首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
在联帮德国奥卡河中分离到一种病毒分离物(W),通过鉴别寄主反应的测定,病毒粒子的电子显微镜观察,cDNA斑点杂交和血清学的研究,鉴定出这一病毒分离物为香石竹环斑病毒。其外壳蛋白亚基的分子量为3.8×10~4。cDNA吸印转移杂交分析表明,香石竹环斑病毒的两个RNA组份(RNA~1、RNA_2)之间没有核苷酸序列同源性。RNA_1和RNA_2分别由3.7和1.5仟碱基组成。  相似文献   

2.
从地理位置不同,V—C组不同的13株小麦全蚀病菌中分离到直径23—36纳米的病毒。聚丙烯酰胺凝脉电泳表明这些菌株中的病毒dsRNA的组分及分子量不同。泰安株病毒有分子量为3.45,2.95,1.60,1.52,1.30,1.25,1.15,1.00,<1.00×10~6的9个dsRNA,而浙江、湖北菌株仅有一个组分、分子量为3×10~6。多数病毒衣壳多肽的的分子量为66×10~3—73×10~3。泰安菌株与烟台菌株病毒抗血清除与张家口菌株、青海菌株无反应外与其它菌株病毒均有反应,但在免疫双扩散中抗血清的滴定度不同。  相似文献   

3.
侵染番茄的黄瓜花叶病毒(CMV)株系特性的比较研究   总被引:3,自引:0,他引:3  
从山东省主要番茄种植区病毒样本中分离到111个黄瓜花叶病毒(CMV)分离物,根据病毒的寄主范围和症状,初步鉴定为三个株系:番茄蕨叶株系(CMV-ToF)、番茄花叶株系(CMV-ToM)和番茄轻花叶株系(CMV-ToL)。三株系除在生物学特性存在明显差异外,其病毒粒体形态大小,电泳迁移率,病毒外壳蛋白亚基分子量、核酸组分以及病毒粒体血清学特性亦存在差别。  相似文献   

4.
豇豆病毒病病原的分子鉴定   总被引:9,自引:1,他引:8  
陈炯  郑红英  程晔  陈剑平 《病毒学报》2001,17(4):368-371
为澄清浙江省豇豆病毒病病原及其分类,采用马铃薯Y病毒属通用引物Sprimer扩增了浙江豇豆线状病毒基因组3′-末端序列。同时又根据已知CMV RNA3序列设计引物pCMV-44-63/1200-1181,扩增了混合的CMV-ZJ运动蛋白基因全序列。外壳蛋白氨基酸序列分析表明,产中仅存在一种线状病毒(CV-ZJ),该病毒与一泰国豇豆蚜传花叶病毒(CABMV)具有最高的同源性(98.6%),与花生条纹病毒(PStV)、石斛花叶病毒(DeMV0.)、赤豆花叶病毒(AZMV)、黑眼豆豆花叶病毒(BICMV)和菜豆普通花叶病毒(BCMV)分离物间的同源性为88.5%-94.4%,而与其它CABMV分离物的同源性均低于70%。进化树分析表明,PStV、AZMV、DeMV、BlCMV和BCMV为同种异名,应统称为BCMV,而CABMV为另一种病毒;CV-ZJ和泰国CABMV分离物应分类为BCMV豇豆株系。CMV-ZJ的运动蛋白序列分析表明,该分离物属于CMV亚组Ⅰ,与其它分离物氨基酸序列同源性为93.1%-97.8%。  相似文献   

5.
苜蓿花叶病毒提纯方法的改进*   总被引:3,自引:0,他引:3  
用来自于白车根草(Trifolium repens)上的一个苜蓿花叶病毒分离物AMV-SY为材料,比较了3种以差速离心为主结合PEG沉淀和超速离心提纯病毒的方法,对提纯病毒进行紫外吸收测定、电镜检查和SDS-聚丙烯酰胺凝胶电泳检测的结果显示:以交替使用含有0.1mol/LEDTA和0.1mol/L MgSO4的磷酸缓冲液作为病毒悬浮介质的提纯程度最为理想,该方法提取苜蓿花叶病毒的得率为47.6mg/100g昆诺藜鲜病叶,该病毒分离物的外壳蛋白分子量为29kD。该方法的病毒得率较高、杂蛋白较少、病毒粒子完整,是比较理想的提纯方法。  相似文献   

6.
结合有机溶剂沉淀、聚乙二醇沉淀及差速离心和等电点沉淀等方法可以获得小麦丛矮病毒核衣壳的纯化制剂。应用多种分离方法可以把核酸或蛋白质从核衣壳分离出来。碱水解及S_1核糖核酸酶酶解实验证明小麦丛矮病毒的基因组为单链RNA,双向纸电泳及层析方法测定其碱基组成比例为A=30.3,G=16.3,C=16.7,U=36.6。SDS聚丙烯酰胺凝胶电泳可分离到6~7个蛋白组分,其中相应于一般弹状病毒的核衣壳组分为L,分子量140,000,N分子量46,000,NS分子量40,000。  相似文献   

7.
小麦丛矮病毒核衣壳的分离及其核酸、蛋白质组成的研究   总被引:1,自引:0,他引:1  
结合有机溶剂沉淀、聚乙二醇沉淀及差速离心和等电点沉淀等方法可以获得小麦丛矮病毒核衣壳的纯化制剂。应用多种分离方法可以把核酸或蛋白质从核衣壳分离出来。碱水解及S_1核糖核酸酶酶解实验证明小麦丛矮病毒的基因组为单链RNA,双向纸电泳及层析方法测定其碱基组成比例为A=30.3,G=16.3,C=16.7,U=36.6。SDS聚丙烯酰胺凝胶电泳可分离到6~7个蛋白组分,其中相应于一般弹状病毒的核衣壳组分为L,分子量140,000,N分子量46,000,NS分子量40,000。  相似文献   

8.
我国大麦条纹花叶病毒(BSMV)新疆分离物的RNA,在50%甲酰胺6%甲醛中,50℃处理15分钟,使RNA分子链呈真正的均一状态后,在含甲醛的琼脂糖凝胶上电泳,核酸变性电泳结果显示该病毒为三组分RNA株系,编号为RNA_1,RNA_2,RNA_3,分子量分别为1.40—1.44×10~(?),1.20—1.28×10~0,1.06—1.09×10~6。经制备凝胶电泳分离出的各RNA组分在兔网织红细胞溶胞液的无细胞体系中,RNA_1的翻译产物为120K的蛋白,RNA_2翻译产物主要为25K和一个85K蛋白,其中25K蛋白由于与天然BSMV外壳蛋白共电泳,该蛋白中没有甲硫氨酸,以及能被BSMV抗血清沉淀,而被确定为BSMV外壳蛋白。RNA_3的翻译产物为75K蛋白。  相似文献   

9.
选取我国SCMV优势株系A株系的分离物SCMV-CA为材料,经过病毒和病毒RNA的提纯,反转录获得病毒cDNA,并克隆到载体pUC19的SmaⅠ位点上,筛选得到多个重组质粒,选取其中一个克隆SCMV-CA54进行测序,得到一个全长为1296bp的苷酸序列,这段序列由一个长为1044bp的开放阅读框架(ORF)和一个长279bp的3‘末端非编码区序列(3‘-UTR)及poly(A)尾巴组成。这个ORF包括病毒完整的外壳蛋白(CP)及部分核内含体蛋白(b(NIb)基因序列,将所得序列同已知SCMV亚组中各株系分离物的核苷酸和氨基酸进行同源性比较,结果表明该序列与其它株系分离的CP核苷酸序列的同源性介于63.7%-77.6%之间,氨基酸的同源性介于64%-89%之间。根据马玲薯Y病毒属的序列同源性划分标准,SCMV-CA与其它株系或分离物的同源性关系均介于种与株系进分标准之间,这是我国首次报道SCMV CP基因序列。  相似文献   

10.
小球藻病毒PBCV-1特异性溶壁酶(Lysin)的溶壁活性   总被引:3,自引:0,他引:3  
从PBCV-1感染小球藻NC64A的细胞裂解液中提取了Lysin的粗制剂,酶活底物范围分析表明,几丁质酶、壳聚糖酶的β-1,3-葡萄糖苷酶是Lysin活性的主要组成部分,并与小球藻细胞壁的组成甩分相吻合。其中几丁酯酶和壳聚糖酶,特别是几丁酯酶在裂解小球藻细胞壁的过程中发挥了重要的作用。Lysin粗制剂经FPLC分离纯化得到分子量分别为52kD、56kD的两个几丁质酶(Chil和Chi2)和一个分子量为36kD的壳聚糖酶。  相似文献   

11.
We isolated 23 Chlorella viruses from 9 Korean cities. The viruses were initially amplified in the Chlorella strain NC64A. Pure isolates were obtained by repeated plaque isolations. A SDS-PAGE analysis revealed similar but distinct protein patterns, both among the group of purified viruses and in comparison with the prototype Chlorella virus PBCV-1. Digestions of the 330- to 350-kb genomic DNAs with 10 restriction enzymes revealed different restriction fragment patterns among the isolates. One isolate, SS-1, was resistant to digestion with HindIII, PvuII, AluI, and HaeIII, indicating methylation at the AGCT or GC sequences. Some isolates reacted with antiserum against PBCV-1. The others that did not react to this PBCV-1 antibody reacted to the antibody that was raised against purified HS-2 virion. The tRNA-coding regions of 8 Chlorella viruses were cloned and sequenced. These viruses contained 14-16 tRNA genes within a 1.2- to 2-kb region, except for the SS-1 isolate, which had a 1039-bp spacer in a cluster of 11 tRNA genes. The SS-1 spacer contained an open-reading frame (ORF) of 294 amino acids. This ORF had a 51% amino acid sequence similarity to the PBCV-1 ORF A478L. A Southern blot analysis suggested that it was a novel gene that lacked a homologue in PBCV-1.  相似文献   

12.
Ho CK  Gong C  Shuman S 《Journal of virology》2001,75(4):1744-1750
Paramecium bursaria chlorella virus 1 (PBCV-1) elicits a lytic infection of its unicellular green alga host. The 330-kbp viral genome has been sequenced, yet little is known about how viral mRNAs are synthesized and processed. PBCV-1 encodes its own mRNA guanylyltransferase, which catalyzes the addition of GMP to the 5' diphosphate end of RNA to form a GpppN cap structure. Here we report that PBCV-1 encodes a separate RNA triphosphatase (RTP) that catalyzes the initial step in cap synthesis: hydrolysis of the gamma-phosphate of triphosphate-terminated RNA to generate an RNA diphosphate end. We exploit a yeast-based genetic system to show that Chlorella virus RTP can function as a cap-forming enzyme in vivo. The 193-amino-acid Chlorella virus RTP is the smallest member of a family of metal-dependent phosphohydrolases that includes the RNA triphosphatases of fungi and other large eukaryotic DNA viruses (poxviruses, African swine fever virus, and baculoviruses). Chlorella virus RTP is more similar in structure to the yeast RNA triphosphatases than to the enzymes of metazoan DNA viruses. Indeed, PBCV-1 is unique among DNA viruses in that the triphosphatase and guanylyltransferase steps of cap formation are catalyzed by separate viral enzymes instead of a single viral polypeptide with multiple catalytic domains.  相似文献   

13.
Chlorella virus PBCV-1 topoisomerase II is the only functional type II enzyme known to be encoded by a virus that infects eukaryotic cells. However, it has not been established whether the protein is expressed following viral infection or whether the enzyme has any catalytic features that distinguish it from cellular type II topoisomerases. Therefore, the present study characterized the physiological expression of PBCV-1 topoisomerase II and individual reaction steps catalyzed by the enzyme. Results indicate that the topoisomerase II gene is widely distributed among Chlorella viruses and that the protein is expressed 60-90 min after viral infection of algal cells. Furthermore, the enzyme has an extremely high DNA cleavage activity that sets it apart from all known eukaryotic type II topoisomerases. Levels of DNA scission generated by the viral enzyme are approximately 30 times greater than those observed with human topoisomerase IIalpha. The high levels of cleavage are not due to inordinately tight enzyme-DNA binding or to impaired DNA religation. Thus, they most likely reflect an elevated forward rate of scission. The robust DNA cleavage activity of PBCV-1 topoisomerase II provides a unique tool for studying the catalytic functions of type II topoisomerases.  相似文献   

14.
The 331-kbp chlorovirus Paramecium bursaria chlorella virus 1 (PBCV-1) genome was resequenced and annotated to correct errors in the original 15-year-old sequence; 40 codons was considered the minimum protein size of an open reading frame. PBCV-1 has 416 predicted protein-encoding sequences and 11 tRNAs. A proteome analysis was also conducted on highly purified PBCV-1 virions using two mass spectrometry-based protocols. The mass spectrometry-derived data were compared to PBCV-1 and its host Chlorella variabilis NC64A predicted proteomes. Combined, these analyses revealed 148 unique virus-encoded proteins associated with the virion (about 35% of the coding capacity of the virus) and 1 host protein. Some of these proteins appear to be structural/architectural, whereas others have enzymatic, chromatin modification, and signal transduction functions. Most (106) of the proteins have no known function or homologs in the existing gene databases except as orthologs with proteins of other chloroviruses, phycodnaviruses, and nuclear-cytoplasmic large DNA viruses. The genes encoding these proteins are dispersed throughout the virus genome, and most are transcribed late or early-late in the infection cycle, which is consistent with virion morphogenesis.  相似文献   

15.
At least three structural proteins in Paramecium bursaria Chlorella virus (PBCV-1) are glycosylated, including the major capsid protein Vp54. However, unlike other glycoprotein-containing viruses that use host-encoded enzymes in the endoplasmic reticulum-Golgi to glycosylate their proteins, PBCV-1 encodes at least many, if not all, of the glycosyltransferases used to glycosylate its structural proteins. As described here, PBCV-1 also encodes two open reading frames that resemble bacterial and mammalian enzymes involved in de novo GDP-L-fucose biosynthesis. This pathway, starting from GDP-D-mannose, consists of two sequential steps catalyzed by GDP-D-mannose 4,6 dehydratase (GMD) and GDP-4-keto-6-deoxy-D-mannose epimerase/reductase, respectively. The two PBCV-1-encoded genes were expressed in Escherichia coli, and the recombinant proteins had the predicted enzyme activity. However, in addition to the dehydratase activity, PBCV-1 GMD also had a reductase activity, producing GDP-D-rhamnose. In vivo studies established that PBCV-1 GMD and GDP-4-keto-6-deoxy-D-mannose epimerase/reductase are expressed after virus infection and that both GDP-L-fucose and GDP-D-rhamnose are produced in virus-infected cells. Thus, PBCV-1 is the first virus known to encode enzymes involved in nucleotide sugar metabolism. Because fucose and rhamnose are components of the glycans attached to Vp54, the pathway could circumvent a limited supply of GDP sugars by the algal host.  相似文献   

16.
Orf virus, the prototype parapoxvirus, is responsible for contagious ecthyma in sheep and goats. The central region of the viral genome codes for proteins highly conserved among vertebrate poxviruses and which are frequently essential for viral proliferation. Analysis of the recently published genome sequence of orf virus revealed that among such essential proteins, the protein orfv075 is an orthologue of D13, the rifampin resistance gene product critical for vaccinia virus morphogenesis. Previous studies showed that D13, arranged as "spicules," is necessary for the formation of vaccinia virus immature virions, a mandatory intermediate in viral maturation. We have determined the three-dimensional structure of recombinant orfv075 at approximately 25-A resolution by electron microscopy of two-dimensional crystals. orfv075 organizes as trimers with a tripod-like main body and a propeller-like smaller domain. The molecular envelope of orfv075 shows unexpectedly good agreement to that of a distant homologue, VP54, the major capsid protein of Paramecium bursaria Chlorella virus type 1. Our structural analysis suggests that orfv075 belongs in the double-barreled capsid protein family found in many double-stranded DNA icosahedral viruses and supports the hypothesis that the nonicosahedral poxviruses and the large icosahedral DNA viruses are evolutionarily related.  相似文献   

17.
An enzyme was isolated from a eucaryotic, Chlorella-like green alga infected with the virus PBCV-1 which exhibits type II restriction endonuclease activity. The enzyme recognized the sequence GATC and cleaved DNA 5' to the G. Methylation of deoxyadenosine in the GATC sequence inhibited enzyme activity. In vitro the enzyme cleaved host Chlorella nuclear DNA but not viral DNA because host DNA contains GATC and PBCV-1 DNA contains GmATC sequences. PBCV-1 DNA is probably methylated in vivo by the PBCV-1-induced methyltransferase described elsewhere (Y. Xia and J. L. Van Etten, Mol. Cell. Biol. 6:1440-1445). Restriction endonuclease activity was first detected 30 to 60 min after viral infection; the appearance of enzyme activity required de novo protein synthesis, and the enzyme is probably virus encoded. Appearance of enzyme activity coincided with the onset of host DNA degradation after PBCV-1 infection. We propose that the PBCV-1-induced restriction endonuclease participates in host DNA degradation and is part of a virus-induced restriction and modification system in PBCV-1-infected Chlorella cells.  相似文献   

18.
A DNA methyltransferase was isolated from a eucaryotic, Chlorella-like green alga infected with the virus PBCV-1. The enzyme recognized the sequence GATC and methylated deoxyadenosine solely in GATC sequences. Host DNA, which contains GATC sequences, but not PBCV-1 DNA, which contains GmATC sequences, was a good substrate for the enzyme in vitro. The DNA methyltransferase activity was first detected about 1 h after viral infection; PBCV-1 DNA synthesis and host DNA degradation also began at about this time. The appearance of the DNA methyltransferase activity required de novo protein synthesis, and the enzyme was probably virus encoded. Methylation of DNAs with the PBCV-1-induced methyltransferase conferred resistance of the DNAs to a PBCV-1-induced restriction endonuclease enzyme described previously (Y. Xia, D. E. Burbank, L. Uher, D. Rabussay, and J. L. Van Etten, Mol. Cell. Biol. 6:1430-1439). We propose that the PBCV-1-induced methyltransferase protects viral DNA from the PBCV-1-induced restriction endonuclease and is part of a virus-induced restriction and modification system in PBCV-1-infected Chlorella cells.  相似文献   

19.
Studies on viral capsid architectures and coat protein folds have revealed the evolutionary lineages of viruses branching to all three domains of life. A widespread group of icosahedral tailless viruses, the PRD1-adenovirus lineage, was the first to be established. A double β-barrel fold for a single major capsid protein is characteristic of these viruses. Similar viruses carrying genes coding for two major capsid proteins with a more complex structure, such as Thermus phage P23-77 and haloarchaeal virus SH1, have been isolated. Here, we studied the host range, life cycle, biochemical composition, and genomic sequence of a new isolate, Haloarcula hispanica icosahedral virus 2 (HHIV-2), which resembles SH1 despite being isolated from a different location. Comparative analysis of these viruses revealed that their overall architectures are very similar except that the genes for the receptor recognition vertex complexes are unrelated even though these viruses infect the same hosts.  相似文献   

20.
Virus-encoded capsid proteins play a major role in the life cycles of all viruses. The JC virus capsid is composed of 72 pentamers of the major capsid protein Vp1, with one of the minor coat proteins Vp2 or Vp3 in the center of each pentamer. Vp3 is identical to two-thirds of Vp2, and these proteins share a DNA binding domain, a nuclear localization signal, and a Vp1-interacting domain. We demonstrate here that both the minor proteins and the myristylation site on Vp2 are essential for the viral life cycle, including the proper packaging of its genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号