首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 119 毫秒
1.
聚腺苷二磷酸-核糖聚合酶1(poly ADP-ribose polymerase-1,PARP1)是细胞中重要的修饰酶,其最广为人知的作用是通过自身PAR修饰,募集以XRCC1为首的多种DNA损伤修复效应蛋白质,参与DNA单、双链损伤修复。PARP1还能通过促进复制叉停滞与核小体解聚,为DNA损伤修复提供有利条件,维持基因组稳定性。近年来,除DNA损伤修复方面的作用,还发现PARP1能影响细胞凋亡、自噬与炎症通路,与神经退行性疾病的发生发展密切相关。而PARP抑制剂(PARP inhibitor,PARPi)是一种靶向PARP1,与细胞同源重组(homologous recombination,HR)缺陷表型共同作用,产生合成致死效应的抗肿瘤药物。该药物可捕获PARP1并抑制其活性,一方面直接干扰PARP1参与的DNA损伤修复通路,另一方面也抑制了PARP1介导的DNA损伤修复通路选择和复制叉停滞,使细胞基因组不稳定。然而,在临床治疗中常发现肿瘤细胞对PARPi不敏感。肿瘤细胞对PARPi耐药与自身基因突变高度相关,这些基因分别作用于细胞HR修复途径、PARP1循环途径、复制叉稳定性和药物主动外排等方面,在耐药肿瘤患者中确定具体的突变位点,将为临床治疗提供帮助。本文旨在对PARP1的功能作一综述,并重点介绍PARPi的作用机制和与肿瘤耐药相关的突变基因及其耐药机制,以期加深对细胞中PARP1介导的DNA损伤修复通路的认识,并为将来的临床治疗提供新思路。  相似文献   

2.
聚腺苷二磷酸核糖基聚合酶(poly (ADP-ribose) polyerase, PARP)是存在于多数真核细胞中的一个蛋白质翻译后修饰酶,它可催化组蛋白H1等重要核蛋白及它自身的聚腺苷二磷酸核糖基化作用.细胞受到外界损伤因子作用时, DNA发生链断裂,PARP结合到DNA断裂口,其催化活性被激活,修饰受体蛋白,进而引发一系列级联反应.这种性质使PARP有可能作为细胞内的分子感受器和传感器,启动细胞内对损伤作出反应的信号传导机制,从而根据细胞受损程度决定细胞的命运:修复或是死亡.  相似文献   

3.
DNA双链断裂(double strand breaks,DSBs)对细胞生存是致命的。细胞内经典非同源末端连接(classical non-homologous end joining,C-NHEJ)和选择性非同源末端连接(alternative non-homologous end joining,A-NHEJ)、重组修复(homology-directed repair,HDR)、单链退火修复(single-strand annealing,SSA)等通路可竞争性修复DNA双链断裂损伤。其中,SSA途径不使用同源染色体或姐妹染色单体,仅依赖于重复序列彼此退火配对,并涉及遗传信息的丢失,是容易出错的修复过程,具有诱变性。相比其他修复途径,在细胞周期S和G_2期中,末端切除暴露出更长的同源重复序列(20 bp),有利于细胞选择SSA途径进行修复。在一些SSA活性升高的同源重组(homologous recombination,HR)缺陷癌症中,癌症细胞可利用SSA途径获得耐药性,也预示着疾病风险的提高。因此,靶向SSA途径的抑制剂具有抑制癌症进展,以及逆转肿瘤细胞对聚腺苷二磷酸核糖聚合酶(poly ADP-ribose polymerase,PARP)抑制剂耐药的作用,是一种新型的治疗策略,可能成为特定同源重组缺陷癌症风险评估的有力工具。检测SSA活性将有助于更好区分癌症的发生和进展。同时随着基因编辑技术的发展,基于SSA途径的荧光报告基因方法,用于检测规律成簇的间隔短回文重复序列(clustered regularly interspaced short palindromic repeats,CRISPR-Cas9)系统中引导RNA(gRNA)的特异性和裂解活性被证明是有效、可靠的策略,同时结合CRISPR-Cas9靶向和SSA诱导的DNA编辑,可以特定模式表达多个gRNA并实现多种细胞类型特异性操作和组合遗传靶向。尽管对SSA途径的研究与基于SSA途径的技术应用已取得不错的进展,但仍有许多问题有待阐明。  相似文献   

4.
DNA双链断裂(DSBs)是严重的DNA损伤形式之一,生物体对DSBs的修复可通过同源重组(HR)或非同源末端连接途径(NHEJ)进行。长期以来,人们普遍认为HR是细菌DSBs修复的惟一途径,但在分支杆菌和其它原核生物体内NHEJ途径的发现,使这一观念得以颠覆。最近的研究表明,细菌NHEJ修复系统是一个双组分系统,包含一个多功能的DNA连接酶(LigD)和DNA末端结合蛋白Ku,具有DSBs修复所需的断裂末段识别、末端加工和连接活性。重点综述细菌NHEJ修复系统的组成、结构以及生理功能。  相似文献   

5.
DNA双链断裂修复与重症联合免疫缺陷   总被引:1,自引:0,他引:1  
Wang KY  Zhao YH  Li WG 《生理科学进展》2008,39(2):182-184
DNA双链断裂(double-strand breaks, DSBs)是细胞DNA损伤的主要类型,它的修复通过同源重组(HR)和非同源末端连接(NHEJ)两种机制实现.NHEJ是人和哺乳动物细胞DSBs修复的重要通路,主要由DNA依赖性蛋白激酶(DNA-PK)、X射线修复交叉互补蛋白4(XRCC4)、DNA连接酶Ⅳ、Artemis、XLF/Cernunnos和其它DNA损伤修复辅助因子组成.本文重点介绍了NHEJ机制主要成分的特性及其功能,以及这些组分的基因发生突变或缺失所引起的DSBs修复缺陷与辐射敏感性重症联合免疫缺陷(radiosensitive severe combined immunodeficiencies, RS-SCIDs).  相似文献   

6.
DNA损伤反应在维持细胞基因组稳定性和机体存活发挥重要作用。DNA双链断裂(Double strand breaks,DSBs)是DNA损伤最严重的形式。同源重组修复是体内参与DSBs损伤修复的重要机制之一,其中Rad51是体内参与同源重组性DNA修复的关键因子。Rad51在人类的多种肿瘤组织中高表达,如乳腺癌、非小细胞肺癌、前列腺癌等,与肿瘤的转移和恶化相关。如何有效下调肿瘤组织中的Rad51的水平,降低肿瘤细胞的DNA损伤修复能力,从而提高肿瘤治疗的疗效具有潜在的临床应用价值。本文对近年来的一个研究热点靶向Rad51在肿瘤治疗研究中的应用进行综述。  相似文献   

7.
DSBs(DNA双链断裂)是细胞DNA在内外各种因素影响下产生的一种严重损伤,也是包括肿瘤在内的多种疾病发生发展的重要原因之一。为修复该损伤,机体形成了包括同源重组(HR)、非同源末端连接(NHEJ)等在内的多种修复通路;在不同情况下,机体对修复通路的选择受到多种因素的影响。近年来的研究表明,包括细胞类型、末端切除、细胞周期、损伤原因、损伤位置等在内的诸多因素对修复通路的选择均起到了重要的作用。本综述介绍了DSBs修复的常见通路,并对DSBs修复通路的影响因素的最新研究进展进行了综述。  相似文献   

8.
DNA双链断裂(DNA double-strand breaks, DSBs)是威胁基因组完整性和细胞存活的最有害的DNA损伤类型。同源重组(homologous recombination,HR)和非同源末端连接(non-homologous end joining,NHEJ)是修复DNA双链断裂的两种主要途径。DSB修复涉及到损伤部位修复蛋白的募集和染色质结构的改变。在DNA双链断裂诱导下,染色质结构的动态变化在时间和空间上受到严格调控,进而对DNA双链断裂修复过程进行精细调节。特定的染色质修饰形成利于修复的染色质状态,有助于DNA双链断裂修复机器的招募、修复途径的选择和DNA损伤检查点的活化;其中修复途径的选择对于基因组稳定性至关重要。修复不当或失败可导致基因组不稳定性,甚至促进肿瘤的发生。本文综述了染色质结构和染色质修饰的动态变化在DSB修复中的重要作用。此外,文章还总结了在癌症治疗中靶向关键染色质调控因子在基因组稳定性维持、肿瘤发生发展以及潜在临床应用价值等方面的进展。  相似文献   

9.
DNA双链断裂(double strand break, DSB)是一种导致基因组不稳定性的高毒性损伤,可引起染色质畸变诱发癌症.真核生物中演化出多条保守的DSB损伤修复途径,其中最重要的修复途径是典型的非同源末端连接(classical non-homologous end joining, cNHEJ)和同源重组(homologous recombination, HR),这两种修复途径解决了细胞中大多数的DSBs.对于不同类型的DSBs,细胞可以审时度势地选择最优的修复途径,以最低的基因组突变风险进行修复.依赖于不断发展的细胞成像技术和分子生物学方法,精细的DSB修复途径选择机制正逐渐展露出来,其调控机制十分复杂而且精密.本文主要阐述了断裂末端结构、DNA末端切除程度、细胞周期、染色质环境、组蛋白修饰和RNA代谢等因素对DSB修复途径的影响,展现了DSB修复途径选择的多样性和灵活性.  相似文献   

10.
DNA双链断裂(double strand breaks, DSBs)对细胞生存是致命的.细胞内非同源末端连接(NHEJ)、重组修复(HDR)、单链退火修复(SSA)和微同源序列末端连接(MMEJ)等通路可竞争性修复DNA双链断裂损伤.在肿瘤细胞DNA中制造难以修复的基因损伤,诱导肿瘤细胞周期中止、坏死和凋亡是临床放、化疗的主要策略.组蛋白去乙酰化酶(histone deacetylase)作为抗肿瘤治疗的新靶标,其抑制剂(histonedeacetylase inhibitors, HDACi)可显著降低肿瘤细胞DSBs修复能力,增强肿瘤细胞的放、化疗敏感性.研究显示,HDACi抑制了肿瘤细胞中具有正确修复倾向的HDR和经典NHEJ通路,具有错误修复倾向的SSA和MMEJ路径也可能牵涉其中.目前,HDACi作用于DSBs修复通路的分子机制已取得较大进展,但仍有许多问题有待阐明.  相似文献   

11.
PARP1 and PARP2 are implicated in the synthesis of poly(ADP-ribose) (PAR) after detection of DNA damage. The specificity of PARP1 and PARP2 interaction with long DNA fragments containing single- and/or double-strand breaks (SSBs and DSBs) have been studied using atomic force microscopy (AFM) imaging in combination with biochemical approaches. Our data show that PARP1 localizes mainly on DNA breaks and exhibits a slight preference for nicks over DSBs, although the protein has a moderately high affinity for undamaged DNA. In contrast to PARP1, PARP2 is mainly detected at a single DNA nick site, exhibiting a low level of binding to undamaged DNA and DSBs. The enhancement of binding affinity of PARP2 for DNA containing a single nick was also observed using fluorescence titration. AFM studies reveal that activation of both PARPs leads to the synthesis of highly branched PAR whose size depends strongly on the presence of SSBs and DSBs for PARP1 and of SSBs for PARP2. The initial affinity between the PARP1, PARP2 and the DNA damaged site appears to influence both the size of the PAR synthesized and the time of residence of PARylated PARP1 and PARP2 on DNA damages.  相似文献   

12.
Poly(ADP-ribosyl)ation is a reversible post-translational modification that plays an essential role in many cellular processes, including regulation of DNA repair. Cellular DNA damage response by the synthesis of poly(ADP-ribose) (PAR) is mediated mainly by poly(ADP-ribose) polymerase 1 (PARP1). The XPC-RAD23B complex is one of the key factors of nucleotide excision repair participating in the primary DNA damage recognition. By using several biochemical approaches, we have analyzed the influence of PARP1 and PAR synthesis on the interaction of XPC-RAD23B with damaged DNA. Free PAR binds to XPC-RAD23B with an affinity that depends on the length of the poly(ADP-ribose) strand and competes with DNA for protein binding. Using 32P-labeled NAD+ and immunoblotting, we also demonstrate that both subunits of the XPC-RAD23B are poly(ADP-ribosyl)ated by PARP1. The efficiency of XPC-RAD23B PARylation depends on DNA structure and increases after UV irradiation of DNA. Therefore, our study clearly shows that XPC-RAD23B is a target of poly(ADP-ribosyl)ation catalyzed by PARP1, which can be regarded as a universal regulator of DNA repair processes.  相似文献   

13.
In mammalian cells, the main pathway for DNA double-strand breaks (DSBs) repair is classical non-homologous end joining (C-NHEJ). An alternative or back-up NHEJ (B-NHEJ) pathway has emerged which operates preferentially under C-NHEJ defective conditions. Although B-NHEJ appears particularly relevant to genomic instability associated with cancer, its components and regulation are still largely unknown. To get insights into this pathway, we have knocked-down Ku, the main contributor to C-NHEJ. Thus, models of human cell lines have been engineered in which the expression of Ku70/80 heterodimer can be significantly lowered by the conditional induction of a shRNA against Ku70. On Ku reduction in cells, resulting NHEJ competent protein extracts showed a shift from C- to B-NHEJ that could be reversed by addition of purified Ku protein. Using a cellular fractionation protocol after treatment with a strong DSBs inducer followed by western blotting or immunostaining, we established that, among C-NHEJ factors, Ku is the main counteracting factor against mobilization of PARP1 and the MRN complex to damaged chromatin. In addition, Ku limits PAR synthesis and single-stranded DNA production in response to DSBs. These data support the involvement of PARP1 and the MRN proteins in the B-NHEJ route for the repair of DNA DSBs.  相似文献   

14.
Ionizing radiation induces a variety of different DNA lesions; in addition to the most critical DNA damage, the DSB, numerous base alterations, SSBs and other modifications of the DNA double-helix are formed. When several non-DSB lesions are clustered within a short distance along DNA, or close to a DSB, they may interfere with the repair of DSBs and affect the measurement of DSB induction and repair. We have shown previously that a substantial fraction of DSBs measured by pulsed-field gel electrophoresis (PFGE) are in fact due to heat-labile sites within clustered lesions, thus reflecting an artifact of preparation of genomic DNA at elevated temperature. To further characterize the influence of heat-labile sites on DSB induction and repair, cells of four human cell lines (GM5758, GM7166, M059K, U-1810) with apparently normal DSB rejoining were tested for biphasic rejoining after gamma irradiation. When heat-released DSBs were excluded from the measurements, the fraction of fast rejoining decreased to less than 50% of the total. However, the half-times of the fast (t(1/2) = 7-8 min) and slow (t(1/2) = 2.5 h) DSB rejoining were not changed significantly. At t = 0, the heat-released DSBs accounted for almost 40% of the DSBs, corresponding to 10 extra DSBs per cell per Gy in the initial DSB yield. These heat-released DSBs were repaired within 60-90 min in all cells tested, including M059K cells treated with wortmannin and DNA-PKcs-defective M059J cells. Furthermore, cells lacking XRCC1 or poly(ADP-ribose) polymerase 1 (PARP1) rejoined both total DSBs and heat-released DSBs similarly to normal cells. In summary, the presence of heat-labile sites has a substantial impact on DSB induction and DSB rejoining rates measured by pulsed-field gel electrophoresis, and heat-labile sites repair is independent of DNA-PKcs, XRCC1 and PARP.  相似文献   

15.
The DNA-dependent protein kinase (DNA-PK) and Poly(ADP-ribose) polymerase-1 (PARP1) are critical enzymes that reduce genomic damage caused by DNA lesions. They are both activated by DNA strand breaks generated by physiological and environmental factors, and they have been shown to interact. Here, we report in vivo evidence that DNA-PK and PARP1 are equally necessary for rapid repair. We purified a DNA-PK/PARP1 complex loaded on DNA and performed electron microscopy and single particle analysis on its tetrameric and dimer-of-tetramers forms. By comparison with the DNA-PK holoenzyme and fitting crystallographic structures, we see that the PARP1 density is in close contact with the Ku subunit. Crucially, PARP1 binding elicits substantial conformational changes in the DNA-PK synaptic dimer assembly. Taken together, our data support a functional, in-pathway role for DNA-PK and PARP1 in double-strand break (DSB) repair. We also propose a NHEJ model where protein-protein interactions alter substantially the architecture of DNA-PK dimers at DSBs, to trigger subsequent interactions or enzymatic reactions.  相似文献   

16.
17.
The human gene that encodes XRCC1 was cloned nearly thirty years ago but experimental analysis of this fascinating protein is still unveiling new insights into the DNA damage response. XRCC1 is a molecular scaffold protein that interacts with multiple enzymatic components of DNA single-strand break repair (SSBR) including DNA kinase, DNA phosphatase, DNA polymerase, DNA deadenylase, and DNA ligase activities that collectively are capable of accelerating the repair of a broad range of DNA single-strand breaks (SSBs). Arguably the most exciting aspect of XRCC1 function that has emerged in the last few years is its intimate relationship with PARP1 activity and critical role in preventing hereditary neurodegenerative disease. Here, I provide an update on our current understanding of XRCC1, and on the impact of hereditary mutations in this protein and its protein partners on human disease.  相似文献   

18.
The DNA damage response is a widely used term that encompasses all signaling initiated at DNA lesions and damaged replication forks as it extends to orchestrate DNA repair, cell cycle checkpoints, cell death and senescence. ATM, an apical DNA damage signaling kinase, is virtually instantaneously activated following the introduction of DNA double-strand breaks (DSBs). The MRE11-RAD50-NBS1 (MRN) complex, which has a catalytic role in DNA repair, and the KAT5 (Tip60) acetyltransferase are required for maximal ATM kinase activation in cells exposed to low doses of ionizing radiation. The sensing of DNA lesions occurs within a highly complex and heterogeneous chromatin environment. Chromatin decondensation and histone eviction at DSBs may be permissive for KAT5 binding to H3K9me3 and H3K36me3, ATM kinase acetylation and activation. Furthermore, chromatin perturbation may be a prerequisite for most DNA repair. Nucleosome disassembly during DNA repair was first reported in the 1970s by Smerdon and colleagues when nucleosome rearrangement was noted during the process of nucleotide excision repair of UV-induced DNA damage in human cells. Recently, the multi-functional protein nucleolin was identified as the relevant histone chaperone required for partial nucleosome disruption at DBSs, the recruitment of repair enzymes and for DNA repair. Notably, ATM kinase is activated by chromatin perturbations induced by a variety of treatments that do not directly cause DSBs, including treatment with histone deacetylase inhibitors. Central to the mechanisms that activate ATR, the second apical DNA damage signaling kinase, outside of a stalled and collapsed replication fork in S-phase, is chromatin decondensation and histone eviction associated with DNA end resection at DSBs. Thus, a stress that is common to both ATM and ATR kinase activation is chromatin perturbations, and we argue that chromatin perturbations are both sufficient and required for induction of the DNA damage response.  相似文献   

19.
20.
Poly(ADP‐ribose) polymerase‐1 (PARP‐1) is a mammalian enzyme that attaches long branching chains of ADP‐ribose to specific nuclear proteins, including itself. Because its activity in vitro is dependent upon interaction with broken DNA, it has been postulated that PARP‐1 plays an important role in DNA strand‐break repair in vivo. The exact mechanism of binding to DNA and the structural determinants of binding remain to be defined, but regions of transition from single‐stranded to double‐strandedness may be important recognition sites. Here we employ surface plasmon resonance (SPR) to investigate this hypothesis. Oligodeoxynucleotide (ODN) substrates that mimic DNA with different degrees of single‐strandedness were used for measurements of both PARP‐1/DNA binding kinetics and PARP‐1's enzyme activities. We found that binding correlated with activity, but was unrelated to single‐strandedness of the ODN. Instead, PARP‐1 binding and activity were highest on ODNs that modeled a DNA double‐strand break (DSB). These results provide support for PARP‐1 recognizing and binding DSBs in a manner that is independent of single‐stranded features, and demonstrate the usefulness of SPR for simultaneously investigating both PARP‐1 binding and PARP‐1 auto‐poly(ADP‐ribosyl)ation activities within the same in vitro system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号