首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
青霉菊粉酶的产生和性质   总被引:7,自引:0,他引:7  
由淀粉通过葡萄糖异构化生产高果糖糖浆,生产上受到原料的限制。果糖另一种来源是菊粉(Inulin)。菊粉是以β-2,1果糖苷键连接的一种多聚果糖,其末端含有一个蔗糖残基,它作为贮存性多糖大量存在于菊芋(Helianthus tuberosus)、菊巨(chicoryintybus)、大丽花(Dahlia pinnata)等多种植物中,至今尚未得到很好利用。菊粉可通过化学法或酶法水解生成果糖。利用菊粉酶  相似文献   

2.
菊粉富含于菊芋、菊苣等多种菊科植物中,是一种来源丰富的可再生资源。菊粉是一种由D 呋喃果糖经β-2, 1-糖苷键连接,还原端经α-1, 2-糖苷键连接1个葡萄糖残基构成的果聚糖。菊粉能被菊粉酶水解,生产果糖、高果糖浆、菊粉寡糖,可通过微生物发酵生产燃料酒精等产品,在食品、生物能源、医疗保健等方面都有重要应用,受到广泛关注。介绍外切菊粉酶的分类、来源、结构和催化机理,重点总结近10年微生物来源外切菊粉酶的重组表达和酶学性质情况,简述外切菊粉酶在食品、能源等方面的应用,展望外切菊粉酶的研究热点及方向。  相似文献   

3.
从菊芋地的腐木上分离到一株在以菊粉为唯一碳源和能源的培养基上生长良好,具有较高菊粉酶活性的担子菌菌株,经鉴定为采绒革盖菌(Coriolusversiolor)。该菌的菊粉酶大部分是胞外酶,此酶对菊粉的专一性高,其I/S比值在发酵过程中不断变化。菊粉酶活性平行地随菌体生长而增加。该酶的合成受菊粉诱导,受果糖抑制。当果糖浓度大于2.7mg/ml时,菊粉酶活性为零。菌体的匀质化可使生长加快从而获得大量菊粉酶。  相似文献   

4.
试验不同碳源对产紫青霉菊粉酶生产情况的影响。结果表明,果糖、菊糖、菊芋浸汁作为碳源是菊粉酶生产较理想的诱导因子,但过量的果糖会产生阻遏。经菊糖作为主要碳源和唯一碳源筛选的菌株产酶能力可提高6-7倍。同时在发酵前期加入易利用的碳源培养菌体,后期利用菊糖诱导酶的产生,可使酶产量提高2倍。  相似文献   

5.
发酵菊芋汁生产果糖糖浆研究   总被引:11,自引:0,他引:11  
分析了来自不同地区的菊芋成分,干物质含量在23%~26%,菊粉多糖含量为17%~18%(鲜重)。制备菊芋汁中的主要固形物成分是菊粉多糖,游离的还原糖和可溶性蛋白质含量很低,菊芋用于果糖或果糖糖浆生产具有较高的经济价值;通过摇瓶发酵试验确定了利用菊芋汁生产果糖糖浆的工艺,用自动模拟发酵罐进行了生产模拟实验。产品总糖含量为61%,其中果糖95%,葡萄糖5%,通过发酵法生产果糖糖浆总糖得率为90%。  相似文献   

6.
《生物加工过程》2004,2(4):73-76
微生物连续催化法生产丙烯酰胺;基因工程菊粉酶水解菊芋生产果糖;用酶水解人参皂甙制备20-β-D-吡喃葡萄糖基原人参二醇;一种快速测定糖化酶活力的方法;烟酸羟基化微生物转化发酵与静息细胞转化综合生产工艺;纳米磁性颗粒分离纯化链酶亲合素的方法;一种洁净简便高效降解核酸的方法;从脱氧核糖核酸钠酶解液分离纯化脱氧核苷酸钠的方法  相似文献   

7.
【目的】低聚果糖是新型的食品和保健品原料,具有广阔的市场需求。以菊粉酶水解菊粉制备低聚果糖的酶法工艺是先进的绿色制造。本研究旨在获得高产的菊粉酶菌株及以菊粉为原料酶法制备低聚果糖的优化工艺。【方法】采用基因工程手段克隆马克斯克鲁维酵母菌(Kluyveromyces marxianus)的菊粉酶基因,实现其在毕赤酵母中的高效表达;测定菊粉酶在不同p H、温度、金属离子和底物浓度等条件下的酶活变化趋势,获得最佳的反应参数;通过高效液相色谱法检测水解产物,获得不同酶量水解产物各组分分布。【结果】菊粉酶工程菌株在10 L发酵罐中的产菊粉酶活达1 570 U/m L、蛋白质含量为2.75 g/L发酵液;菊粉酶最适反应参数为:在体积为1 L的反应体系中,p H 5.0、反应温度50°C、含0.2 mmol/L Mg2+以及菊粉浓度为8%。在该条件下,酶量为10 U时菊粉被完全水解。水解产物中单糖和二糖含量仅为9.25%,而低聚果糖(C3-C8)含量为90.75%,且C3-C5低聚果糖含量高达72.92%。【结论】克隆了K.marxianus菊粉酶基因并实现了高效表达,获得了水解菊粉制备低聚果糖的最佳工艺条件。为菊粉酶的大量生产及低聚果糖的酶法制备奠定了良好的基础。  相似文献   

8.
从腐烂的菊芋及实验室保存的菌种中,选育到一株发酵菊芋产乙醇的菌株克鲁维酵母Kluyveromyces marxianus Y1。利用正交实验法对克鲁维酵母产菊粉酶的培养基组成及培养条件进行优化,确定培养基组成(g/L)为:菊粉40,酵母粉4,蛋白胨4,尿素1;初始pH5.0,温度30℃,150r/min条件下培养达到最佳产酶效果(57U/mL)。该菌株所产菊粉酶的性质测定结果表明:以菊粉为底物,该菊粉酶最适反应温度为55℃,在60℃以下稳定性很好,高于60℃时酶迅速失活;最适pH为5.0,pH4.6—5.2范围内酶稳定性很好;该酶属于外切型菊粉酶,体积分数为8%的乙醇对酶活力基本没有影响。  相似文献   

9.
本研究拟应用酶法提取技术解决菊芋菊粉工业化生产中的废弃物——菊芋粕再利用程度低的问题,并评价菊芋粕菊粉的抗氧化活性功效。对菊芋粕菊粉的果胶酶酶法提取的最佳条件通过响应面法进行了优化,并对菊芋初次水提菊粉(primary water-extracted inulin,PWI)和二次酶提菊粉(secondary enzymatic-extracted inulin,SEI)的组成成分和抗氧化活性进行了比较分析。响应面法优化确定的菊芋粕菊粉最佳酶法提取条件为:pH4.5、提取温度50 ℃、酶底比7.5 U/g、提取时间2 h,该提取方法所得菊芋粕菊粉的得率为35.30%±0.85%,与传统热水浸提法相比菊粉得率提高38.16%。组成分析结果显示,SEI的总糖和菊粉含量均显著高于PWI( P <0.05)。在菊粉聚合度方面,PWI中蔗果三糖和蔗果四糖含量较高,而SEI中蔗果五糖、蔗果六糖及其以上聚合度菊粉的含量较高。此外,SEI的抗氧化活性优于PWI。因此,果胶酶辅助提取方法有望为菊芋粕菊粉的再利用难题提供新的解决思路。  相似文献   

10.
菊粉酶水解菊芋浸汁反应条件研究   总被引:3,自引:0,他引:3  
利用产紫青霉(PenicillumP.)F-7产生的胞外菊粉酶对菊芋浸汁进行了水解试验,37℃水解10h,得到含低聚寡糖74.7%(占总糖含量)的水解液;同时进行了菊粉酶水解的各项条件试验,摸索出了最适水解条件;pH5.0,温度为37℃,反应时间为10h,有Mn^2 存在(0.001M)。  相似文献   

11.
从土壤中分离到一株木霉(Trichoderma sp.)Fx-1,能产生较高活性的菊粉酶(Inulinase)。该酶能被菊粉(Inulin)诱导,而不被蔗糖、棉子糖、纤维素、葡萄糖或果糖诱导,在适宜的培养条件下,酶活性可达64u/ml。5%的菊粉在pH5,0、温度50℃条件下,12小时内几乎100%被该酶所水解。酶解总糖中,果糖占92.3%,葡萄糖占5.8%。酶在60℃下保温10分钟,其活性不变。  相似文献   

12.
一株木霉产生菊粉酶的研究   总被引:1,自引:0,他引:1  
从土壤中分离到一株木霉(Trichoderma sp.)Fx-1,能产生较高活性的菊粉酶(Inulinase)。该酶能被菊粉(Inulin)诱导,而不被蔗糖、棉子糖、纤维素、葡萄糖或果糖诱导,在适宜的培养条件下,酶活性可达64u/ml。5%的菊粉在pH5,0、温度50℃条件下,12小时内几乎100%被该酶所水解。酶解总糖中,果糖占92.3%,葡萄糖占5.8%。酶在60℃下保温10分钟,其活性不变。  相似文献   

13.
目的:从新疆石河子盐碱地菊芋生长根际土壤中分离筛选高产菊粉酶活力菌株。方法:通过稀释平板涂布法分离微生物;利用^60Co诱变选育,96孔板筛选突变菌株;采用3,5-二硝基水杨酸比色法测定菊粉酶酶活。结果:分离到12株具有菊粉酶活力的菌株,复筛得到1株高产菊粉酶活力菌株,将其命名为G-60;以此菌株为出发菌株进行^60Co诱变,利用96孔板对诱变菌株进行筛选,经摇瓶发酵酶活测定,得到1株高产菊粉酶酶活的突变株,酶活达46.62U/mL,是未诱变菌株酶活的2.72倍。结论:经诱变得到1株高产菊粉酶活力的突变菌株。  相似文献   

14.
1,6-二磷酸果糖酶(EC3.13.11)催化1,6-二磷酸果糖分解为6-磷酸葡萄糖和无机磷酸。在高等植物的光合作用细胞中,存在两种1,6-二磷酸果糖酶:即叶绿体型1,6-二磷酸果糖酶和细胞质型1,6-二磷酸果糖酶。由于细胞质型1,6-二磷酸果糖酶在植物碳水化合物代谢中起重要作用,且具有表达特异性,本试验通过Genome Walking分离了水解细胞质型1,6-二磷酸果糖酶基因的上游序列,并将其与β-葡糖醛酸酶(GUS)报告基因建成嵌合表达载体。采用基因枪法转化水稻,在转基因水稻中分析了GUS的表达活性和特异性。组织化学检测表明,在转基因水稻的成熟叶片中,GUS基因只在叶肉细胞中表达,在表皮细胞,泡状细胞,维管组织中均无表达,在叶鞘中的表达与叶片中相似,仅仅在叶肉细胞中表达,在根,茎所有细胞中均没有蓝色反应,为进一步研究1,6-二磷酸果糖酶基因启动子在水稻中的表达量,对12株独立来源的转基因水稻的GUS活性进行了荧光定量分析。结果显示,水稻成熟叶片中的GUS活性平均值为7031.5pmol4-MU^-1.min^-1.mg蛋白。在不同器官及组织中表达活性有差异,在转基因水稻的叶片,叶鞘中GUS均有较强的表达,在根、茎中未检测到GUS活性,实验结果表明,ATG上游1195bp调控区足以导致GUS基因在水稻中的特异性表达,因此该片段包含有使报告基因在叶肉细胞中特异性表达的所有顺式调控元件。  相似文献   

15.
双岐杆菌是革兰氏阳性、不产芽孢的厌氧菌,主要存在于人和一些动物的肠道中,具有阻止有害细菌滋生和感染的作用。双岐杆菌能选择性水解低聚果糖,而哺乳动物的消化酶不能水解低聚果糖。 微生物中的β—呋喃果糖苷酶可分为两类,一类为蔗糖酶,它能水解蔗糖但不水解菊糖;另一类为外菊糖酶(β-果糖苷酶),它不仅水解蔗糖也能水解菊糖,它们对蔗糖和菊糖的活性比相差甚大。有些青春双岐杆菌提取物水解1-蔗果三糖的速度比蔗糖和菊糖快,并能从1-蔗果三糖产生果糖和蔗糖。青春双岐杆菌G-1菌株的提取物对1-蔗果三糖的活性很高,当底物浓度各为5mM时,它对1-蔗果三  相似文献   

16.
目的:从新疆石河子盐碱地菊芋生长根际土壤中分离筛选高产菊粉酶活力菌株。方法:通过稀释平板涂布法分离微生物;利用60Co诱变选育,96孔板筛选突变菌株;采用3,5-二硝基水杨酸比色法测定菊粉酶酶活。结果:分离到12株具有菊粉酶活力的菌株,复筛得到1株高产菊粉酶活力菌株,将其命名为G-60;以此菌株为出发菌株进行60Co诱变,利用96孔板对诱变菌株进行筛选,经摇瓶发酵酶活测定,得到1株高产菊粉酶酶活的突变株,酶活达46.62 U/mL,是未诱变菌株酶活的2.72倍。结论:经诱变得到1株高产菊粉酶活力的突变菌株。  相似文献   

17.
内切菊粉酶可以有效地水解菊粉得到低聚果糖(IOS),低聚果糖是一种水溶性膳食纤维,应用广泛。为了实现内切菊粉酶的高效表达,通过无花果曲霉中的inu2基因,成功在大肠杆菌中重组表达。为提高表达水平,通过使用pel B和omp C代替本身的信号肽序列,来研究不同的信号肽对菊粉内切酶表达的影响。此外,还通过正交试验的方法优化了IOS的催化条件。研究结果表明,用pel B代替本身的信号肽的E.coli INU2-A3的酶活最高,达到75.22 U/mg。在菊粉为150 g/L,纯化的菊粉内切酶为5 U/g菊粉,55℃,p H 4.6,反应24 h时,低聚果糖的收率达到了94.41%,主要的水解产物为DP3-DP7。  相似文献   

18.
菊芋(Helianthus tuberosus Linn.)为菊科(Asteraceae)向日葵属(Helianthus Linn.)多年生草本植物,耐寒、耐旱、耐贫瘠、耐盐碱[1];其地下块茎富含菊糖,还可通过发酵生产乙醇,在功能性食用多糖及生物能源方面的开发潜力巨大。菊芋主要通过块茎进行无性繁殖,其种子成活率和发芽率均很低[2],严重阻碍了菊芋的杂交育种。近年来以植物组织培养为基础的一系列现代育种技术为菊芋的种质改良提供了新途径,但由于菊芋的愈伤组织难以诱导不定芽或体胚发生,导致以农杆菌转化为主的转基因育种技术的应用受到限制。  相似文献   

19.
为获得高产菊粉酶的黑曲霉菌株,以Aspergillus niger YH-1为出发菌株,经过亚硝基胍(NTG)诱变,以高温高菊芋粉相结合的方式进行梯度驯化,选育出一株产菊粉酶菌株YH-3,并运用响应面实验方法对该菌株的培养基进行优化。确定了最佳培养基组成:菊芋粉25.2 g/L、豆饼粉40 g/L、蔗糖酯4.9 g/L、NaCl 5.5 g/L。发现内切菊粉酶活力(I)由60.9 U/mL提高到165.0 U/mL,比出发菌株提高了1.7倍。研究证明蔗糖酯对于黑曲霉YH-3发酵产菊粉酶是一种有效的促进剂。  相似文献   

20.
克鲁维酵母(Kluyveromyces sp.)Y-85产生的胞内菊粉酶(endocellular inulinase)和胞外菊粉酶(exocellular inulinase)粗酶液分别经PEG6000-磷酸盐缓冲液双水相抽提得部分纯化酶液。前者进一步用硫酸铵分级沉淀、Protein-PAK DEAE离子交换、Protein-PAK200SW凝胶过滤后得到两个菊粉酶组分EⅠ和EⅡ;后者采用DEAE-Sephacel离子交换、Sephadex G150凝胶过滤后得到菊粉酶Eexo。经Waters 650E蛋白纯化系统鉴定,三者均呈单一的对称峰;EⅠ和EⅡ达聚丙烯酰胺盘状凝胶电泳纯。EⅠ、EⅡ和Eexo的分子量分别为42kD、65kD和57kD;三者均为糖蛋白,多糖含量分别为30%、35%和25%;I/S(Inulinaseactivity/Sucrase activity)比值分别为0.086、0.078和0.072;三者均属外切菊粉酶。EⅠ、EⅡ和Eexo酶反应最适pH分别为4.6、4.5和4.6,最适温度分别为52℃、52℃和55℃;Ag^+、Hg^(2+)和PCMB对酶活性有强烈的抑制作用;三者水解菊芋粉糖液的产物均为果糖(86.5%)和葡萄糖(13.5%)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号