和D3区以及18S rDNA V4和V7区的DNA序列,并采用邻接法、最大似然法和贝叶斯推论法分别构建了天牛总科2科6亚科63种的分子进化系统。【结果】序列联合比对分析,最终得到1 404 bp的联合数据组,其中可变位点446个(32.0%),保守位点958(68.0%),转换/颠换的平均值(R值)为1.73。28S rDNA和18S rDNA以及联合序列的饱和度分析显示碱基突变未达到饱和,说明这些序列适合于分子进化树的构建。利用不同系统发育重建方法得到进化树具有相似拓扑结构,结果支持沟胫天牛亚科、花天牛亚科和天牛亚科为单系群,这与形态学分类结果相似;狭胸天牛独立成为亚科得到了支持。【结论】利用28S rDNA D2和D3区以及18S rDNA V4和V7区联合序列成功构建出了天牛总科高阶元的系统发育树。研究表明联合序列分析是探讨天牛高阶元分类的有效的方法。  相似文献   

2.
不同居群栽培牡丹rDNAITS区序列分析及鉴别   总被引:1,自引:0,他引:1  
对我国四个地区牡丹主要栽培品种rDNA ITS区序列进行测定,研究各居群rDNA ITS序列特征及差异,建立不同地区主要牡丹栽培品种的区域性分子标记,参照GeneBank信息(登录号:U27692)利用Clustal X、MEGA 3.1分子进化遗传分析软件对测序结果排序.牡丹ITS全序列长度为652 bp,相对于GenBank中牡丹rDNA ITS全序列在448位少一个C碱基,其中ITS1为267 bp,5.8 S为163 bp,ITS2为222 bp,GC含量为55.7%~56.9%,共有30个变异位点,主要发生在ITS1、ITS2区,5.8S区也存在多个位点的变异.牡丹rDNA ITS区序列特征(SNPs)可用于不同地区主要牡丹栽培品种的鉴别.  相似文献   

3.
在昆虫纲中,生命树计划正在以目级阶元中的分类单元为单位逐步推进.针对这一大的背景,以及高级阶元和种级阶元分子系统学研究间脱节现状,提出以rDNA簇为一组分子标记、并且在未来高级阶元系统发育研究中将目前选取少量代表类群的做法改为将尽量多的物种包含到一棵系统发育树中的建议.其中首先简要介绍了rDNA簇的结构及其中各分子标记在分子系统学研究中的应用价值,随后以蝽类昆虫为例,有针对性地总结了rDNA簇中不同基因序列已有数据的丰富程度及其在分子系统学研究中的应用情况.首次给出了蝽类昆虫28S rRNA近全长序列的二级结构模型.基于对18S rRNA和28S rRNA二级结构研究所积累的认识,强调了18S rDNA和28S rDNA内部不同区段之间变异模式和应用价值的差异,论证了未来在生命树构建中深化对rDNA簇中各基因进行联合应用的合理性和可行性.  相似文献   

4.
rDNA序列中的ITS作为DNA barcoding广泛应用于真菌的系统发育与物种辅助鉴定,IGS被认为可以用于种内水平不同菌株的鉴别。食用菌中还没有完整的rDNA序列的报道。本研究采用二代和三代测序技术分别对金针菇单核菌株“6-3”进行测序,用二代测序的数据对三代测序组装得到的基因组序列进行修正,得到一个在基因完整性、连续性和准确性均较好的基因组序列,对比Fibroporia vaillantii rDNA序列,获得金针菇完整的rDNA序列。金针菇rDNA序列结构分析表明,它有8个rDNA转录单元,长度均为5 903bp,有9个基因间隔区,其长度有较大差异,3 909-4 566bp。rDNA转录单元中,各元件的序列长度分别为:18S rDNA 1 796bp、ITS1 234bp、5.8S rDNA 173bp、ITS2 291bp、28S rDNA 3 410bp。基因间间隔区中,IGS1 1 351-1 399bp、5S rDNA 124bp、IGS2 2 435-3 092bp。金针菇的5S、5.8S、18S、28S rDNA序列准确性得到转录组数据的验证,也得到系统发育分析结果的支持。多序列比对发现,不同拷贝的基因间间隔区序列(IGS1和IGS2)存在丰富的多态性,多态性来源于SNP、InDel和TRS(串联重复序列),而TRS来源于重复单元的类型和数量。9个基因间间隔区之间,IGS1只有少量的SNP和InDel,IGS2不仅有SNP和InDel,还有TRS。本研究结果提示,在应用IGS进行种内水平不同菌株之间的鉴别时,需要选取不同拷贝之间的保守IGS序列。  相似文献   

5.
基于28S rDNA部分序列的石磺科系统发育研究   总被引:1,自引:0,他引:1  
采用PCR技术对采集自中国大陆沿海5地8个群体石磺的28S rDNA部分序列进行扩增。将测序结果与Gen-Bank中的另外3条石磺科贝类的对应序列一起,以小鼠28S rDNA基因序列进行参照,截取D1、D2、D3区域,拼接后进行比对分析。在获得的689bp的序列中,有76个变异位点,28个简约信息位点,A+T平均含量为30.9%,C+G平均含量为69.0%。以分类关系较近的菊花螺科(Siphonaria alternate)为外群,用NJ、MP、ML和贝叶斯法构建分子系统树。4种方法得到的进化树拓扑结构很相似,得到的结果也与沈和定提出的中国大陆沿海石磺科贝类可划分为Peronia、Platevindex、Onchidium、Paraoncidium4个属的观点基本一致。同时,28S rDNA部分序列的系统分析还显示,4个属中Peronia属与Paraoncidium属亲缘关系较近,Platevindex属与Onchidium属关系比较近。  相似文献   

6.
紫芝栽培品种‘紫芝S2’(武芝2号)的ITS序列与NCBI数据库中5个紫芝菌株/分离株相似度高达99.79%-100%,在系统进化树上相聚成一类。本研究预测‘紫芝S2’基因组与参考基因组中的rRNA基因簇,分析rDNA结构及各构件序列间的多态性。从高质量‘紫芝S2’基因组中挖掘得到完整rDNA,序列全长40.377 kb,由4组串联重复的(18S、5.8S、28S、5S) rRNA基因簇组成,并含有完整的基因内间隔区(ITS1、ITS2)和基因间间隔区(IGS1、IGS2)。在紫芝S2的rDNA中,高度保守的28S rRNA基因间出现3个SNP和2个插入(1 bp,10 bp)位点;虽然第4条ITS2中有1个SNP位点,但紫芝S2的4条ITS2在二级结构上的分子形态高度一致,与ITS2数据库中其他紫芝菌株仅存在螺旋区间夹角的微小差异。由‘紫芝S2’基因组rDNA的ITS2生成的DNA条形码与二维码,可以作为该栽培品种鉴定与同源物种其他菌株鉴别的分子标记。  相似文献   

7.
本文对韩国中华按蚊、雷氏按蚊和八代按蚊核糖体DNA (rDNA)内转录间隔 2区 (ITS2 )序列进行了比较研究。用PCR扩增的rDNA ITS2片段直接测序 ,每种蚊测定 3个个体 ,结果显示 :韩国中华按蚊、雷氏按蚊和八代按蚊的rDNA ITS2序列长度分别为 4 6 8bp、 4 51bp和 4 53bp ,GC含量分别为 4 4 .87%、 4 6 .2 %和 4 5.7% ,3种按蚊序列差异范围为 12 .16 %— 30 .74 %。研究表明 ,rDNA ITS2序列差异可用于韩国中华按蚊、雷氏按蚊和八代按蚊的分子鉴别。  相似文献   

8.
烟夜蛾18S rDNA的克隆及序列分析   总被引:1,自引:0,他引:1  
利用PCR方法克降得到了烟夜蛾18S rDNA全基因序列,基因全长1904bp;构建了其全长、保守区和非保守区的系统发育树,比较了与其他已知蛾类昆虫18S rDNA全序列的同源性.结果表明,蛾类之间该基因的同源性达到92%以上,利用其多变区构建的发育树更能反映蛾类昆虫的亲缘关系;比较烟夜蛾与棉铃虫的18S rDNA序列发现,两个近缘种之间仅有lO个核苷酸的差异.  相似文献   

9.
对根据常规形态和生理生化性状难以确定分类学地位的8株假丝酵母菌,进行了以大亚基(26S) rDNA中D1/D2区域(约500~600 bp)的碱基序列分析为依据的分子分类学研究.根据系统树上所显示的供试菌株与假丝酵母属及相关子囊菌酵母已知种的亲缘关系,以及与最近缘种模式菌株D1/D2区域序列的相似性比较,确定了各个菌株的归属.本研究也显示了DNA序列分析在假丝酵母菌快速鉴定中的优越性.  相似文献   

10.
硬软蒺藜rDNA-ITS基因序列的测定和比较   总被引:1,自引:0,他引:1  
用CTAB法提取总DNA,合成位于18 S rDNA和26S rDNA上的两条各20bp的引物,通过PCR扩增ITS的全序列,对PCR产物直接测序,分别获得了硬蒺藜(Tribulus terrestris L.)和软蒺藜(Atriples centralasiatica Iljin)的核糖体RNA基因-rDNA内转录间隔区(ribosomal DNA internal transcribed spacer,rDNA-ITS)的序列643 bp和607bp,其碱基总差异率为36.16%,其中,ITS1的碱基差异率为55.81%;5.8 S的碱基差异率为6.59%;ITS2的碱基差异率为56.77%.这种差异,以及基因序列本身,为硬软蒺藜的区别和种质资源鉴定提供了分子依据.  相似文献   

11.
During evolution, the potential for sequence (and length) variation of large-subunit rRNA has been mostly restricted over 12 divergent domains (termed D1-D12) interspersed along the molecule. Here, we have focused our attention onto the D3 divergent domain, through a detailed analysis of its pattern of variation in the phylogeny, both in terms of primary and secondary structures. We have systematically compared all the procaryotic and eucaryotic sequences published so far (i.e. 36 species), together with a series of 10 additional eucaryotic specimens, which were determined by direct RNA sequencing. Secondary structures supported by comparative evidence have been derived for archaebacteria, eubacteria and eucaryotes respectively, which shows that the D3 domain contains a subset of universally conserved structural features interspersed with four variable subdomains. Within the four portions where a structural diversification has taken place, elementary structures specific of large phylogenetic groups can be identified. Remarkably such diversified structures appear to be preserved despite sequence divergence, suggesting they correspond to functionally important structures. Accordingly, the mode of sequence variation of the D3 domain suggests this region of the molecule may encode elementary functions of rRNA which could have significantly diversified during the evolution of the major groups of organisms.  相似文献   

12.
The secondary structure of rRNA internal transcribed spacer 2 is important in the process of ribosomal biogenesis. Trematode ITS sequences are poorly conserved and difficult to align for phylogenetic comparisons above a family level. If a conserved secondary structure can be identified, it can be used to guide primary sequence alignments. ITS2 sequences from 39 species were compared. These species span four orders of trematodes (Echinostomiformes, Plagiorchiformes, Strigeiformes, and Paramphistomiformes) and one monogenean (Gyrodactyliformes). The sequences vary in length from 251 to 431 bases, with an average GC content of 48%. The monogenean sequence could not be aligned with confidence to the trematodes. Above the family level trematode sequences were alignable from the 5′ end for 139 bases. Secondary structure foldings predicted a four-domain model. Three folding patterns were required for the apex of domain B. The folding pattern of domains C and D varies for each family. The structures display a high GC content within stems. Bases A and U are favored in unpaired regions and variable sites cluster. This produces a mosaic of conserved and variable regions with a structural conformation resistant to change. Two conserved strings were identified, one in domain B and the other in domain C. The first site can be aligned to a processing site identified in yeast and rat. The second site has been found in plants, and structural location appears to be important. A phylogenetic tree of the trematode sequences, aligned with the aid of secondary structures, distinguishes the four recognized orders. Received: 21 November 1997 / Accepted: 9 February 1998  相似文献   

13.
Here we present the results of a structural analysis of the 3'-terminal region of the replicative strand of hepatitis C virus (HCV), IRES(-), by the Pb (2+)-induced cleavage approach and partial digestion with T1 ribonuclease. Oligoribonucleotides that represent selected domains of the earlier proposed in the literature secondary structure models of this region were also synthesized, their structures were analyzed in solution, and the results were compared to those obtained with the full-length molecule. Such "structural fingerprinting" gave better insight into the structure of the IRES(-) region. We showed that in the case of the IRES(-) fragment, which consists of 374 nucleotides, its three domains, D3 (nucleotides 1-104), DM (nucleotides 105-222), and D5 (nucleotides 223-374), independently fold on one another. However, when the IRES(-) molecule is extended by 25 nucleotides of the upstream viral sequence, domains D3 and DM fold autonomously, but a part of domain D5 interacts with that additional RNA stretch. Analysis in silico suggests that similar interactions involving the IRES(-) region and upstream sequences are also possible in other fragments of viral RNA, several hundreds of nucleotides in length. The results of experimental probing are supported by secondary structure predictions in silico and phylogenetic analysis.  相似文献   

14.

Background  

Most phylogenetic studies using current methods have focused on primary DNA sequence information. However, RNA secondary structures are particularly useful in systematics because they include characteristics, not found in the primary sequence, that give "morphological" information. Despite the number of recent molecular studies on octocorals, there is no consensus opinion about a region that carries enough phylogenetic resolution to solve intrageneric or close species relationships. Moreover, intrageneric morphological information by itself does not always produce accurate phylogenies; intra-species comparisons can reveal greater differences than intra-generic ones. The search for new phylogenetic approaches, such as by RNA secondary structure analysis, is therefore a priority in octocoral research.  相似文献   

15.
It is at present difficult to accurately position gaps in sequence alignment and to determine substructural homology in structure alignment when reconstructing phylogenies based on highly divergent sequences. Therefore, we have developed a new strategy for inferring phylogenies based on highly divergent sequences. In this new strategy, the whole secondary structure presented as a string in bracket notation is used as phylogenetic characters to infer phylogenetic relationships. It is no longer necessary to decompose the secondary structure into homologous substructural components. In this study, reliable phylogenetic relationships of eight species in Pectinidae were inferred from the structure alignment, but not from sequence alignment, even with the aid of structural information. The results suggest that this new strategy should be useful for inferring phylogenetic relationships based on highly divergent sequences. Moreover, the structural evolution of ITS1 in Pectinidae was also investigated. The whole ITS1 structure could be divided into four structural domains. Compensatory changes were found in all four structural domains. Structural motifs in these domains were identified further. These motifs, especially those in D2 and D3, may have important functions in the maturation of rRNAs.  相似文献   

16.
Lipocalins constitute a superfamily of extracellular proteins that are found in all three kingdoms of life. Although very divergent in their sequences and functions, they show remarkable similarity in 3-D structures. Lipocalins bind and transport small hydrophobic molecules. Earlier sequence-based phylogenetic studies of lipocalins highlighted that they have a long evolutionary history. However the molecular and structural basis of their functional diversity is not completely understood. The main objective of the present study is to understand functional diversity of the lipocalins using a structure-based phylogenetic approach. The present study with 39 protein domains from the lipocalin superfamily suggests that the clusters of lipocalins obtained by structure-based phylogeny correspond well with the functional diversity. The detailed analysis on each of the clusters and sub-clusters reveals that the 39 lipocalin domains cluster based on their mode of ligand binding though the clustering was performed on the basis of gross domain structure. The outliers in the phylogenetic tree are often from single member families. Also structure-based phylogenetic approach has provided pointers to assign putative function for the domains of unknown function in lipocalin family. The approach employed in the present study can be used in the future for the functional identification of new lipocalin proteins and may be extended to other protein families where members show poor sequence similarity but high structural similarity.  相似文献   

17.
18.
Uromyces appendiculatus, inclusive of three varieties, is distinguished from U. vignae primarily by the position of urediniospore germ pores and putative host specificity. However, opinions concerning these morphological and physiological features as taxonomic characters have varied greatly, and distinction of these species has often been confused. To clarify the taxonomy of these two species, morphological features of urediniospores and teliospores of 225 rust fungus specimens on species of Phaseolus, Vigna, Apios, Lablab, and Dunbaria were examined by light microscopy and scanning electron microscopy. Forty-five specimens were subjected to molecular phylogenetic analyses. As a result, the position of germ pores in urediniospores and the teliospore-wall thickness were considered as good characters to separate three morphological groups. In molecular analyses, the specimens fell into two and three clades based on the nucleotide sequence at D1/D2 domain of LSU rDNA and ITS regions, respectively. One of the D1/D2 clades corresponded to one morphological group whereas another D1/D2 clade included two other morphological groups. In contrast, each of the three ITS clades corresponded to a separate morphological group. Neither morphological groups nor molecular clades were host limited. It is suggested that the three morphological groups that corresponded to three distinct ITS clades constitute distinct species.Contribution no. 186 from the Laboratory of Plant Parasitic Mycology, Institute of Agriculture and Forestry, University of Tsukuba, Japan  相似文献   

19.
Beta-microseminoprotein (MSP) is a small cysteine-rich protein (molecular mass about 10 kDa) first isolated from human seminal plasma and later identified in several other organisms. The function of MSP is not known, but a recent study has shown MSP to bind CRISP-3, a protein present in neutrophilic granulocytes. The amino acid sequence is highly variable between species raising the question of the evolutionary conservation of the 3D structure. Here we present NMR solution structures of both the human and the porcine MSP. The two proteins (sequence identity 51%) have a very similar 3D structure with the secondary structure elements well conserved and with most of the amino acid substitutions causing a change of charge localized to one side of the molecule. MSP is a beta-sheet-rich protein with two distinct domains. The N-terminal domain is composed of a four-stranded beta-sheet, with the strands arranged according to the Greek key-motif, and a less structured part. The C-terminal domain contains two two-stranded beta-sheets with no resemblance to known structural motifs. The two domains, connected to each other by the peptide backbone, one disulfide bond, and interactions between the N and C termini, are oriented to give the molecule a rather extended structure. This global fold differs markedly from that of a previously published structure for porcine MSP, in which the two domains have an entirely different orientation to each other. The difference probably stems from a misinterpretation of ten specific inter-domain NOEs.  相似文献   

20.
Among ciliates, Paramecium has become a privileged model for the study of “species problem” particularly in the case of the “Paramecium aurelia complex” that has been intensely investigated. Despite extensive studies, the taxonomy of Paramecium is still challenging. The major problem is an uneven sampling of Paramecium with relatively few representatives of each species. To investigate species from the less discovered region (Pakistan), 10 isolates of Paramecium species including a standing-alone FT8 strain previously isolated by some of us were subjected to molecular characterization. Fragments of 18S recombinant DNA (rDNA), ITS1-5.8S-ITS2-5′LSU rDNA, cytochrome c oxidase subunit II, and hsp70 genes were used as molecular markers for phylogenetic analysis of particular isolates. The nucleotide sequences of polymerase chain reaction products of all markers were compared with the available sequences of relevant markers of other Paramecium species from GenBank. Phylogenetic trees based on all molecular markers showed that all the nine strains had a very close relationship with Paramecium primaurelia except for the FT8 strain. FT8 consistently showed its unique position in comparison to all other species in the phylogenetic trees. Available sequences of internal transcribed spacer 1 (ITS1) and ITS2 and some other ciliate sequences from GenBank were used for the construction of secondary models. Two highly conserved helices supported by compensatory base changes among all ciliates of ITS2 secondary structures were found similar to other eukaryotes. Therefore, the most conserved 120 to 180 base pairs regions were identified for their comparative studies. We found that out of the three helices in ITS1 structure, helix B was more conserved in Paramecium species. Despite various substitutions in the primary sequence, it was observed that secondary structures of ITS1 and ITS2 could be helpful in interpreting the phylogenetic relationships both at species as well as at generic level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号