首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degradation of several polycyclic aromatic hydrocarbons (PAHs) in soil through composting was investigated. The selected PAHs included: fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, and chrysene, with concentrations simulating a real creosote sample. The degradation of PAHs (initial concentration 1 g of total PAHs kg−1 dry soil) was assessed applying bioaugmentation with the white-rot fungi Trametes versicolor and biostimulation using compost of the source-selected organic fraction of municipal solid waste (OFMSW) and rabbit food as organic co-substrates. The process performance during 30 days of incubation was evaluated through different analyses including: dynamic respiration index (DRI), cumulative oxygen consumption during 5 days (AT5), enzymatic activity, and fungal biomass. These analyses demonstrated that the introduced T. versicolor did not significantly enhance the degradation of PAHs. However, biostimulation was able to improve the PAHs degradation: 89% of the total PAHs were degraded by the end of the composting period (30 days) compared to the only 29.5% that was achieved by the soil indigenous microorganisms without any co-substrate (control, not amended). Indeed, the results showed that stable compost from the OFMSW has a greater potential to enhance the degradation of PAHs compared to non-stable co-substrates such as rabbit food.  相似文献   

2.
The aims of this study were to assess changes in heavy metal availability in two contrasting feedstocks during aerobic composting, and the availability of said metals in the finished composts. A high C-to-N ratio mixed biodegradable municipal solid waste (MSW) feedstock was successfully composted on its own and in combination with green waste. Changes in heavy metal speciation throughout the composting process were studied using the modified BCR sequential extraction protocol. It was found that total Cu, Pb and Zn concentrations increased over time due to the progressive mineralization of the compost feedstock. Metals were fractionated differently within the two feedstocks, although only Cu showed significant redistribution (mostly to the oxidisable fraction) over the 5 month composting period. The MSW-derived composts performed comparably with other commercially-available composts in a series of plant growth trials. Plant metal accumulation was not influenced by the heavy metals present in the MSW-derived compost implying that they are not plant available. It is recommended that these relatively low value/quality composts may be used for remediation of acidic heavy metal contaminated sites.  相似文献   

3.
Composting is one of the more economical and environmentally safe methods of recycling feather waste generated by the poultry industry, since 90% of the feather weight consists of crude keratin protein, and feathers contain 15% N. However, the keratin in waste feathers is resistant to biodegradation and may require the addition of bacterial inocula to enhance the degradation process during composting. Two keratin-degrading bacteria isolated from plumage of wild songbirds and identified as Bacillus licheneformis (OWU 1411T) and Streptomyces sp. (OWU 1441) were inoculated into poultry feather composts (1.13×108 cfu g–1 feathers) and co-composted with poultry litter and straw in 200-l compost vessels. Composting temperatures, as well as CO2 and NH3 evolution, were measured in these vessels to determine the effects of inoculation on the rate and extent of poultry feather decomposition during composting. Terminal restriction fragment length polymorphisms of 16S rRNA genes were used to follow changes in microbial community structure during composting. The results indicated that extensive carbon conversion occurred in both treatments (55.5 and 56.1%). The addition of the bacterial inocula did not enhance the rate of waste feather composting. The microbial community structure over time was very similar in inoculated and uninoculated waste feather composts.  相似文献   

4.
The change of the degree of stability of compost during the composting process was a kind of guideline for our study. This stability was estimated by monitoring the chemical fractionation (extraction of humic and fulvic acids, and humin) during two cycles of composting. Change of humin (H), humic-like acid carbon (CHA) and fulvic-like acid carbon (CFA) fractions during the composting process of municipal solid wastes were investigated using two windrows W1 (100% of municipal solid wastes) and W2 (60% of municipal solid wastes and 40% of dried sewage sludge). Humin and fulvic acid fractions in the two windrows decreased since the start of composting process and tend to stabilize. At the end of composting process, humic acid fraction is more important in the windrow without sludge (W1) than the one with sludge (W2). The humification indexes used in this study showed that the humic-like acid carbon fraction production takes place largely during the phase of temperature increase (thermophilic phase), and it appeared very active in the windrow W2. At the end of composting process, the E4/E6 ratio value indicated that the compost of W1 is more mature than the compost of W2. The humification ratio (HR) allowed a correct estimation of compost organic matter stabilization level.  相似文献   

5.
The production of a substrate containing destoned olive mill solid waste for the cultivation of Agaricus bisporus (Lange) Imbach on an industrial scale was studied. A standard mushroom compost (C) mainly made from straw and poultry manure was compared with the experimental compost (EC) containing the same ingredients as (C) but with added olive mill solid waste (10.6% w/w). Microbial indicators such as counts of heterotrophic microbes and actinomycetes were higher in EC than in C. In addition, compost selectivity as indicated by higher mushroom yield and biological efficiency of EC was higher than that of C. Market quality of the mushrooms produced in both C and EC were comparable. These findings support our work that olive mill solid waste can be used safely in thermal composting process to produce a selective substrate for industrial-scale cultivation of A. bisporus. This study also demonstrates an environmentally sustainable system to manage solid waste from olive oil extraction processes thus overcoming environmental pollution brought about by irrational disposal of the waste on farm lands.  相似文献   

6.
Chaetomium thermophilium was isolated from composting municipal solid waste during the thermophilic stage of the process. C. thermophilium, a cellulolytic fungus, exhibited laccase activity when it was grown at 45°C both in solid media and in liquid media. Laccase activity reached a peak after 24 h in liquid shake culture. Laccase was purified by ultrafiltration, anion-exchange chromatography, and affinity chromatography. The purified enzyme was identified as a glycoprotein with a molecular mass of 77 kDa and an isoelectric point of 5.1. The laccase was stable for 1 h at 70°C and had half-lives of 24 and 12 h at 40 and 50°C, respectively. The enzyme was stable at pH 5 to 10, and the optimum pH for enzyme activity was 6. The purified laccase efficiently catalyzed a wide range of phenolic substrates but not tyrosine. The highest levels of affinity were the levels of affinity to syringaldazine and hydroxyquinone. The UV-visible light spectrum of the purified laccase had a peak at 604 nm (i.e., Cu type I), and the activity was strongly inhibited by Cu-chelating agents. When the hydrophobic acid fraction (the humic fraction of the water-soluble organic matter obtained from municipal solid waste compost) was added to a reaction assay mixture containing laccase and guaiacol, polymerization took place and a soluble polymer was formed. C. thermophilium laccase, which is produced during the thermophilic stage of composting, can remain active for a long period of time at high temperatures and alkaline pH values, and we suggest that this enzyme is involved in the humification process during composting.  相似文献   

7.
好氧堆肥是有机固体废弃物处理处置的有效手段之一,堆肥还田也是贫瘠土壤改良的常用措施。但好氧堆肥是一个典型的CO_2等温室气体的释放过程。如何减少堆肥过程中的CO_2释放,强化堆肥的腐殖化过程对于实现有机固体废弃物的低碳化堆肥、提高作为优良土壤改良剂的腐殖质产量具有重要意义。本文选取农林秸秆和餐厨垃圾作为堆肥原料,研究不同翻堆频率对堆肥过程中的物料减量化、腐殖化和稳定化的影响,以期发现一个较低碳的堆肥工艺,并从微生物角度初步探索了其影响机制。研究结果显示,不同的翻堆频率(分别为每2 d、4 d和6 d翻堆一次),堆料的减量化和腐殖化程度有一定差异,翻堆频率为4 d的堆肥工艺物料减量率最高为50.5%,但碳减量率最低为77.4%;而翻堆频率为2 d的堆肥工艺腐殖质产量最高;3种堆肥工艺经62 d堆肥都达到了腐熟程度,翻堆频率为4 d的堆肥工艺腐熟化程度最高。不同的翻堆频率可能通过影响堆肥过程中堆料的温度、含氧量等因素从而改变堆料中活性微生物量、种类和生物酶活性,进而影响堆料的矿化和腐殖化进程。  相似文献   

8.
Mispah form (FAO: Lithosol) soil contaminated with >380 000 mg kg?1 creosote was co-composted with cattle manure and mixed vegetable waste for 19 months. The soil was mixed with wood chips to improve aeration and then mixed with cattle manure or mixed vegetable waste in a ratio of 4:1. Moisture, temperature, pH, ash content, C:N ratios, and the concentrations of creosote in the compost systems were monitored monthly. The concentrations of selected hydrocarbons in the compost systems were determined at the end of composting. Temperature rose to about 45°C in the cattle manure compost within two months of incubation while temperature in the control and vegetable waste remained below 30°C until the fourth month. Creosote concentration was reduced by 17% in the control and by more than 99% in the cattle manure and vegetable waste compost after composting. The rate of reduction in concentration in the mixed vegetable waste compost was initially lower than in the cattle manure compost. The reduction rate became similar in later months with only small differences towards the end of the composting. The concentrations of selected creosote components were reduced by between 96% and 100% after composting. There was no significant difference in reduction in concentration in both compost systems at p 0.05. Microbial activity correlated with reduction in creosote concentration.  相似文献   

9.
The biological stabilisation of the organic fraction of municipal solid waste (OFMSW) into a form stable enough for land application can be achieved via aerobic or anaerobic treatments. To investigate the rates of degradation (e.g. via electron equivalents removed, or via carbon emitted) of aerobic and anaerobic treatment, OFMSW samples were exposed to computer controlled laboratory-scale aerobic (static in-vessel composting), and anaerobic (thermophilic anaerobic digestion with liquor recycle) treatment individually and in combination. A comparison of the degradation rates, based on electron flow revealed that provided a suitable inoculum was used, anaerobic digestion was the faster of the two waste conversion process. In addition to faster maximum substrate oxidation rates, anaerobic digestion (followed by post-treatment aerobic maturation), when compared to static composting alone, converted a larger fraction of the organics to gaseous end-products (CO2 and CH4), leading to improved end-product stability and maturity, as measured by compost self-heating and root elongation tests, respectively. While not comparable to windrow and other mixed, highly aerated compost systems, our results show that in the thermophilic, in-vessel treatment investigated here, the inclusion of a anaerobic phase, rather than using composting alone, improved hydrolysis rates as well as oxidation rates and product stability. The combination of the two methods, as used in the DiCOM® process, was also tested allowing heat generation to thermophilic operating temperature, biogas recovery and a low odour stable end-product within 19 days of operation.  相似文献   

10.
Earlier studies indicated that the activity in the initial phase of composting may be reduced when the temperature rises too fast under low pH conditions. A compost reactor experiment on household waste was designed to test whether the degradation time could be reduced by actively preventing the temperature from rising until the pH had reached a certain value. This experiment was performed by monitoring pH in the condensate from the cooled compost gas. The results from 3 + 3 runs with and without temperature control confirmed our hypothesis and a considerable reduction in composting time was achieved. One possible explanation for the results is that the microbes active in the low pH phase are hampered by high temperature. The abrupt rise in pH when the fatty acids are consumed seems to be a good marker of the point when temperature control can be discontinued.  相似文献   

11.
This paper presents results obtained on the evaluation of static composting process aimed at bioremediation of the hazardous solid olive mill waste (OMW). The static composting process carried out in gas-permeable polyethylene bags followed the fluctuating temperature and oxygen profiles similar to those seen in aerated composting systems. Static composting resulted in apparent increases and decreases in values for total nitrogen and C:N ratios respectively during the process. The amount of nitrogen (>3%) in the composting end product was in agreement with the Italian legislation (Decreto Legislativo 29 aprile 2010, n. 75) specification for nitrogen fertilizer. A gradual decrease in polyphenols during the storage of compost resulted in a non-phytotoxic composted organic matter high in humic substances. Different respirometric tests also stated high biological stability of the end compost product.  相似文献   

12.
有机固体废弃物堆肥的物质变化及腐熟度评价   总被引:71,自引:8,他引:63  
堆肥是资源化处理有机固体废弃物的有效途径之一.有机固体废弃物的种类繁多,物科的性质差异很大,另外,由于堆肥条件的不同,也会引起堆肥的物质变化有很大差异.堆肥的稳定度和腐熟度是衡量堆肥产品质量的尺度,其评价对于安全农用有着重要意义.稳定度则重于堆肥施用对周围环境的影响,而腐熟度则重于堆肥施用对植物生长的影响,它们受堆肥物料,堆肥条件等诸多因素的综合影响,其评价指标因而多种多样.堆肥稳定度主要从堆肥的温度、颜色、CO2是最为简便的稳定度评价指标,当其趋于环境温度时,表明堆肥达到稳定.堆肥腐熟度的评价指标很多,包括化学指标、生物活性指标以及植物毒性指标3类,其中种子发芽系数作为植物毒性指标被认为是最可靠的评价指标之一。  相似文献   

13.
Ash in composting of source-separated catering waste   总被引:5,自引:0,他引:5  
Our earlier experiments in small composters (220 l) indicated the favourable effect of ash from co-incineration of sorted dry waste on the composting of catering waste. The aim of this new study was to clarify further, at a scale of 10 m3, the feasibility of using similar ash as an additive in composting. Source-separated catering waste was mixed with bulking agent (peat and wood chips) and fuel ash from a small (4 MW) district heating power plant. Three compost mixes (CM) were obtained: CM I with 0%, CM II with 10% and CM III with 20 wt.% of fuel ash. These three different mixes were composted in a 10-m3 drum composter as three parallel experiments for 2 weeks each, from January to April 2000. After drum composting, masses were placed according to mixing proportions in separate curing piles. The catering waste fed to the drum was cold, sometimes icy. Even then the temperature rapidly increased to over 50 degrees C. In CM III, the temperature rose as high as 80 degrees C, and after the first week of composting the temperature was about 20 degrees C higher in the CMs II and III than in the CM I. It also improved the oxygen concentrations at the feeding end of the drum and obviously prevented the formation of H2S. No odour problems arose during the composting. Addition of ash increased the heavy metal contents of the composting masses, but the compost was suitable for cultivation or green area construction. Ash clearly decreased the loss of total nitrogen in a time span of 2 years. The lower amounts of nitrogen mean that the amounts applied per hectare can be greater than for normal composts. Measured by mineralization, the breaking down of the organic matter was more rapid in the CM III than in the CM I. Humic acid increased steadily during first 12 months composting, from the initial 39 mg/g organic matter to 115 and 137 mg/g in CMs II and III. Measured by temperature, mineralization and humification the addition of ash appeared to boost the composting. Ash had also other beneficial effects on composting it improved the availability of oxygen in compost mass during the drum composting phase and reduced the formation of odorous gases, especially H2S.  相似文献   

14.
Heavy metals are common contaminants in stormwater runoff. One of the devices that can be used to effectively and economically remove heavy metals from runoff is a yard waste compost stormwater filter. The primary goal of composting is to reduce waste volume rather than to produce stormwater filter media. Moisture content (MC) and initial pH, the two important parameters in composting, were studied for their effects on yard waste volume reduction and heavy metal adsorption performances of the compost. The main objective of this investigation was to examine whether the conditions that provided high yard waste volume reduction would also result in compost with good heavy metal removal performances. Manila grass was composted at different initial pHs (5–9) and MCs (30–70%) and the composts were used to adsorb cadmium, copper, lead and zinc from water. Results indicated that MC is more critical than initial pH for both volume reduction and production of compost with high metal adsorption performances. The most optimal conditions for the two attributes were not exactly the same but lower MCs of 30–40% and pH 7 or higher tended to satisfy both high volume reduction and effective metal adsorption.  相似文献   

15.
在烟草生产及加工过程中,通常会产生大量的烟草废弃物,如何有效利用这些废弃物以避免环境污染和资源浪费,已成为烟草行业亟需解决的问解。研究发现,烟草废弃物堆肥化处理是规模化利用废弃资源的有效途径之一,对烟草农业的绿色、低碳、循环、可持续发展具有重要意义。从有机肥堆肥制备技术、肥效研究等方面进行了系统综述,从整体上展示了烟草废弃物堆肥技术的发展现状,以期为国内烟草废弃物源堆肥未来技术的研发及产业化提供一定的参考。通过分析发现,在堆肥制备技术方面,主要有微生物菌剂添加技术、共堆肥技术和烟草材料预处理技术3种,此外还衍生出液态有机肥和厌氧发酵联产有机肥技术;在堆肥肥效研究方面,烟草废弃物堆肥可明显改善土壤的物性参数、化学参数以及生物学参数,显著钝化土壤重金属元素,进而提高作物的产量或品质,其中堆肥与化学肥料配施的效果相对较好;堆肥的多功能化是未来堆肥创新利用的重要途径。  相似文献   

16.
Composting is widely used to reduce the abundance of antibiotic resistance genes (ARGs) in solid waste. While ARG dynamics have been extensively investigated during composting, the fate and abundance of residual ARGs during the storage remain unexplored. Here, we tested experimentally how ARG and mobile genetic element (MGE) abundances change during compost storage using metagenomics, quantitative PCR and direct culturing. We found that 43.8% of ARGs and 39.9% of MGEs quickly recovered already during the first week of storage. This rebound effect was mainly driven by the regrowth of indigenous, antibiotic-resistant bacteria that survived the composting. Bacterial transmission from the surrounding air had a much smaller effect, being most evident as MGE rebound during the later stages of storage. While hyperthermophilic composting was more efficient at reducing the relative abundance of ARGs and MGEs, relatively greater ARG rebound was observed during the storage of hyperthermophilic compost, exceeding the initial levels of untreated sewage sludge. Our study reveals that residual ARGs and MGEs left in the treated compost can quickly rebound during the storage via airborne introduction and regrowth of surviving bacteria, highlighting the need to develop better storage strategies to prevent the rebound of ARGs and MGEs after composting.  相似文献   

17.
Large-scale composting of source-separated household waste has expanded in recent years in the Nordic countries. One problem can be low pH at the start of the process. Incoming biowaste at four composting plants was characterised chemically, physically and microbiologically. The pH of food waste ranged from 4.7 to 6.1 and organic acid concentration from 24 to 81 mmol kg(-1). The bacterial diversity in the waste samples was high, with all samples dominated by Gammaproteobacteria, particularly Pseudomonas and Enterobacteria (Escherichia coli, Klebsiella, Enterobacter). Lactic acid bacteria were also numerically important and are known to negatively affect the composting process because the lactic acid they produce lowers the pH, inhibiting other bacteria. The bacterial groups needed for efficient composting, i.e. Bacillales and Actinobacteria, were present in appreciable amounts. The results indicated that start-up problems in the composting process can be prevented by recycling bulk material and compost.  相似文献   

18.
The composting of olive leaves and olive pomace from a three-phase olive mill was tested as a method for solid waste reuse. The process was carried out using a compost windrow and mixing olive leaves and pomace at a ratio of 1:2. Compost was retained in the windrow for 60 days during which thermophilic temperatures developed for the first 40 days. The compost was then placed into a closed area to mature for another 60 days. The final product proved to be high quality amendment with C/N 27.1 and high nutrient concentrations (N, 1.79%; P, 0.17%; K, 4.97%; Na, 2.8%). Mature compost presented the highest germination index (198%) reported to date, as the germination index in the majority of previous studies is under 80%. Furthermore, tests revealed that addition of 31.5 tons of compost per ha, could increase lettuce yield by 145%.  相似文献   

19.
Cattle slurry solid fraction (SF) with different dry matter (DM) contents was collected from two dairy farms and composted in static and turned piles, with different sizes and cover types, to investigate the effects of pile conditions on the physical and chemical changes in SF during composting and to identify approaches to improve final compost quality. Thermophilic temperatures were attained soon after separation of SF, but the temperature of piles covered with polyethylene did not increase above 60 degrees C. The rate of organic matter (OM) mineralisation increased for turned piles in comparison to static piles, but the maximum amount of mineralisable OM (630-675gkg(-1)) was similar for all pile treatments. The C/N ratio declined from over 36 to a value of 14 towards the end of composting, indicating an advanced degree of OM stabilisation. Mature compost was obtained from raw SF feedstock as indicated by the low compost temperature, low C/N ratio, and low content of NH(4)(+) combined with increased concentrations of NO(3)(-). The efficiency of the composting process was improved and NH(3)-N losses were minimized by increasing DM content of the SF, reducing the frequency of pile turning and managing compost piles without an impermeable cover.  相似文献   

20.
The concentration of volatile organic compounds (VOCs) during the composting of kitchen waste and pruning residues, and the abatement of VOCs by different compost biofilters was studied. VOCs removal efficiencies greater than 90% were obtained using composts of municipal solid waste (MSW) or MSW-pruning residue as biofilter material. An electronic nose identified qualitative differences among the biofilter output gases at very low concentrations of VOCs. These differences were related to compost constituents, compost particle size (2-7 or 7-20 mm), and a combination of both factors. The total concentration of VOCs determined by a photoionization analyser and inferred from electronic nose data sets were correlated over an ample range of concentrations of VOCs, showing that these techniques could be specially adapted for the monitoring of these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号