首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
DNA双链断裂(double strand breaks, DSBs)对细胞生存是致命的.细胞内非同源末端连接(NHEJ)、重组修复(HDR)、单链退火修复(SSA)和微同源序列末端连接(MMEJ)等通路可竞争性修复DNA双链断裂损伤.在肿瘤细胞DNA中制造难以修复的基因损伤,诱导肿瘤细胞周期中止、坏死和凋亡是临床放、化疗的主要策略.组蛋白去乙酰化酶(histone deacetylase)作为抗肿瘤治疗的新靶标,其抑制剂(histonedeacetylase inhibitors, HDACi)可显著降低肿瘤细胞DSBs修复能力,增强肿瘤细胞的放、化疗敏感性.研究显示,HDACi抑制了肿瘤细胞中具有正确修复倾向的HDR和经典NHEJ通路,具有错误修复倾向的SSA和MMEJ路径也可能牵涉其中.目前,HDACi作用于DSBs修复通路的分子机制已取得较大进展,但仍有许多问题有待阐明.  相似文献   

2.
肢体缺血后的氧化应激反应将导致肌肉损伤,刺激肌卫星细胞(satellite cells,SCs)的成肌分化,从而完成损伤修复,而肌源性miRNAs参与其中。原花青素(proanthocyanidins,PC)来源于植物多酚提取物,具有抗氧化应激的作用。但原花青素对缺血肌肉的作用和机制尚不明确。本文研究原花青素对小鼠后肢缺血肌肉的作用,探讨miR 133b在其中的表达及作用。雄性C57/BL6小鼠经左后肢缺血后随机分为:对照组(H2O)、低浓度PC(low dose PC,LDPC)组(1 mg/kg)和高浓度PC(high dose PC,HDPC)组(20 mg/kg)。对缺血肢体运动功能评分:7 d时,对照组为1.33±0.14,LDPC组为1.50±0.15,HDPC组为2.08±0.23;14 d时,对照组为2.17±0.31,LDPC组为2.00±0.37,HDPC组为3.83±0.17。说明高浓度PC可促进缺血肢体运动功能恢复(P<0.05)。测定各组的氧化应激产物丙二醛含量,在7 d时:血浆中,对照组为32.85±7.61 nmol/μL,LDPC组为35.90±7.45 nmol/μL,HDPC组为10.46±2.49 nmol/μL;缺血肌肉中,对照组为39.75±7.61 nmol/μg,LDPC组为28.75±7.05 nmol/μg,HDPC组为15.80±3.63 nmol/μg。表明高浓度PC可有效降低后肢缺血小鼠体内氧化应激水平(P<0.05)。HE染色结果显示,高浓度组再生肌纤维比例(7 d,53.88%±8.13%;21 d,39.30%±0.37%)均明显高于(P<0.05)对照组(7 d,10.61%±3.00%;21 d,22.61%±3.16%)和低浓度组(7 d,14.57%±2.94%;21 d,18.74%±4.73%)。RT-qPCR检测缺血肌肉中miR-133b-3p含量,与对照组相比,高浓度组的miR-133b-3p表达上调(3.26倍,P<0.05)。生物信息学分析发现,PPP2CA、PPP2CB和MKP-1可能是miR-133b-3p的靶基因。Western印迹检测发现,与对照组相比,高浓度组PCNA、MyoD和ERK2表达升高,而p-ERK2表达下降(P<0.05)。以上结果说明,高浓度原花青素可降低缺血后的氧化应激反应,促进缺血肌肉再生,而miR-133b-3p和ERK信号通路可能参与其中。  相似文献   

3.
目的:观察维生素B12联合叶酸对冠心病患者同型半胱氨酸(homocysteine,Hcy)水平的调控效果。方法:选取2018年8月-2019年12月来我院就诊的120例冠心病患者,按照随机数字表分为对照组和干预组,同期从本院随机选取60例健康体检者作为健康对照组。对照组给予常规药物治疗;干预组在常规药物治疗基础上增加维生素B12和叶酸联合干预4周;健康对照组不给予任何干预措施。采集所有研究对象在干预前和干预后晨起空腹静脉血测定血清Hcy水平以及干预组和对照组干预前后血清NO、ET-1、sICAM-1水平,观察3组间血清Hcy水平差异,各组干预前后血清Hcy水平差异,以及干预组和对照组经干预后血清NO、ET-1、sICAM-1水平的变化和两组间的差异。结果:维生素B12和叶酸联合干预前,对照组和干预组患者血清Hcy水平高于健康对照组,而对照组和干预组患者血清Hcy水平无差异。联合干预后,干预组患者血清Hcy水平明显降低[(15.105±2.998 vs 21.370±2.891)μmol/L],且低于对照组[(15.105±2.998 vs 20.037±3.367)μmol/L](P<0.05);干预组和对照组患者血清NO水平均较干预前增高(P<0.05),且干预组患者血清NO水平明显高于对照组[(69.555±5.277 vs 62.248±5.283)μmol/L]( P<0.05);两组患者血清ET-1[(59.680±6.109 vs 69.047±4.917)pg/mL]和sICAM-1[(202.375±5.951 vs 230.838±8.208)μg/L]水平均明显下降,且干预组下降更明显(P<0.05)。结论:冠心病患者血清Hcy水平高于正常对照者,而维生素B12和叶酸联合干预可明显降低冠心病患者血清Hcy水平,调整血管内皮因子水平。  相似文献   

4.
DNA双链断裂(double strand breaks,DSBs)对细胞生存是致命的。细胞内经典非同源末端连接(classical non-homologous end joining,C-NHEJ)和选择性非同源末端连接(alternative non-homologous end joining,A-NHEJ)、重组修复(homology-directed repair,HDR)、单链退火修复(single-strand annealing,SSA)等通路可竞争性修复DNA双链断裂损伤。其中,SSA途径不使用同源染色体或姐妹染色单体,仅依赖于重复序列彼此退火配对,并涉及遗传信息的丢失,是容易出错的修复过程,具有诱变性。相比其他修复途径,在细胞周期S和G_2期中,末端切除暴露出更长的同源重复序列(20 bp),有利于细胞选择SSA途径进行修复。在一些SSA活性升高的同源重组(homologous recombination,HR)缺陷癌症中,癌症细胞可利用SSA途径获得耐药性,也预示着疾病风险的提高。因此,靶向SSA途径的抑制剂具有抑制癌症进展,以及逆转肿瘤细胞对聚腺苷二磷酸核糖聚合酶(poly ADP-ribose polymerase,PARP)抑制剂耐药的作用,是一种新型的治疗策略,可能成为特定同源重组缺陷癌症风险评估的有力工具。检测SSA活性将有助于更好区分癌症的发生和进展。同时随着基因编辑技术的发展,基于SSA途径的荧光报告基因方法,用于检测规律成簇的间隔短回文重复序列(clustered regularly interspaced short palindromic repeats,CRISPR-Cas9)系统中引导RNA(gRNA)的特异性和裂解活性被证明是有效、可靠的策略,同时结合CRISPR-Cas9靶向和SSA诱导的DNA编辑,可以特定模式表达多个gRNA并实现多种细胞类型特异性操作和组合遗传靶向。尽管对SSA途径的研究与基于SSA途径的技术应用已取得不错的进展,但仍有许多问题有待阐明。  相似文献   

5.
该文旨在利用CRISPR/Cas9构建G6PD基因c.1388GA突变的HEK293/K562细胞株,为G6PD缺陷症及其修复研究提供细胞模型。针对G6PD基因c.1388GA位点设计单链向导RNA(sg RNA)与突变同源臂,利用CRISPR/Cas9联合同源重组修复(HDR)构建G6PD基因c.1388GA突变的HEK293细胞株与红白血病K562细胞株; qRT-PCR、Western blot检测G6PD基因表达; CCK8检测细胞增殖;G6PD/6PGD比值法检测G6PD酶活性;结晶紫染色与Annexin V-APC/7-AAD验证突变细胞株对氧化活性药物维生素K3与伯安喹的耐受情况。结果显示,成功构建CRISPR/Cas9双质粒载体系统;筛选单克隆细胞经测序鉴定显示,成功构建G6PD基因c.1388GA突变的HEK293与K562细胞株,且无脱靶;进一步发现, c.1388GA突变不影响HEK293与K562细胞G6PD基因mRNA转录与蛋白翻译,但细胞增殖减慢, G6PD酶活性下降;突变HEK293细胞对维生素K3与伯安喹的耐受力减弱,突变K562细胞对伯安喹耐受能力减弱。该研究成功构建G6PD基因c.1388GA突变的HEK293与K562细胞株,为G6PD缺陷症及后期基因修复研究提供细胞模型。  相似文献   

6.
凋亡蛋白(apoptin)因可特异性诱导肿瘤细胞和转化细胞凋亡而备受广大研究人员的关注。但由于凋亡蛋白质本身结构特性等方面的原因,导致通过原核表达的蛋白质不稳定,很容易聚集沉淀,并且凋亡蛋白质本身也不能自主跨膜进入胞内发挥其生物学作用。本文考察了一种野生型凋亡蛋白N-末端缺失突变体tApoptin(1~43氨基酸残基缺失)在大肠杆菌中以可溶性形式表达,并且通过荧光显微镜和共聚焦显微镜观察到,这种N-端缺失突变体tApoptin与绿色荧光蛋白(green fluorescent protein, EGFP)的融合蛋白质具有自主进入A549、HeLa、H460和SK-OV-3等多种肿瘤细胞的能力,而且这种转运效率具有细胞特异性。与肝素钠共孵育可抑制tApoptin进入细胞的能力,推测tApoptin可能是通过与细胞表面硫酸乙酰肝素多糖结合后被内吞进入细胞。MTT的结果显示,突变体tApoptin依然保持了全长凋亡蛋白质的抗肿瘤特性,对所测试的多种肿瘤细胞生长都具有不同程度的抑制作用。与tApoptin给药组相比,tApoptin与传统中药材来源的商陆皂苷甲(esculentoside, EsA)联用的给药组,对测试的4种肿瘤细胞的药效提升约100倍以上。其中,对SK-OV-3细胞的提升效果最显著,提升463倍,半抑制浓度(half maximal inhibitory concentration, IC50)从27.37 ± 2.25 μmol/L 降低到 0.059 ± 0.003 μmol /L。流式细胞术分析表明,与tApoptin给药组相比,tApoptin与EsA联合的给药组细胞凋亡率显著增加(6.46 ± 0.34% vs. 41.9 ± 0.47%, P<0.001)。与溶酶体共定位的共聚焦结果表明,EsA可能通过破坏细胞中的溶酶体促使tApoptin释放到胞质内有效发挥其药理作用。  相似文献   

7.
目的:探讨链亲和素修饰的CdSe/ZnS核壳结构量子点(CdSe/ZnS-SA)对稳定转染pcDNA3.1/APP595/596质粒的人胚肾(HEK293)细胞的短期毒性作用.方法:将CdSe/ZnS-SA量子点与稳定转染pcD-NA3.1/APP595/596质粒的HEK293细胞共培育,在倒置荧光显微镜下观察细胞形态学变化;MTT法测定细胞活性;流式细胞术检测细胞凋亡率.结果:终浓度为2.5 nmol/L-20 nmol/L的CdSe/ZnS-SA量子点与HEK293细胞分别共育8h、16h、24 h后,细胞的形态无明显改变;终浓度为2.5 nmol/L-25 nmol/L的CdSe/ZnS-SA量子点与HEK293细胞分别共育8h、16 h、24 h,各处理组与对照组间,各处理组间的吸光度值、细胞凋亡率差异均无统计学意义(P>0.05).结论:一定浓度范围的CdSe/ZnS-SA量子点在短期内对稳定转染pcDNA3.1/APP595/596质粒的HEK293细胞无明显的毒性作用,具有较好的生物相容性.  相似文献   

8.
目的:建立基于细胞水平的inositol-requiring 1/X-box-binding protein 1 (IRE1/XBP1)信号通路高通量筛选模型,用于发现新型IRE1/XBP1信号通路抑制剂。方法:构建pCAX-F-XBP1△DBD-luciferase质粒,并与pcDNA3.1质粒共转人胚肾细胞HEK293,G418抗性筛选获得多个稳定表达荧光素酶的单克隆。结果:首先利用内质网应激诱导剂衣霉素(tunicamycin,TM)考察单克隆对内质网应激反应的敏感性,确定6#单克隆用于后续研究;其次对细胞接种量、溶剂DMSO终浓度和TM的作用浓度与孵育时间等条件进行优化,最终确定高通量筛选模型条件, Z'因子达到0.62;最后对包含多个激酶抑制剂在内的449个化合物进行筛选,发现27个潜在的IRE1/XBP1抑制剂,其中MG132、Sunitinib和Staurosporine的IC50分别为6.61(±1.51)μmol/L、6.25(±0.36)μmol/L和48(±8)nmol/L。结论:成功建立有效靶向IRE1/XBP1信号通路的高通量药物筛选模型,为基于IRE1/XBP1信号通路为靶点的药物发现奠定坚实基础。  相似文献   

9.
DNA双链断裂(double strand breaks,DSBs)是细胞最严重的DNA损伤形式。细胞通过同源重组(homologous recombination,HR)和非同源末端连接(non-homologous end joining,NHEJ)途径修复DNA双链断裂损伤。聚腺苷二磷酸核糖基化(poly(ADP-ribosyl)ation,PARylation)是蛋白质翻译后修饰过程,这个过程由聚腺苷二磷酸 核糖聚合酶家族(poly(ADP-ribose)polymerases,PARPs)催化完成。PARP1作为PARPs家族最重要的成员,其在DNA损伤应答方面发挥重要作用。研究显示,PARP1在DSBs修复过程中发挥关键作用,参与DSBs的早期应答反应及其具体修复途径,可依据KU蛋白的存在与否发挥不同的特定作用。本文较全面地综述了PARP1在DNA双链断裂修复方面的潜在作用,将为临床疾病的诊治提供新的思路。  相似文献   

10.
最新研究表明,长链非编码RNA GAS5(lncRNA GAS5)可调节血管内皮细胞的凋亡,但对内皮细胞其他功能的调控并不明确。本研究旨在了解lncRNA GAS5对内皮细胞的增殖、成血管、NO分泌及内皮标志分子CD31和vWF表达的影响及可能机制。将LncRNA GAS5干扰慢病毒(LV-GAS5-RNAi)转染人脐静脉内皮细胞株(EA.hy926)后,采用CCK8及Matrigel胶分别检测EA.hy926的增殖和成血管能力;硝酸还原酶法检测NO的分泌情况;real-time RT-PCR检测CD31、vWF及miR-21的表达;Western印迹检测PTEN在蛋白质水平的表达。结果显示:与对照组比较,LV-GAS5-RNAi组EA.hy926增殖能力无明显变化(0.34±0.01 vs. 0.34±0.04,P>0.05),而其成血管能力升高(133.70±12.64 vs. 100.00±4.65,P<0.05),NO的分泌量亦增加(28.54±2.75 μmol/L vs.15.11±1.19 μmol/L,P<0.01);内皮标志分子CD31(是对照组的1.46倍)及vWF(是对照组的2.94倍)的基因表达量均显著升高。同时,miR-21表达亦明显升高(是对照组的1.42倍),而miR-21下游靶基因PTEN蛋白质的表达量则显著降低(0.13±0.05 vs. 0.38±0.03,P<0.01)。以上结果提示,LncRNA GAS5抑制了内皮细胞的功能,miR-21、PTEN信号分子可能参与其中的调节。  相似文献   

11.
Repair of chromosomal breaks is essential for cellular viability, but misrepair generates mutations and gross chromosomal rearrangements. We investigated the interrelationship between two homologous-repair pathways, i.e., mutagenic single-strand annealing (SSA) and precise homology-directed repair (HDR). For this, we analyzed the efficiency of repair in mammalian cells in which double-strand break (DSB) repair components were disrupted. We observed an inverse relationship between HDR and SSA when RAD51 or BRCA2 was impaired, i.e., HDR was reduced but SSA was increased. In particular, expression of an ATP-binding mutant of RAD51 led to a >90-fold shift to mutagenic SSA repair. Additionally, we found that expression of an ATP hydrolysis mutant of RAD51 resulted in more extensive gene conversion, which increases genetic loss during HDR. Disruption of two other DSB repair components affected both SSA and HDR, but in opposite directions: SSA and HDR were reduced by mutation of Brca1, which, like Brca2, predisposes to breast cancer, whereas SSA and HDR were increased by Ku70 mutation, which affects nonhomologous end joining. Disruption of the BRCA1-associated protein BARD1 had effects similar to those of mutation of BRCA1. Thus, BRCA1/BARD1 has a role in homologous repair before the branch point of HDR and SSA. Interestingly, we found that Ku70 mutation partially suppresses the homologous-repair defects of BARD1 disruption. We also examined the role of RAD52 in homologous repair. In contrast to yeast, Rad52(-)(/)(-) mouse cells had no detectable HDR defect, although SSA was decreased. These results imply that the proper genetic interplay of repair factors is essential to limit the mutagenic potential of DSB repair.  相似文献   

12.
Precise genome editing with desired point mutations can be generated by CRISPR/Cas9-mediated homology-directed repair (HDR) and is of great significance for gene function study, gene therapy and animal breeding. However, HDR efficiency is inherently low and improvements are necessitated. Herein, we determined that the HDR efficiency could be enhanced by expressing Rad52, a gene that is involved in the homologous recombination process. Both the Rad52 co-expression and Rad52-Cas9 fusion strategies yielded approximately 3-fold increase in HDR during the surrogate reporter assays in human HEK293T cells, as well as in the genome editing assays. Moreover, the enhancement effects of the Rad52-Cas9 fusion on HDR mediated by different (plasmid, PCR and ssDNA) donor templates were confirmed. We found that the HDR efficiency could be significantly improved to about 40% by the combined usage of Rad52 and Scr7. In addition, we also applied the fusion strategy for modifying the IGF2 gene of porcine PK15 cells, which further demonstrated a 2.2-fold increase in HDR frequency. In conclusion, our data suggests that Rad52-Cas9 fusion is a good option for enhancing CRISPR/Cas9-mediated HDR, which may be of use in future studies involving precise genome editing.  相似文献   

13.
Homology directed repair (HDR) defends cells against the toxic effects of two-ended double strand breaks (DSBs) and one-ended DSBs that arise when replication progression is inhibited, for example by encounter with DNA lesions such as interstrand crosslinks (ICLs). HDR can occur via various mechanisms, some of which are associated with an increased risk of concurrent sequence rearrangements that can lead to deletions, insertions, translocations and loss of heterozygosity. Here, we compared the risk of HDR-associated sequence rearrangements that occur spontaneously versus in response to exposure to an agent that induces ICLs. We describe the creation of two fluorescence-based direct repeat recombination substrates that have been targeted to the ROSA26 locus of embryonic stem cells, and that detect the major pathways of homologous recombination events, e.g., gene conversions with or without crossing over, repair of broken replication forks, and single strand annealing (SSA). SSA can be distinguished from other pathways by application of a matched pair of site-specifically integrated substrates, one of which allows detection of SSA, and one that does not. We show that SSA is responsible for a significant proportion of spontaneous homologous recombination events at these substrates, suggesting that two-ended DSBs are a common spontaneous recombinogenic lesion. Interestingly, exposure to mitomycin C (an agent that induces ICLs) increases the proportion of HDR events associated with deletions and insertions. Given that many chemotherapeutics induce ICLs, these results have important implications in terms of the risk of chemotherapy-induced deleterious sequence rearrangements that could potentially contribute to secondary tumors.  相似文献   

14.
非同源末端连接(nonhomologous end joining, NHEJ)是动物基因组DNA双链断裂(double-strand break, DSB)修复的优选途径,通过与同源重组(homologous recombination, HR)竞争DSB靶点,进而抑制HR的效率。为提高HR效率,本研究针对猪NHEJ通路修复关键因子PNKP、LIG4和NHEJ1的编码序列,设计并合成相应的靶向小干扰RNA (small interfering RNA, siRNA),组成若干对RNAi (RNA interference)系统,将RNAi系统与报告质粒SSA-GFP reporter、HDR -GFP system和ssODN-GFP system共转染至猪胎儿成纤维细胞(porcine fetal fibroblasts, PFFs),检测敲低上述NHEJ关键修复因子后对HR的影响。RNAi结果显示,针对PNKPLIG4NHEJ1设计的siRNA均可显著敲低PNKPLIG4NHEJ1基因的表达(P<0.05)。选择干扰效果最好的siRNA与报告载体共转染PFFs,结果表明干扰PNKP基因表达后可显著提高单链退火(single strand annealing, SSA)修复效率、双链或单链DNA介导的同源重组定向修复(homology-directed repair, HDR)效率分别为55.7%、37.4%和73.1% (P<0.05),而干扰LIG4NHEJ1分别提高双链和单链介导的HDR效率为37.5% 和 76.9% (P<0.05)。  相似文献   

15.
The process of single‐strand annealing (SSA) repairs DNA double‐strand breaks that are flanked by direct repeat sequences through the coordinated actions of a series of proteins implicated in recombination, mismatch repair and nucleotide excision repair (NER). Many of the molecular and mechanistic insights gained in SSA repair have principally come from studies in the budding yeast Saccharomyces cerevisiae. However, there is little molecular understanding of the SSA pathway in the fission yeast Schizosaccharomyces pombe. To further our understanding of this important process, we established a new chromosome‐based SSA assay in fission yeast. Our genetic analyses showed that, although many homologous components participate in SSA repair in these species indicating that some evolutionary conservation, Saw1 and Slx4 are not principal agents in the SSA repair pathway in fission yeast. This is in marked contrast to the function of Saw1 and Slx4 in budding yeast. Additionally, a novel genus‐specific protein, Rsf1/Pxd1, physically interacts with Rad16, Swi10 and Saw1 in vitro and in vivo. We find that Rsf1/Pxd1 is not required for NER and demonstrate that, in fission yeast, Rsf1/Pxd1, but not Saw1, plays a critical role in SSA recombination.  相似文献   

16.
DNA interstrand cross-links (ICL)-inducing agents such as cisplatin, mitomycin C (MMC) and nitrogen mustards are widely used as potent antitumor drugs. Although ICL repair mechanism is not yet well characterized in mammalian cells, this pathway is thought to involve a sequential action of nucleotide excision repair (NER) and homologous recombination (HR). The importance of unraveling ICL repair pathways is highlighted by the hypersensitivity to ICL-inducing agents in cells of patients with the genetic disease Fanconi anemia (FA) and in cells mutated in the Breast Cancer susceptibility genes BRCA1 and BRCA2. To better characterize the involvement of HR in the sensitivity to ICL-inducing agents, we examined spontaneous and ICL-induced HR in rodent FA-like V-H4 cells. In this report, we show that MMC-hypersensitive V-H4 cells exhibit an increased spontaneous homology-directed repair (HDR) activity compared to the resistant V79 parental cells. Elevated HDR activity results mainly in increased conservative Rad51-dependent recombination, without affecting non-conservative single-strand annealing process (SSA). We also show that HDR activity is enhanced following MMC treatment in parental cells, but not in rodent FA-like V-H4 cells. Moreover, our data indicate that Rad51 foci formation is significantly delayed in these FA-like cells in response to crosslinking agent. These findings provide evidence for an impairment of HR control in V-H4 cells and emphasize the involvement of the FA pathway in HR-mediated repair.  相似文献   

17.
Damages in the DNA template inhibit the progression of replication, which may cause single-stranded gaps. Such situations can be tolerated by translesion DNA synthesis (TLS), or by homology-dependent repair (HDR), which is based on transfer or copying of the missing information from the replicated sister chromatid. Whereas it is well established that TLS plays an important role in DNA damage tolerance in mammalian cells, it is unknown whether HDR operates in this process. Using a newly developed plasmid-based assay that distinguishes between the three mechanisms of DNA damage tolerance, we found that mammalian cells can efficiently utilize HDR to repair DNA gaps opposite an abasic site or benzo[a]pyrene adduct. The majority of these events occurred by a physical strand transfer (homologous recombination repair; HRR), rather than a template switch mechanism. Furthermore, cells deficient in either the human RAD51 recombination protein or NBS1, but not Rad18, exhibited decreased gap repair through HDR, indicating a role for these proteins in DNA damage tolerance. To our knowledge, this is the first direct evidence of gap-lesion repair via HDR in mammalian cells, providing further molecular insight into the potential activity of HDR in overcoming replication obstacles and maintaining genome stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号