首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parental selection is crucial for hybrid breeding, but the methods available for such a selection are not very effective. In this study, a 6×6 incomplete diallel cross was designed using 12 rapeseed germplasms, and a total of 36 hybrids together with their parental lines were planted in 4 environments. Four yield-related traits and seed oil content (OC) were evaluated. Genetic distance (GD) was estimated with 359 simple sequence repeats (SSRs) markers. Heterosis levels, general combining ability (GCA) and specific combining ability (SCA) were evaluated. GD was found to have a significant correlation with better-parent heterosis (BPH) of thousand seed weight (TSW), SCA of seeds per silique (SS), TSW, and seed yield per plant (SY), while SCA showed a statistically significant correlation with heterosis levels of all traits at 1% significance level. Statistically significant correlations were also observed between GCA of maternal or paternal parents and heterosis levels of different traits except for SS. Interestingly, maternal (TSW, SS, and OC) and paternal (siliques per plant (SP) and SY) inheritance of traits was detected using contribution ratio of maternal and paternal GCA variance as well as correlations between GCA and heterosis levels. Phenotype and heterosis levels of all the traits except TSW of hybrids were significantly correlated with the average performance of parents. The correlations between SS and SP, SP and OC, and SY and OC were statistically significant in hybrids but not in parents. Potential applications of parental selection in hybrid breeding were discussed.  相似文献   

2.
Combining ability is a measure for selecting elite parents and predicting hybrid performance in plant breeding. However, the genetic basis of combining ability remains unclear and a global view of combining ability from diverse mating designs is lacking. We developed a North Carolina II (NCII) population of 96 Oryza sativa and four male sterile lines to identify parents of greatest value for hybrid rice production. Statistical analyses indicated that general combining ability (GCA) and specific combining ability (SCA) contributed variously to different agronomic traits. In a genome‐wide association study (GWAS) of agronomic traits, GCA and SCA, we identified 34 significant associations (< 2.39 × 10?7). The superior alleles of GCA loci (Ghd8, GS3 and qSSR4) accumulated in parental lines with high GCA and explained 30.03% of GCA variance in grain yield, indicating that molecular breeding of high GCA parental lines is feasible. The distinct distributions of these QTLs contributed to the differentiation of parental GCA in subpopulations. GWAS of SCA identified 12 more loci that showed dominance on corresponding agronomic traits. We conclude that the accumulation of superior GCA and SCA alleles is an important contributor to heterosis and QTLs that greatly contributed to combining ability in our study would accelerate the identification of elite inbred lines and breeding of super hybrids.  相似文献   

3.
Predicting heterosis and F1 performance from the parental generation could largely enhance the efficiency of breeding hybrid or synthetic cultivars. This study was undertaken to determine the relationship between parental distances estimated from phenotypic traits or molecular markers with heterosis, F1 performance and general combining ability (GCA) in Ethiopian mustard (Brassica carinata). Nine inbred lines representing seven different geographic regions of Ethiopia were crossed in half-diallel. The nine parents along with their 36 F1s were evaluated in a replicated field trail at three locations in Ethiopia. Distances among the parents were calculated from 14 phenotypic traits (Euclidean distance, ED) and 182 random amplified polymorphic DNA (RAPD) markers (Jaccard’s distances, JD), and correlated with heterosis, F1 performance and GCA sum of parents (GCAsum). The correlation between phenotypic and molecular distances was low (r=0.34, P≤0.05). Parents with low molecular distance also had low phenotypic distance, but parents with high molecular distance had either high, intermediate or low phenotypic distance. Phenotypic distance was highly significantly correlated with mid-parent heterosis (r=0.53), F1 performance (r=0.61) and GCA (r=0.79) for seed yield. Phenotypic distance was also positively correlated with (1) heterosis, F1 performance and GCA for plant height and seeds plant−1, (2) heterosis for number of pods plant−1, and (3) F1 performance for 1,000 seed weight. Molecular distance was correlated with GCAsum (r=0.36, P≤0.05) but not significantly with heterosis and F1 performance for seed yield. For each parent a mean distance was calculated by averaging the distances to the eight other parents. Likewise, mean heterosis was estimated by averaging the heterosis obtained when each parent is crossed with the other eight. For seed yield, both mean ED and JD were significantly correlated with GCA (r=0.90, P≤0.01 for ED and r=0.68, P≤0.05 for JD) and mean heterosis (r=0.79, P≤0.05 for ED and r=0.77, P≤0.05 for JD). In conclusion, parental distances estimated from phenotypic traits better predicted heterosis, F1 performance and GCA than distances estimated from RAPD markers. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

4.
Prediction methods to identify single-cross hybrids with superior yield performance have the potential to greatly improve the efficiency of commercial maize (Zea mays L.) hybrid breeding programs. Our objectives were to (1) identify marker loci associated with quantitative trait loci for hybrid performance or specific combining ability (SCA) in maize, (2) compare hybrid performance prediction by genotypic value estimates with that based on general combining ability (GCA) estimates, and (3) investigate a newly proposed combination of the GCA model with SCA predictions from genotypic value estimates. A total of 270 hybrids was evaluated for grain yield and grain dry matter content in four Dent × Flint factorial mating experiments, their parental inbred lines were genotyped with 20 AFLP primer-enzyme combinations. Markers associated significantly with hybrid performance and SCA were identified, genotypic values and SCA effects were estimated, and four hybrid performance prediction approaches were evaluated. For grain yield, between 38 and 98 significant markers were identified for hybrid performance and between zero and five for SCA. Estimates of prediction efficiency (R 2) ranged from 0.46 to 0.86 for grain yield and from 0.59 to 0.96 for grain dry matter content. Models enhancing the GCA approach with SCA estimates resulted in the highest prediction efficiency if the SCA to GCA ratio was high. We conclude that it is advantageous for prediction of single-cross hybrids to enhance a GCA-based model with SCA effects estimated from molecular marker data, if SCA variances are of similar or larger importance as GCA variances.  相似文献   

5.
In spite of its short history of being an oil crop in China, the Chinese semi-winter rapeseed (Brassica napus L., 2n = 38, AACC) has been improved rapidly by intentional introgression of genomic components from Chinese B. rapa (2n = 20, AA). As a result, the Chinese semi-winter rapeseed has diversified genetically from the spring and winter rapeseed grown in the other regions such as Europe and North America. The objectives of this study were to investigate the roles of the introgression of the genomic components from the Chinese B. rapa in widening the genetic diversity of rapeseed and to verify the role of this introgression in the evolution of the Chinese rapeseed. Ten lines of the new type of rapeseed, which were produced by introgression of Chinese B. rapa to Chinese normal rapeseed, were compared for genetic diversity using amplified fragment length polymorphism (AFLP) with three groups of 35 lines of the normal rapeseed, including 9 semi-winter rapeseed lines from China, 9 winter rapeseed lines from Europe and 17 spring rapeseed lines from Northern Europe, Canada and Australia. Analysis of 799 polymorphic fragments revealed that within the groups, the new type rapeseed had the highest genetic diversity, followed by the semi-winter normal rapeseed from China. Spring and winter rapeseed had the lowest genetic diversity. Among the groups, the new type rapeseed group had the largest average genetic distance to the other three groups. Principal component analysis and cluster analysis, however, could not separate the new type rapeseed group from Chinese normal rapeseed group. Our data suggested that the introgression of Chinese B. rapa could significantly diversify the genetic basis of the rapeseed and play an important role in the evolution of Chinese rapeseed. The use of new genetic variation for the exploitation of heterosis in Brassica hybrid breeding is discussed  相似文献   

6.
Genetic distances (GDs) based on morphological characters, isozymes and storage proteins, and random amplified polymorphic DNAs (RAPD) were used to predict the performance and heterosis of crosses in oilseed rape (Brassica napus L.). Six male-sterile lines carrying the widely used Shaan2A cytoplasm were crossed with five restorer lines to produce 30 F1 hybrids. These 30 hybrids and their parents were evaluated for seven agronomically important traits and their mid-parent heterosis (MPH) at Yangling, Shaanxi province in Northwest China for 2 years. Genetic similarity among the parents based on 34 isozyme and seven protein markers was higher than that based on 136 RAPDs and/or 48 morphological markers. No significant correlation was detected among these three sets of data. Associations between the different estimates of GDs and F1 performance for some agronomic traits were significant, but not for seed yield. In order to enhance the predicting efficiency, we selected 114 significant markers and 43 favoring markers following statistical comparison of the mean values of the yield components between the heterozygous group (where the marker is present only in one parent of each hybrid) and the homozygous group (where the marker is either present or absent in both parents of each hybrid) of the 30 hybrids. Parental GD based on total polymorphic markers (GDtotal, indicating general heterozygosity), significant markers (GDsign, indicating specific heterozygosity) and favoring markers (GDfavor, indicating favoring-marker heterozygosity) were calculated. The correlation between GDfavor or GDsign and hybrid performance was higher than the correlation between GDtotal and hybrid performance. GDsign and GDfavor significantly correlated with plant height, seeds per silique and seed yield, but not with the MPH of the other six agronomic traits with the exception of plant height. The information obtained in this study on the genetic diversity of the parental lines does not appear to be reliable for predicting F1 yield and heterosis.  相似文献   

7.
Hybrid breeding relies on the combination of parents from two differing heterotic groups. However, the genetic diversity in adapted oilseed rape breeding material is rather limited. Therefore, the use of resynthesized Brassica napus as a distant gene pool was investigated. Hybrids were derived from crosses between 44 resynthesized lines with a diverse genetic background and two male sterile winter oilseed rape tester lines. The hybrids were evaluated together with their parents and check cultivars in 2 years and five locations in Germany. Yield, plant height, seed oil, and protein content were monitored, and genetic distances were estimated with molecular markers (127 polymorphic RFLP fragments). Resynthesized lines varied in yield between 40.9 dt/ha and 21.5 dt/ha, or between 85.1 and 44.6% of check cultivar yields. Relative to check cultivars, hybrids varied from 91.6 to 116.6% in yield and from 94.5 to 103.3% in seed oil content. Mid-parent heterosis varied from −3.5 to 47.2% for yield. The genetic distance of parental lines was not significantly correlated with heterosis or hybrid yield. Although resynthesized lines do not meet the elite rapeseed standards, they are a valuable source for hybrid breeding due to their large distance from present breeding material and their high heterosis when combined with European winter oilseed rape.  相似文献   

8.
Advanced button mushroom cultivars that are less sensitive to mechanical bruising are required by the mushroom industry, where automated harvesting still cannot be used for the fresh mushroom market. The genetic variation in bruising sensitivity (BS) of Agaricus bisporus was studied through an incomplete set of diallel crosses to get insight in the heritability of BS and the combining ability of the parental lines used and, in this way, to estimate their breeding value. To this end nineteen homokaryotic lines recovered from wild strains and cultivars were inter-crossed in a diallel scheme. Fifty-one successful hybrids were grown under controlled conditions, and the BS of these hybrids was assessed. BS was shown to be a trait with a very high heritability. The results also showed that brown hybrids were generally less sensitive to bruising than white hybrids. The diallel scheme allowed to estimate the general combining ability (GCA) for each homokaryotic parental line and to estimate the specific combining ability (SCA) of each hybrid. The line with the lowest GCA is seen as the most attractive donor for improving resistance to bruising. The line gave rise to hybrids sensitive to bruising having the highest GCA value. The highest negative SCA possibly indicates heterosis effects for resistance to bruising. This study provides a foundation for estimating breeding value of parental lines to further study the genetic factors underlying bruising sensitivity and other quality-related traits, and to select potential parental lines for further heterosis breeding. The approach of studying combining ability in a diallel scheme was used for the first time in button mushroom breeding.  相似文献   

9.

Key message

Mid-parent values of Fusarium head blight (FHB) resistance tested across several locations are a good predictor of hybrid performance caused by a preponderance of additive gene action in wheat.

Abstract

Hybrid breeding is intensively discussed as one solution to boost yield and yield stability including an enhanced biotic stress resistance. Our objectives were to investigate (1) the heterosis for Fusarium head blight (FHB) resistance, (2) the importance of general (GCA) vs. specific combining ability (SCA) for FHB resistance, and (3) the possibility to predict the FHB resistance of the hybrids by the parental means. We re-analyzed phenotypic data of a large population comprising 1604 hybrids and their 120 female and 15 male parental lines evaluated in inoculation trials across seven environments. Mid-parent heterosis of FHB severity averaged ?9%, with a range from ?36 to +35%. Mean better parent heterosis was 2% and 78 of the hybrids significantly (P < 0.05) outperformed the best commercial check variety included in our study. FHB resistance was not correlated with grain yield in healthy status for lines (r = 0.01) and hybrids (r = 0.09, P < 0.01). While a preponderance of GCA variance (P < 0.01) was found, SCA variance was not significantly different from zero. Accuracy to predict hybrid performance of FHB severity based on mid-parent values and on GCA effects was high (r = 0.70 and 0.86, respectively; P < 0.01). Similarly, line per se performance and GCA effects were significantly correlated (r = 0.77; P < 0.01). The substantial level of mid-parent heterosis in the desired direction of decreased susceptibility and the negligible better parent heterosis suggest that hybrids are an attractive alternative variety type to improve FHB resistance.
  相似文献   

10.
The objective of the present study was to correlate the genetic distances (GD) of single cross hybrids with yield, heterosis and specific combining ability (SCA) in the double cross hybrid synthesis. For this, 10 single cross commercial hybrids were used from different companies, and all the possible double hybrids were synthesized by a complete dialell. The hybrids were assessed in 15 locations in the 2005/2006 agricultural season, using the randomized complete block design with three repetitions. DNA was extracted from the single cross hybrids and 20 simple sequence repeat primers were used, nine of which were linked to the quantitative trait loci. It was ascertained that the single hybrids were superior in general to the double cross hybrids and that yield was highly correlated with heterosis and SCA (r = 0.75 and 0.82, respectively). There was no significant correlation between yield and GD (r = 0.25), but this index was at the limit of significance. There was a medium correlation between GD and heterosis (r = 0.40) and GD and SCA (r = 0.38). The intergroup hybrids placed by genetic grouping were generally more productive than intragroup hybrids, and the hybrids with GD greater than 0.84 had the maximum heterosis and SCA. It was concluded that the markers were efficient in placing hybrids in different heterosis groups and were also useful in eliminating the most negative heterosis and SCA.  相似文献   

11.
杂交水稻育种的实质是配合力育种, 筛选高特殊配合力的杂交水稻组合才能选育出在生产上有实用价值的强优势组合。文章利用SSR标记检测了9个三系杂交稻亲本(5个不育系和4个恢复系)之间的遗传距离, 结合20个杂交稻组合(5×4 NCII)的产量表现, 分析了杂交水稻特殊配合力(Special combining ability, SCA)效应与产量杂种优势、亲本间遗传距离的相关性。结果表明, 特殊配合力效应与对照优势(相关系数r1=0.5609)、平均优势(相关系数r2=0.541)之间均呈显著正相关, 而与亲本遗传距离之间相关不显著, 相关系数(r=0.2143)较小。说明本研究所配组合的特殊配合力效应能充分反映杂种优势, 选用的杂交亲本能组配出强优势组合; 而杂交亲本遗传距离的大小并不能反映特殊配合力效应, 分子标记遗传距离与特殊配合力的相关性还有待于进一步的探讨。  相似文献   

12.

Key message

General and specific combining abilities of maize hybrids between 288 inbred lines and three tester lines were highly related to population structure and genetic distance inferred from SNP data.

Abstract

Many studies have attempted to provide reliable and quick methods to identify promising parental lines and combinations in hybrid breeding programs. Since the 1950s, maize germplasm has been organized into heterotic groups to facilitate the exploitation of heterosis. Molecular markers have proven efficient tools to address the organization of genetic diversity and the relationship between lines or populations. The aim of the present work was to investigate to what extent marker-based evaluations of population structure and genetic distance may account for general (GCA) and specific (SCA) combining ability components in a population composed of 800 inter and intra-heterotic group hybrids obtained by crossing 288 inbred lines and three testers. Our results illustrate a strong effect of groups identified by population structure analysis on both GCA and SCA components. Including genetic distance between parental lines of hybrids in the model leads to a significant decrease of SCA variance component and an increase in GCA variance component for all the traits. The latter suggests that this approach can be efficient to better estimate the potential combining ability of inbred lines when crossed with unrelated lines, and limits the consequences of tester choice. Significant residual GCA and SCA variance components of models taking into account structure and/or genetic distance highlight the variation available for breeding programs within structure groups.
  相似文献   

13.
Summary Studies conducted at the International Rice Research Institute (IRRI) during 1980 and 1981 have shown up to 73% heterosis, 59% heterobeltiosis and 34% standard heterosis for yield in rice. The latter was estimated in comparison to commercial varieties: IR36 and IR42 (yield 4–5 t/ha in wet season trials and 7–8 t/ha in dry season trials). Generally speaking, absolute yield was lower and extent of standard heterosis was higher in wet season than in dry season with some exception. Yields up to 5.9 t/ha (22% standard heterosis) in the wet season and 10.4 t/ha (34% standard heterosis) in the dry season were obtained. Most of the hybrids performed better in some season while some performed better in both seasons. Hybrids showed better lodging resistance although they were 5–10 cm taller. F1 hybrids had significant positive correlations with the parental traits viz., yield (r = 0.446), tillering (r = 0.746), height (r = 0.810) and flowering (r = 0.843). Selection of parents among elite breeding lines on the basis of their per se yield performance, diverse origin and resistance to insects and diseases should give heterotic combination. Yield advantage of hybrids was due primarily to increase in number of spikelets per unit area even though tiller number was reduced. Grain weight was either the same or slightly higher. High yielding hybrids also showed significant heterosis and heterobeltiosis for total dry matter and harvest index. For commercial utilization of heterosis in rice, effective male sterility and fertility restoration systems are available and up to 45% natural outcrossing on male sterile lines has been observed. Consequently, F1 rice hybrid have been successfully developed and used in China. Prospects of developing hybrid rice varieties elsewhere appear bright especially in countries that have organized seed production, certification and distribution programs and where hybrid seed can be produced at a reasonable cost.  相似文献   

14.
Two Cytoplasmic Male Sterile lines were crossed with fourteen restorer lines of rice widely grown in the western regions of Maharashtra, India, to produce 28 F1 hybrids which were evaluated for eight agronomically important traits, contributing to yield potential, in replicated field trials. The hybrid performance was recorded along with heterosis and heterobeltiosis. All the rice lines under investigation were subjected to marker-based variability analysis. An attempt was made to correlate genetic distance based on specific markers for each trait individually, as well as average genetic distance based on all specific markers, with hybrid performance and heterosis, by regression analysis. Specific markers could cluster the parental lines in different groups and showed significant correlation with hybrid performance. The data also supports the proposition that epistasis is the basis of heterosis. The analysis, however, revealed a lack of significant predictive values for field application.  相似文献   

15.
抗除草剂杂交籼稻亲本的配合力分析   总被引:2,自引:0,他引:2  
本试验以6份新育成的抗除草剂籼型恢复系为父本,5份生产上广泛应用的不育系为母本,采用不完全双列杂交设计配制了30份杂交组合,对其苗期除草剂抗性和主要农艺性状配合力进行了分析。除草剂抗性鉴定表明,亲本恢复系及三系杂交组合抗性接近完全,两系杂交组合抗性达90%以上。配合力分析表明,不育系除单株有效穗数外其他农艺性状的一般配合力均达到极显著差异;恢复系间一般配合力在所有性状中均达到显著或极显著差异;杂交组合间特殊配合力方差仅在单株产量、结实率、播始历期和千粒重4个性状中达到显著或极显著差异。不育系中,金科1A在单株产量、结实率等7个性状上的一般配合力均为最高,但其特殊配合力方差最小;广占63-4S在千粒重性状上具有最高的一般配合力、最大的特殊配合力方差,在播始历期上具有最高的一般配合力负效应;C815S在株高上的一般配合力负效应最大,同时特殊配合力方差较高。恢复系中,华抗恢101在单株有效穗数上具有最高的一般配合力和特殊配合力方差;华抗恢104在穗长上具有最高的一般配合力,在播始历期上具有最高的一般配合力负效应;华抗恢105在单株产量、结实率等性状上具有最高的一般配合力,在株高上具有最高的一般配合力负效应;华抗恢106在千粒重性状上具有最高的一般配合力和特殊配合力效应方差。利用抗除草剂恢复系配制杂交组合,不仅可以改良其除草剂抗性,也可以通过广泛测配,选择一般配合力强、特殊配合力方差大的亲本配组育成强优势组合。  相似文献   

16.
几个优良籼稻亲本品质性状的配合力和杂种优势分析   总被引:2,自引:0,他引:2  
以3个不育系和10个恢复系为材料,采用NCII交配设计研究10个米质性状的配合力和杂种优势。结果表明:①大多数品质性状的量值介于双亲之间,除粒重表现一定的超亲优势、垩白度和粒宽表现一定的正向平均优势外,其他品质性状优势不明显。②杂种稻米的品质性状主要受不育系或恢复系的影响,其中粒长、粒宽和直链淀粉含量3个性状,不育系的影响要高于恢复系;而对于整精米率、粒重、垩白率、垩白度和糊化温度,则恢复系的影响要高于不育系。③就优质育种的利用价值而言,不育系以广占63-4S为好,恢复系以扬稻6号为好,R527、镇恢084次之,用上述亲本选配的杂交组合米质较好;恢复系特青、盐恢559表现为一般配合力效应低,特殊配合力方差小,优质育种利用价值不大。  相似文献   

17.
18.
This paper reports the observation on the intersubgenomic heterosis for seed yield among hybrids between natural Brassica napus (AnAnCnCn) and a new type of B. napus with introgressions of genomic components of Brassica rapa (ArAr). This B. napus was selected from the progeny of B. napus × B. rapa and (B. napus × B. rapa) × B. rapa based on extensive phenotypic and cytological observation. Among the 129 studied partial intersubgenomic hybrids, which were obtained by randomly crossing 13 lines of the new type of B. napus in F3 or BC1F3 to 27 cultivars of B. napus from different regions as tester lines, about 90% of combinations exceeded the yield of their respective tester lines, whereas about 75% and 25% of combinations surpassed two elite Chinese cultivars, respectively. This strong heterosis was further confirmed by reevaluating 2 out of the 129 combinations in a successive year and by surveying hybrids between 20 lines of the new type of B. napus in BC1F5 and its parental B. napus in two locations. Some DNA segments from B. rapa were identified with significant effects on seed yield and yield components of the new type of B. napus in BC1F5 and intersubgenomic hybrids in positive or negative direction. It seems that the genomic components introgressed from B. rapa contributed to improvement of seed yield of rapeseed.  相似文献   

19.
The introgression of winter germplasm into spring canola (Brassica napus L.) represents a novel approach to improve seed yield of hybrid spring canola. In this study, quantitative trait loci (QTL) for seed yield and other traits were genetically mapped to determine the effects of genomic regions introgressed from winter germplasm into spring canola. Plant materials used comprised of two populations of doubled haploid (DH) lines having winter germplasm introgression from two related French winter cultivars and their testcrosses with a spring line used in commercial hybrids. These populations were evaluated for 2 years at two locations (Wisconsin, USA and Saskatchewan, Canada). Genetic linkage maps based on RFLP loci were constructed for each DH population. Six QTL were detected in the testcross populations for which the winter alleles increased seed yield. One of these QTL explained 11 and 19% of the phenotypic variation in the two Canadian environments. The winter allele for another QTL that increased seed yield was linked in coupling to a QTL allele for high glucosinolate content, suggesting that the transition of rapeseed into canola could have resulted in the loss of favorable seed yield alleles. Most QTL for which the introgressed allele decreased seed yield of hybrids mapped to genomic regions having homoeologous non-reciprocal transpositions. This suggests that allelic configurations created by these rearrangements might make an important contribution to genetic variation for complex traits in oilseed B. napus and could account for a portion of the heterotic effects in hybrids. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

20.
Selection of parents based on their combining ability is an effective approach in hybrid breeding. In this study, eight maintainer lines and nine restorer lines were used to obtain 72 crosses for analyzing the general combining ability (GCA) and special combining ability (SCA) for seven agronomic and yield characters including plant height (PH), spike length excluding awns (SL), inter-node length (IL), spikes per plant (SP), thousand kernel weight (TKW), kernel weight per plant (KWP) and dry matter weight per plant (DWP). The results showed that GCA was significantly different among parents and SCA was also significantly different among crosses. The performance of hybrid was significantly correlated with the sum of female and male GCA (TGCA), SCA and heterosis. Hu1154 A, Mian684 A, 86F098 A, 8036 R and 8041 R were excellent parents with greater general combining ability. Five crosses, Hu1154 A×8032 R, Humai10 A×8040 R, Mian684 A×8037 R, Mian684 A×8041 R and 86F098 A×8037 R, showed superior heterosis for most characters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号