首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
与“全红”瓯江彩鲤体色相关的SRAP及SCAR分子标记   总被引:1,自引:0,他引:1  
利用相关序列扩增多态性(Sequence Related Amplified Polymorphism,SRAP)技术分析"全红"和"粉玉"瓯江彩鲤,筛选与瓯江彩鲤体色相关的分子遗传标记。从88个SRAP引物组合筛选出的12个引物组合共获得扩增条带104个,并筛选出1个SRAP特异扩增带,即"全红"瓯江彩鲤家系SR2,7173 bp带。该条SRAP特异扩增条带经回收、克隆和测序,并将测序结果进行BLAST分析,发现该片段在GenBank中与斑马鱼的POl多蛋白基因和尿红素基因有较高的同源性。根据序列信息分别设计了4对正、反向引物(22—26 bp)。用4对引物分别在"全红"瓯江彩鲤F2和"粉玉"瓯江彩鲤F2群体中进行PCR扩增,仅发现SC-3(154 bp)能够在"全红"瓯江彩鲤群体中特异扩增,而且在"粉玉"瓯江彩鲤F2群体中未出现此扩增带。采用大样本对该SC-3标记进行验证,结果发现,在"全红"瓯江彩鲤群体中呈现阳性,而在"粉玉"瓯江彩鲤群体中为阴性,可以区分这两种群体。因此SC-3标记可以作为"全红"瓯江彩鲤群体一个重要的分子遗传特征指标,为进一步进行分子标记辅助育种奠定了基础。  相似文献   

2.
中国红鲤线粒体COⅡ基因的遗传变异和亲缘关系   总被引:6,自引:0,他引:6  
王成辉  李思发 《遗传学报》2004,31(11):1226-1231
通过线粒体COⅡ基因的序列分析,研究了我国4种红鲤——兴国红鲤(C.c.var.singuonensis)、荷包红鲤(C.c.var.wuyuanensis)、玻璃红鲤(C.c.var.wananensis)、瓯江彩鲤(C.c.var.color)和1种野鲤(Cyprinus carpio)的遗传变异和亲缘关系。结果表明:在所分析的607bp片段中,共有19个核苷酸变异位点,可归结为15种基因单倍型,其中5个变异位点可作为群体鉴别的单核苷酸标记(SNP);荷包红鲤的基因多样性(h)和核苷酸多样性(π)最高,玻璃红鲤最低;所有红鲤均存在极显著的遗传分化,其中兴国红鲤与玻璃红鲤的遗传分化指数(Fst)最高,而兴国红鲤与瓯江彩鲤的遗传分化指数最低。用邻接法构建的分子系统树表明,兴国红鲤与瓯江彩鲤属同一进化分支,而玻璃红鲤与荷包红鲤属另一进化分支。  相似文献   

3.
利用ISSR技术对"全红"瓯江彩鲤(Cyprinus car pio var. color)4个世代群体的遗传结构及其分化进行了分析。筛选的15个ISSR引物从4个世代群体中分别扩增到120、118、101和110条扩增谱带,全部扩增片段长度在200—2500bp之间。根据扩增结果,利用POPGENE version 1.31进行分析,结果表明:4个群体的多态位点比例(P)为51.49%—67.80%,Shannon信息指数(Ho)为0.2176—0.2745之间,并随着世代的增加,选育群体的遗传多样性呈现下降趋势。有70%的遗传变异来自于群体内;结合遗传分化指数Gst、UPGMA聚类分析,证实"全红"瓯江彩鲤4个世代间存在一定程度的遗传分化,即任意两个群体间的遗传分化达到较大的水平(Gst均为0.1588—0.2766)。  相似文献   

4.
草鱼和鲤杂交的细胞学研究—鱼类远缘杂交核质不同步现象   总被引:27,自引:4,他引:23  
以草鱼(Ctenopharyngodon idellus)为母本、鲤(Cyprinus carpio)为父本进行人工杂交,杂种胚胎发育至孵化期全部死亡;同时获得了少数雌核发育草鱼和雄核发育的鲤。分析比较了草鲤杂种胚胎染色体变化及胚胎发育情况。发现杂种胚胎染色体数目变化较大,一般在24—73之间,绝大部分细胞染色体在发育过程中不断丢失而出现非整倍体;极少数细胞在受精后雌性原核和雄性原核不结合而引起雌核发育和雄核发育;草鱼和鲤胚胎发育时序有较大差别;因此细胞分裂不能同步。可能是杂种胚胎染色体不断丢失的主要原因。  相似文献   

5.
为了探讨花斑裸鲤(Gymnocypris eckloni)血红蛋白时序转换 利用花斑裸鲤全基因组数据鉴定胚胎/仔鱼型血红蛋白基因家族成员, 并通过整胚原位杂交方法, 检测花斑裸鲤胚胎/仔鱼型血红蛋白基因在胚胎发育不同阶段的表达及定位。结果表明, 花斑裸鲤基因组中共鉴定到5个胚胎/仔鱼型血红蛋白基因, 分别为hbae1、hbae4、hbae5、hbbe1和hbbe3, 与斑马鱼(Danio rerio)相比, 花斑裸鲤基因组缺少hbae3和 hbbe2 基因, 暗示第四轮全基因组复制事件后所经历的小规模基因删除事件在花斑裸鲤特异性血红蛋白基因形成中发挥了重要作用。整胚原位杂交结果显示, hbae1基因在胚胎发育的120h至432h内持续表达, hbbe1基因在96h开始表达持续至432h, hbbe3基因杂交信号出现在胚胎发育120h至384h内, 在胚胎发育全过程中未能观察到hbae4和hbae5基因的杂交信号。杂交信号主要位于胚胎正中轴、后部侧向中胚层、背主动脉腹侧区、尾部造血区及卵黄。正义探针作为阴性对照, 在胚胎发育阶段均无任何杂交信号。花斑裸鲤具有与其他鱼类不同的胚胎/仔鱼型血红蛋白基因家族成员及血红蛋白转换表达特征; hbae1、hbbe1和hbbe3基因在花斑裸鲤早期胚胎发育过程中发挥重要作用, 而hbae4和hbae5基因的生物学功能可能有所弱化。  相似文献   

6.
刘文骁  陈宏 《动物学杂志》2015,50(3):464-469
通过对全红体色彩鲫(Carassius auratuas)与建鲤(Cyprinus carpio var.Jian)的正反交杂交后代进行消化道生长发育的比较研究,以期为建鲤与彩鲫的远缘杂交生产和研究提供理论依据。本实验选择建鲤亲本、彩鲫亲本、鲤鲫F1(建鲤♀×彩鲫♂)和鲫鲤F1(彩鲫♀×建鲤♂)各50条,每组实验鱼日龄相近。每组选5条体重相近的鱼测量肠长和肠重,并制作肠切片,计算肠重指数、肠长指数、肠道皱襞高度、绒毛长、绒毛宽、肌层厚度数据。数据结果采用SPSS(17.0)软件中的LSD法进行显著性检验。结果表明,以彩鲫作为父本的F1的消化水平高于以彩鲫作为母本的F1,且彩鲫作为父本的F1即鲤鲫F1的消化水平高于两亲本,体现出了杂种优势。  相似文献   

7.
鱼类远缘杂交正反交杂种胚胎发育差异的细胞遗传学分析   总被引:19,自引:0,他引:19  
本文报道了鲤(Cyprinus carpio)×鲢(Hypophthalmichthys molitrix)、鲫(Carassiusauratus)×鲢、白鲫(Carassius auratus cuvieri)×鲢和鲢×鲤、鲢×鲫、鲢×白鲫的正反交试验。在鲤×鲢、鲫×鲢和白鲫×鲢3个正交组中,胚胎发育基本正常,尽管孵出的鱼苗绝大多数生命力弱,但孵化率都在50%左右;而在鲢×鲤、鲢×鲫和鲢×白鲫3个反交组中,胚胎发育均为畸形,不能孵化出苗。 胚胎发育细胞遗传学分析表明,鲤×鲢、鲫×鲢和白鲫×鲢的杂种胚胎几乎都是整倍体,而鲢×鲤、鲢×鲫×鲢×白鲫的杂种胚胎基本上是非整倍体,染色体数变化较大。这些正反交杂种胚胎发育的显著差异可能与其亲本物种间的基因组大小有关。文中还分析讨论了这些正反交差异与天然多倍体物种以及胚胎发育速度的相关性,认为天然多倍体物种可能具有一些不同于普通二倍体物种协调外源基因组的能力。  相似文献   

8.
Sonic hedgehog(Shh)是Hedgehog(Hh)家族中的一员,在胚胎发育和器官形成过程中发挥重要作用.法氏囊是鸟类所特有的中枢免疫器官,在机体的免疫防御方面发挥重要作用.利用切片原位杂交的方法探究Shh基因在鸡胚法氏囊发育过程中的表达模式,检测发现Shh基因主要在鸡胚法氏囊的囊下上皮细胞、血管周围上皮细胞以及网状细胞中表达.  相似文献   

9.
研究旨在针对不同性腺发育阶段(Ⅰ期、Ⅱ期、Ⅲ期、Ⅳ期、Ⅴ期)野生瓯江凤鲚(Coiliamystus)性腺发育情况和肌肉营养成分进行分析与评价。研究表明: 在雌、雄野生瓯江凤鲚性腺从Ⅰ期发育至Ⅴ期的过程中, 成熟系数呈现上升趋势, 凤鲚卵巢的GSI值是精巢GSI值的5倍。在卵巢发育Ⅰ—Ⅴ期, 粗脂肪含量显著下降, 粗蛋白和水分显著上升(P<0.05); 在精巢发育Ⅰ—Ⅴ期, 粗脂肪含量显著上升, 粗蛋白和水分显著下降(P<0.05), 灰分含量先升后降, 说明野生瓯江凤鲚在卵巢发育过程中脂肪为主要供能物质。雌凤鲚肌肉在卵巢发育Ⅰ—Ⅴ期显著上升(P<0.05), 雄凤鲚肌肉氨基酸含量在精巢发育Ⅰ—Ⅴ期显著下降(P<0.05)。但各性腺发育阶段氨基酸组成相对稳定, 雌、雄鱼肌肉总必需氨基酸/总氨基酸分别为(37.88±0.32)%—(41.66±0.44)%和(40.30±0.69)%—(40.94±0.29)%。依据氨基酸评分(AAS)和化学评分(CS)标准, 不同性腺发育阶段的野生瓯江雌、雄凤鲚肌肉中第一限制性氨基酸均为色氨酸, 第二限制性氨基酸均为甲硫氨酸(Met)和胱氨酸(Cys)。在卵巢发育Ⅰ—Ⅴ期, 性腺发育阶段含量最丰富的C16﹕0和C18﹕1呈下降趋势, 可能是作为主要的供能脂肪酸。多不饱和脂肪酸的主要脂肪酸DHA在卵巢发育中呈现先上升后下降趋势。在精巢发育Ⅰ—Ⅴ期, 多不饱和脂肪酸呈现下降趋势。因此, 在繁殖过程中, 野生瓯江凤鲚雌雄鱼的发育特征和肌肉营养组成变化规律及差异与生殖洄游产卵的繁殖习性密切相关。  相似文献   

10.
中华稻蝗的胚胎发育及卵滞育发生的胚胎发育阶段   总被引:2,自引:0,他引:2  
崔双双  朱道弘 《昆虫知识》2011,48(4):845-853
为弄清中华稻蝗Oxya chinensis(Thunberg)卵滞育发生的胚胎发育阶段,观察了其胚胎发育过程,检测了中华稻蝗铁岭、济南、长沙及儋州种群产卵后卵粒含水量的变化规律和胚胎发育的停滞时期.根据胚胎形态,自原头与原颚胸折叠的胚胎发育阶段开始,将中华稻蝗的胚胎发育过程划分为11个阶段.在25℃的温度条件下,4个地...  相似文献   

11.
Successful larval growth and development of bivalves depend on energy derived from internal (endotrophic phase) and external (exotrophic phase) sources. The present paper studies survival, growth and biochemical changes in the early developmental stages (from egg to pediveliger) of the clam Ruditapes decussatus in order to characterize the nutritional requirements and the transition from the endotrophic to the exotrophic phase. Three different feeding regimes were applied: starvation and two mono-specific microalgal diets (Isochrysis aff galbana and Chaetoceros calcitrans). A comparison between fed and unfed larvae highlighted the importance of egg lipid reserves, especially neutral lipids, during a brief endotrophic phase of embryonic development (first 2 days after fertilization). Egg reserves, however, may energetically contribute to the maintenance of larvae beyond the embryonic development. In fed larvae, the endotrophic phase is followed by a mixotrophic phase extending to days 5–8 after fertilization and a subsequent exotrophic phase. Metamorphosis starts around day 20. The intense embryonic activities are supported by energy derived from lipids, mainly from neutral lipids, and the metamorphic activities are supported by energy derived essentially from proteins accumulated during the planktonic phase and depend on the nutritional value of diets. The diet of I. aff galbana proves to be more adequate to R. decussatus larval rearing. The results provide useful information for the successful production of R. decussatus aquaculture.  相似文献   

12.
The moisture, lipids and fatty acid composition of developing winged bean (Psophocarpus tetragonolobus) seeds were studied. The moisture content decreased steadily as the seeds matured. The lipid content increased gradually and reached a maximum ca 6 weeks after flowering (WAF). In the early stage (2 WAF) of the developing seeds there were more polar lipids (glycolipids and phospholipids) than neutral lipids but, as the seeds developed, neutral lipids gradually accumulated while the polar lipids decreased until 6 WAF. Thereafter, both the neutral lipid and polar lipid levels remained little changed. The amounts of palmitic and stearic acids decreased, but the level of behenic acid increased as the seeds matured. On the other hand, the oleic acid content increased while that of linolenic acid decreased rapidly as the seeds matured. The concentration of linoleic acid, however, fluctuated during the development of the seeds.  相似文献   

13.
Dynamics of fatty acid composition of total lipids was studied for freshwater salmon Salmo salar L. during its embryonic development from blastula (3 hours) up to hatching (108 days) as well as in unfertilized eggs. Stable amount of total and some saturated, monounsaturated and polyunsaturated fatty acids (PUFA) of total lipids was observed during embryonic development. Considerable changes in fatty acid composition were observed at the stage of prelarvae hatching, i.e., significant decrease of (n-6) PUFA (18:2(n-6) and 20:4(n-6)) and (n-3) PUFA and increase of total and some saturated and monounsaturated fatty acids was registered. Change in saturation ratio of membrane lipids justifies the presence of the biochemical mechanism forwarded on regulation of cell membrane enzymes in accordance with the changes of internal physiological processes taking place in the organism and fluctuations of external environmental conditions or the preparation period (as reproduction). Data on peculiarities of transformation and utilization of fatty acids during salmon embryonic development may be used for understanding of their functional role in the developing organism as well as for assessing the quality of the caviar.  相似文献   

14.
Dynamics of fatty acid composition of total lipids was studied for freshwater salmon Salmo salar L. during its embryonic development from blastula (3 hours) up to hatching (108 days) as well as in unfertilized eggs. Stable amount of total and some saturated, monounsaturated and polyunsaturated fatty acids (PUFA) of total lipids was observed during embryonic development. Considerable changes in fatty acid composition were observed at the stage of prelarvae hatching, i.e., significant decrease of (n-6) PUFA (18:2(n-6) and 20:4(n-6)) and (n-3) PUFA and increase of total and some saturated and monounsaturated fatty acids was registered. Change in saturation ratio of membrane lipids justifies the presence of the biochemical mechanism forwarded on regulation of cell membrane enzymes in accordance with the changes of internal physiological processes taking place in the organism and fluctuations of external environmental conditions or the preparation period (as reproduction). Data on peculiarities of transformation and utilization of fatty acids during salmon embryonic development may be used for understanding of their functional role in the developing organism as well as for assessing the quality of the caviar.  相似文献   

15.
Rat liver nuclear lipids. Composition and biosynthesis   总被引:1,自引:0,他引:1  
A characteristic of rat liver nuclear lipids is their high content in neutral lipids especially of tryglycerides and free fatty acids. These compounds do not arise due to hydrolysis of more complex lipids during the isolation of the nuclei. The neutral lipids fatty acid pattern is more saturated than the phospholipid one. The presence of phosphatidylinositol mono- and diphosphate in nuclei has been confirmed. Nuclei are unable to synthesize de novo phospholipids but are capable of incorporating inorganic phosphate into lipids synthesized via a kinase pathway.  相似文献   

16.
Lipid synthesis from acetoacetate and 3-hydroxybutyrate was studied in chick embryo from 15 to 21 days and in chick neonate from 1 to 21 days. Embryonic spinal cord showed higher ability than brain to incorporate acetoacetate into total lipids, although a sharp decrease was found at hatching. 3-Hydroxybutyrate incorporation into total lipids was also higher in spinal cord than in brain, especially during the embryonic period. Phospholipids were the main lipids formed in both tissues from both precursors. An appreciable percentage of radioactivity was also recovered as free cholesterol, especially during the embryonic phase. The developmental patterns of amino acid synthesis from acetoacetate and 3-hydroxybutyrate were similar in both tissues: a clear increase after hatching was followed by a decrease at day 4 of neonatal life. Acetoacetate was a better substrate for amino acid synthesis than 3-hydroxybutyrate during the embryonic development in both tissues. Oxidation of both precursors to CO2 strongly decreased between 15 and 21 days of embryonic development both in brain and spinal cord.  相似文献   

17.
Insect eggs must contain the necessary nutrients for embryonic growth. In this article, we investigated the accumulation of triacylglycerol (TAG) in growing oocytes and its utilization during embryonic development. TAG makes up about 60% of the neutral lipids in oocytes and accumulates as oocytes grow, from 2.2 ± 0.1 µg in follicles containing 1.0 mm length oocytes to 10.2 ± 0.8 µg in 2.0 mm length oocytes. Lipophorin (Lp), the hemolymphatic lipoprotein, radioactively labeled in free fatty acid (FFA) or diacylglycerol (DAG), was used to follow the transport of these lipids to the ovary. Radioactivity from both lipid classes accumulated in the oocytes, which was abolished at 4°C. The capacity of the ovary to receive FFA or DAG from Lp varied according to time after a blood meal and reached a maximum around the second day. 3H‐DAG supplied by Lp to the ovaries was used in the synthesis of TAG as, 48 hr after injection, most of the radioactivity was found in TAG (85.7% of labeling in neutral lipids). During embryogenesis, lipid stores were mobilized, and the TAG content decreased from 16.4 ± 2.1 µg/egg on the first day to 10.0 ± 1.3 µg on day 15, just before hatching. Of these, 7.4 ± 0.9 µg were found in the newly emerged nymphs. In unfertilized eggs, the TAG content did not change. Although the TAG content decreased during embryogenesis, the relative lipid composition of the egg did not change. The amount of TAG in the nymph slowly decreased during the days after hatching. © 2011 Wiley Periodicals, Inc.  相似文献   

18.
Seasonal changes in the fatty acid composition of neutral and polar lipids were measured in the ovary, liver, white muscle, and adipopancreatic tissue of northern pike. The role of environmental and physiological factors underlying these changes was evaluated. From late summer (August–September) to winter (January–March), the weight percentage of n-3 polyunsaturated fatty acids (especially 22:6n3) declined significantly in the neutral lipids of all somatic tissues examined. However, large quantities of n-3 polyunsaturated fatty acids accumulated in the recrude cing ovaries during fall and the weight percentage of n-3 polyunsaturated fatty acids in ovary polar lipids also increased significantly. Additionally, the n-3 polyunsaturated fatty acid content of somatic polar lipids increased significantly during fall due to increases in the total polar lipid content of the somatic tissues. This suggests that during fall n-3 polyunsaturated fatty acid are diverted away from somatic neutral lipids and thereby conserved for use in ovary construction and for incorporation into tissue polar lipids. The percentage of n-3 polyunsaturated fatty acid in ovary neutral lipids also declined during fall and early winter, perhaps as an adaptation to conserve these fatty acids for storage in oocyte polar lipids and later incorporation into cellular membranes of the developing embryo. Reductions in the n-3 polyunsaturated fatty acids content of somatic and ovarian neutral lipids during fall were compensated for specifically by increases in the percentage of monounsaturated fatty acids rather than saturated fatty acids. This suggests that the ratio of saturated to unsaturated fatty acids in pike neutral lipid, is regulated physiologically, and hence may influence the physiological functioning of these lipids. During fall and early winter the percentage of saturated fatty acids declined significantly in the polar lipids of all tissues examined. This change was consistent with the known effects of cold acclimation on the fatty acid composition of cellular membranes. As the ovaries were recrudescing from September to January, liver polar lipids exhibited significant decreases in the percentage of total polyunsaturated fatty acids and n-3 polyunsaturated fatty acids and increases in monounsaturated fatty acids, and acquired a fatty acid composition very similar to that of ovary polar lipids. Therefore, seasonal changes in the percentage of polyunsaturated and monounsaturated fatty acids in liver polar lipids probably reflect the liver's role in vitellogenesis rather than the effects of temperature on membrane fatty acid composition. At all times of year, the fatty acid compositions of white muscle and adipopancreatic tissue neutral lipids were very similar, which may indicate a close metabolic relationship between these lipid compartments.Abbreviations AP adipopancreatic - BHT butylated hydroxytoluene - CI confidence interval - EFA essential fatty acids - MUFA monounsaturated fatty acids - NL neutral lipids - PL polar lipids - PUFA polyunsaturated fatty acids - SFA saturated fatty acids  相似文献   

19.
Changing Fatty Acid Content of Growth Cone Lipids Prior to Synaptogenesis   总被引:1,自引:0,他引:1  
The developing mouse was used to assess biochemical changes in membrane lipids during the period when nerve growth cones become synapses. Growth cone particles and synaptosomes were simultaneously obtained from common brain homogenates. Incorporation of the essential fatty acid, docosahexaenoic acid (22:6 omega-3), was correlated with the developmental changes in endogenous fatty acid content of growth cones and synaptosomes. Analysis of endogenous lipid content indicated that, at all ages studied, the growth cones contained more arachidonoyl acyl chains (20:4 omega-6) than did synaptosomes. Before the onset of synaptogenesis, levels of arachidonoyl chains increased and levels of 22:6, oleoyl and linoleoyl chains decreased in synaptosomes. Although stearoyl and palmitoyl (16:0) remained stable in synaptosomes, 16:0 decreased in growth cones. With the exception of 16:0 and 20:4, endogenous fatty acyl content of growth cones and synaptosomes became similar by postnatal day 10, which coincides with the onset of synaptogenesis. When 5-day-old mouse pups were injected intraperitoneally with [3H]22:6, the incorporation into growth cone and synaptosome phospholipids was greatest in phosphatidylethanolamine, followed by phosphatidylserine and phosphatidylcholine. Nominal labeling was present in phosphatidic acid and phosphatidylinositol. Labeling in neutral lipids was less than that of phospholipids, with triacylglycerol incorporating most of the neutral lipid label, followed by diacylglycerol and free 22:6. Only the growth cone fraction contained detectable amounts of 22:6-labeled cholesterol esters. The distribution of 22:6 label in plasma 72 h after injection indicated that approximately 60% of the label was in phospholipids with approximately 40% in neutral lipids and less than 5% in free fatty acids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
BACKGROUND: Oxidized low-density lipoproteins play key roles in atherosclerosis. Their toxicity is at least in part due to 7-ketocholesterol (7KC), which is a potent inducer of apoptosis. In this study on human promonocytic U937 cells, we determined the effects and the interactions of 7KC with cellular lipids during 7KC-induced apoptosis. METHODS: Morphologic and functional changes were investigated by microscopic and flow cytometric methods after staining with propidium iodide, 3,3'-dihexyloxacarbocyanine iodide, and Hoechst 33342. Cellular lipid content was identified by using filipin to quantify free cholesterol and Nile Red (NR), which emit a yellow or orange-red fluorescence in the presence of neutral and polar lipids, respectively. After staining with NR, interactions of 7KC with cellular lipids were identified by fluorescence resonance energy transfer biphoton spectral imaging confocal microscopy and by subcellular fractionation, gas chromatography, and mass spectrometry. RESULTS: During 7KC-induced apoptosis the fluorescence from filipin and the ratio of measured (orange-red vs. yellow) fluorescence of NR were enhanced. Spectral analysis of images obtained in biphoton mode and resulting factor images demonstrated the occurrence of fluorescence resonance energy transfer between 7KC and NR and the subsequent colocalization of 7KC and NR. These data were in agreement with biochemical characterization and demonstrated that 7KC and neutral and polar lipids accumulate in NR-stained cytoplasmic structures. CONCLUSIONS: During 7KC-induced apoptosis, 7KC modifies the cellular content of neutral and polar lipids, favors free cholesterol accumulation, and colocalizes with neutral and polar lipids that are inside NR-stained cytoplasmic structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号