首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
李滨忠 《生命科学》2012,(6):518-520
DNA甲基化是一种非常重要的表观遗传调控方式,在基因印迹、X染色体失活、转座子与外源DNA的沉默及组织特异性基因的中发挥着重要的作用。在哺乳动物的配子发生过程及从受精到着床的早期胚胎发育阶段,基因组DNA发生大规模的主动去甲基化。但去甲基化的分子机制一直是表观遗传领域的谜题。2009年,Anjana Rao及其同事发现一种DNA双氧化酶TET蛋白能够将5-甲基胞嘧啶氧化成5-羟甲基胞嘧啶,这为DNA去甲基化的机制研究开拓了新的思路。在此基础上,徐国良实验室展开了深入研究,发现TET蛋白能够进一步将5-羟甲基胞嘧啶氧化成5-羧基胞嘧啶,并发现糖苷酶TDG能够特异性地识别并切除DNA中的5-羧基胞嘧啶,进而启动碱基切除修复途径完成DNA去甲基化,从而提出了氧化作用与碱基切除修复途径协同介导的DNA主动去甲基化机制。  相似文献   

2.
DNA甲基化是最主要的表观遗传修饰之一,主要发生在胞嘧啶第五位碳原子上,称为5-甲基胞嘧啶。哺乳动物DNA甲基化由从头DNA甲基转移酶DNMT3A/3B在胚胎发育早期建立。细胞分裂过程中甲基化模式的维持由DNA甲基转移酶DNMT1实现。TET家族蛋白氧化5-甲基胞嘧啶成为5-羟甲基胞嘧啶、5-醛基胞嘧啶和5-羧基胞嘧啶,从而起始DNA的去甲基化过程。这些DNA甲基化修饰酶精确调节DNA甲基化的动态过程,在整个生命发育过程中发挥重要作用,其失调也与多种疾病发生密切相关。本文对近年来DNA甲基化修饰酶的结构与功能研究进行讨论。  相似文献   

3.
DNA羟甲基化修饰是基因组表观遗传学的重要调控方式,指5-甲基胞嘧啶(5-m C)在TET蛋白家族的催化作用下氧化生成5-羟甲基胞嘧啶(5-hm C),完成DNA胞嘧啶的去甲基化过程。基因组甲基化异常导致了多种肿瘤的发生,羟甲基化修饰作为去甲基化的一种,同样与肿瘤发生密不可分。在消化系统肿瘤发生发展过程中存在5-hm C含量的变化,其原因可能与TET蛋白家族、IDH突变等密切相关,提示DNA羟甲基化修饰参与了消化系统肿瘤的发生发展过程。本文围绕DNA羟甲基化修饰与消化系统肿瘤之间的关系进行综述,旨在为消化系统肿瘤羟甲基化修饰研究提供新方向。  相似文献   

4.
Xiao Y  Zhang HL  Bai LY  Wang XM  Li WG  Yang LG 《遗传》2011,33(4):298-306
DNA甲基化是一种相对稳定且可遗传的表观遗传标记,在植物和动物细胞中均发现有DNA主动去甲基化现象,其机制在植物中已基本得到阐释,但在哺乳动物中尚未鉴定出一种有效的DNA去甲基化酶,并且DNA主动去甲基化途径也存在争议。文章综合分析了近期的文献资料,阐述了哺乳动物中发生DNA主动去甲基化的时空特异性,并从细胞和组织特异性角度介绍DNA主动去甲基化的可能通路和机制,即5-甲基胞嘧啶的氧化作用、5-甲基胞嘧啶脱氨基以及DNA修复等,旨在为破译表观遗传重编程过程提供理论依据。  相似文献   

5.
DNA甲基化是真核生物的重要表观遗传修饰,如胞嘧啶C~5位甲基化5-甲基胞嘧啶(5mC)和腺嘌呤N~6位甲基化6-甲基腺嘌呤(6mA)。DNA 5mC可经Tet双加氧酶催化氧化形成5-羟甲基胞嘧啶(5hmC)、5-醛甲基胞嘧啶(5fC)和5-羧基胞嘧啶(5caC)。这些氧化产物不仅是去甲基化过程的中间体,而且也可能存在各自特有的表观调控功能。其中,5hmC异常可能和癌症相关,有可能成为疾病诊断的生物标志物。发展可靠、高灵敏和抗干扰能力强的DNA甲基化和去甲基化检测技术和方法至关重要,有助于理解甲基化和去甲基化的分子机制以及提高肿瘤的诊断水平。现针对DNA甲基化和去甲基化检测技术进行简要介绍。  相似文献   

6.
表观遗传学中的DNA甲基化与疾病的发生发展密不可分. DNA甲基化中的5-甲基胞嘧啶易发生氧化形成5 羟甲基胞嘧啶.此过程又称为羟甲基化修饰,已成为表观遗传学研究的一种新热点.羟甲基化与10-11易位家族蛋白(ten-eleven translocation,TET)的作用密切相关,它参与了基因的表达调控以及DNA去甲基化过程. 最近的羟甲基化研究主要集中在癌症和精神性疾病.针对日趋增多的相关研究,本文对DNA羟甲基化进行了全景式综述.  相似文献   

7.
5-甲基胞嘧啶在发育和分化中的作用   总被引:1,自引:0,他引:1  
自从在小牛胸腺DNA中最早发现5-甲基胞嘧啶(~mC)以来,所有研究过的动物和植物DNA中都发现有这种稀有碱基。~mC并非随机地分布在DNA上,90%以上的~mC出现在CpG二核苷酸处。DNA的甲基化是在DNA复制以后由甲基化酶将S-腺苷甲硫氨酸的甲基转移到胞嘧啶的5位上去而形成。脊椎动物DNA的甲基化模式具有遗传连续性。细菌和噬菌体DNA中,甲基化通常发生在腺嘌呤处,即N~6-甲基腺嘌呤(~mA)。然而在双鞭藻  相似文献   

8.
植物表观遗传与DNA甲基化   总被引:1,自引:0,他引:1  
表观遗传在植物生长发育过程中起着极其重要的作用。甲基化是基因组DNA的一种主要表观遗传修饰形式,是调节基因功能的重要手段。介绍了植物体中胞嘧啶甲基化现象,RNA指导的DNA甲基化的信号分子、作用机制,以及与RNA介导的基因沉默机制之间的区别和RNA对转座子的表观控制。  相似文献   

9.
DNA甲基化失调引起基因表达异常是表观遗传学的一个显著特点。目前已知,由DNA甲基转移酶(DNA methyltransferases,DMNTs)催化DNA甲基化,其酶基因突变或表达异常引起DNA甲基化水平的改变。近期研究发现了一种DNA去甲基化酶--TET(Ten-Eleventranslocation)家族DNA羟化酶,能通过多种途径催化5-甲基胞嘧啶(5.methylcytosine,5-mC)去甲基化,从而调控DNA基化的平衡。5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5-hmC)作为DNA去甲基化多重步骤中重要的中间产物,其水平在肿瘤的发生和发展时期发生显著变化。该文从TET家族蛋白展开,介绍TET蛋白的结构、功能及作用机制以及多种人类肿瘤中丁E丁家族基因与5-hmC水平的相关性及其对肿瘤发生发展、诊断预后等临床意义的研究进展。  相似文献   

10.
DNA甲基化是生命体最主要的表观遗传修饰之一。哺乳动物DNA甲基化主要发生在胞嘧啶第五位碳原子上,称为5-甲基胞嘧啶(5-methylcytosine,5m C)。哺乳动物DNA甲基化由从头DNA甲基转移酶DNMT3A/3B在胚胎发育早期建立,甲基化模式的维持由DNA甲基转移酶DNMT1实现。TET家族蛋白氧化5-甲基胞嘧啶起始DNA的去甲基化过程。这些DNA甲基化修饰酶精确调节DNA甲基化的动态过程,在整个生命发育过程中发挥重要作用,其失调也与多种疾病发生密切相关。现结合国内外同行研究进展,介绍课题组近年来对DNA甲基化修饰酶的结构与功能研究。  相似文献   

11.
DNA甲基化作为动植物体内一种重要的表观遗传修饰形式,在调控基因表达、维持基因组的稳定性等方面发挥重要的生物学作用。固有DNA甲基化水平和模式的变化会导致生物的表型异常甚至死亡。而5-甲基胞嘧啶的水平和模式是由DNA甲基化和去甲基化共同决定的。DNA去甲基化可以分为主动去甲基化与被动去甲基化,而基因组甲基化模式的形成主要依赖于主动去甲基化。本文综述了生物体内DNA主动去甲基化五种潜在机制:DNA转葡糖基酶参与的碱基切除修复途径、脱氨酶参与的碱基切除修复途径、核苷酸切除修复途径、氧化作用去甲基化与水解作用去甲基化。  相似文献   

12.
DNA甲基化及其对植物发育的调控   总被引:3,自引:0,他引:3  
DNA甲基化属于一种表观遗传修饰,主要发生在CpG双核苷酸序列中的胞嘧啶上,是在DNA甲基转移酶催化下,以S-腺苷甲硫氨酸为甲基供体,将甲基转移到胞嘧啶上,生成5-甲基胞嘧啶的一种反应。DNA甲基化在植物生长过程中具有极其重要的作用。综述了植物DNA甲基化的特征、调控机制,及其对植物基因表达影响的研究进展。  相似文献   

13.
张燕霞  高可润  禹顺英 《遗传》2012,34(5):509-518
CpG二核苷酸中胞嘧啶的甲基化形式5-甲基胞嘧啶(5-methylcytosine, 5mC)在哺乳动物中是一种常见的表观遗传修饰, 在基因表达调控、发育调节、基因组印迹等方面发挥重要作用。近3年来研究发现, 除了5mC外, 胞嘧啶碱基的另一种修饰-5-羟甲基胞嘧啶(5-hydroxymethylcytosine, 5hmC)在哺乳动物的多种组织中有着丰富的表达, 它可能与5mC有着不同的生物学功能。文章就近年来5hmC的研究进展进行了综述。  相似文献   

14.
5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5hmC)作为表观遗传的新标志物,已引起人们的极大兴趣.5hmC由TET家族酶催化氧化5-甲基胞嘧啶(5-methylcytosine,5mC)产生,被称为高等生物基因组DNA的"第六碱基".5hmC不仅可以影响基因组结构及功能,还在早期胚胎发育中发挥重要的作用.本文综述了5hmC的代谢通路、生物学功能、在基因组的分布及分析方法的研究进展.  相似文献   

15.
Zhang YX  Gao KR  Yu SY 《遗传》2012,34(5):509-518
CpG二核苷酸中胞嘧啶的甲基化形式5-甲基胞嘧啶(5-methylcytosine,5mC)在哺乳动物中是一种常见的表观遗传修饰,在基因表达调控、发育调节、基因组印迹等方面发挥重要作用。近3年来研究发现,除了5mC外,胞嘧啶碱基的另一种修饰—5-羟甲基胞嘧啶(5-hydroxymethylcytosine,5hmC)在哺乳动物的多种组织中有着丰富的表达,它可能与5mC有着不同的生物学功能。文章就近年来5hmC的研究进展进行了综述。  相似文献   

16.
RNA可以被100余种化学修饰所修饰。这些化学修饰以甲基化为主,广泛分布于各种类型的RNA中,如r RNA、t RNA、sn RNA、sno RNA和m RNA等,其中针对m RNA内部修饰丰度最高的6-甲基腺嘌呤(m~6A)的研究最为深入。m~6A修饰酶(甲基转移酶METTL3/METTL14/WTAP和去甲基化酶ALKBH5与FTO)和结合蛋白YTHDF2、YTHDF1与YTHDC1的发现,证明了RNA甲基化修饰同DNA甲基化修饰一样是动态可逆的,从而将RNA甲基化修饰由微调控机制提升到表观转录组新层次。而候选m~5C修饰甲基转移酶NSUN家族蛋白和去甲基化酶TET蛋白的初步鉴定,丰富了RNA甲基化修饰表观转录组研究内涵。RNA甲基化介导的表观转录组学调控和作用已成为RNA生物学新研究领域。现重点回顾和展望RNA的m~6A和m~5C甲基化修饰特征及其潜在生物学功能。  相似文献   

17.
DNA甲基化作为一种重要的表观修饰,在基因表达调控及胚胎生长发育等方面起到重要作用。尽管5-甲基胞嘧啶(5mC)是一种稳定的共价修饰,但它在生物体内仍处于一个动态变化的过程,也就是说,它可能会通过某种方式发生去甲基化。而TET蛋白功能的揭示为DNA主动去甲基化提供了一条途径:TET双加氧酶可以将5mC迭代氧化形成5-羟甲基胞嘧啶(5hmC)、5-醛基胞嘧啶(5fC)和5-羧基胞嘧啶(5caC),再通过DNA糖苷酶TDG介导的碱基切除修复(base excision repair,BER)途径将5mC重新变为未修饰的胞嘧啶。随着人们对TET双加氧酶及主动去甲基化研究的深入,主动去甲基化的生物学功能也被逐渐揭示。现总结了已经揭示的主动去甲基化分子机制和生物学意义,同时,概括了本实验室近些年的研究进展。  相似文献   

18.
Guo XX  Ye HY  Zhang M 《遗传》2011,33(7):713-719
DNA甲基化是表观遗传调控的重要机制,但果蝇很久以来被认为是一种缺乏甲基化的模式生物。近年来才证实果蝇基因组中有5′-甲基胞嘧啶残基的存在,其DNA甲基化水平在胚胎发育早期达到最高,总体水平低于脊椎动物及植物。果蝇拥有一个包含dDNMT2和dMBD2/3的简单甲基化修饰系统,其分别与哺乳动物中的DNMT2家族及MBD2/MBD3蛋白高度同源。果蝇DNA甲基化模式和特点可能随果蝇种类不同而不同。文章对果蝇DNA甲基化特点及其功能研究进展进行了综述。  相似文献   

19.
《遗传》2020,(7)
DNA羟甲基化作为一种表观遗传学修饰,对基因的表达调控起到了重要作用。近年来,越来越多的研究发现在心血管疾病中可见5-羟甲基胞嘧啶(5-hydroxymethylcytosine, 5hmC)和染色体10/11易位(ten-eleven translocation,TET)家族蛋白的异常改变,提示这些心血管疾病与DNA羟甲基化的调控密切相关。DNA羟甲基化水平与动脉粥样硬化常见的危险因素如衰老、性别、高血压和吸烟存在一定关联,并且和动脉粥样硬化发生过程中所涉及的免疫炎症反应以及内皮细胞和血管平滑肌细胞的功能相关。本文综述了DNA羟甲基化和TET家族蛋白对于动脉粥样硬化的作用机制及研究现状,以期为动脉粥样硬化的发生发展及诊断治疗提供表观遗传学方面的研究思路。  相似文献   

20.
发生在DNA胞嘧啶上的甲基化(5mC)是哺乳动物细胞基因组上最主要的DNA修饰形式,其形成的碳碳键具有较高键能,不易被破坏。TET家族蛋白可以催化5mC逐渐氧化成羟甲基胞嘧啶(5hmC)、醛基胞嘧啶(5fC)和羧基胞嘧啶(5caC),再通过细胞分裂过程中DNA复制,或者利用碱基切除修复途径,最终实现DNA去甲基化。过去几年表观基因组学和结构生物学的研究都表明,在不同细胞、不同的基因组位点,5mC的氧化反应受到严格的调控,主要表现在两个方面:5mC氧化反应发生的基因组范围和5mC逐步氧化反应的进行程度。以国家自然科学基金委重大研究计划"细胞编程和重编程的表观遗传机制"为依托,朱冰实验室发现了胚胎干细胞的多能性转录因子SALL4A与TET家族蛋白共同调节远端调控区域5mC的氧化过程。首先,将介绍5mC的不同氧化产物在小鼠基因组上的分布和动态变化,进而讨论TET家族蛋白催化5mC氧化反应的调控机制,最后,探讨5mC氧化参与调节基因组转录的可能的生物学功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号