首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
鼎湖山针阔叶混交林冠层下方CO2通量及其环境响应   总被引:2,自引:2,他引:0  
精确估算典型森林生态系统冠层下方CO2通量(Fcb)对验证陆地生态系统碳平衡模型具有重要意义。采用开路涡度相关法对鼎湖山针阔叶混交林Fcb进行定位测定,根据1周年数据分析Fcb及其对环境要素的响应特征,结果表明:(1)白天Fcb呈下降趋势表明地表植被全年具有光合能力,但总体上地表植被和土壤表现为CO2排放源;(2)Van’tHoff方程、Arrhenius方程和Lloyd-Taylor方程均可以较好反映土壤温度(Ts)与Fcb的关系,其中仅Lloyd-Talor方程能够反映温度因子敏感性指标Q10随温度的变异性特征;(3)Lloyd-Talor方程模拟的Fcb完全由Ts控制,而连乘模型由Ts和土壤水分(Ms)控制,可以反映水热条件的综合影响,对Fcb具有更强的拟合能力;(4)在Ms较大时连乘模型对Fcb的估算高于Lloyd-Talor方程,反之在干旱时段连乘模型模拟结果低于Lloyd-Talor方程,表明当存在水分胁迫时,Ms可以成为影响Fcb的主导因子;(5)2003年鼎湖山针阔叶混交林Fcb总量((787.4±296.8)gCm^-2a^-1)比静态箱-气相色谱法测得的土壤呼吸偏低17%。与箱式法相比,涡度相关法通量测定结果普遍存在偏低估算现象。  相似文献   

2.
鼎湖山针阔叶混交林生态系统呼吸及其影响因子   总被引:3,自引:0,他引:3  
精确估算典型森林生态系统呼吸(Reco)对评价生态系统碳平衡具有重要意义。采用开路涡度相关法对鼎湖山针阔叶混交林Reco进行定位测定,根据2003~2004年数据采用多种呼吸模型对Reco进行估算并分析Reco对环境要素的响应特征,结果表明:(1)Reco受土壤温度、湿度和冠层气温、相对湿度共同影响,Reco对环境因子的响应模式存在季节性差异,总体上土壤温度是驱动Reco的主要因子。(2)描述Reco与温度因子的关系模式中,指数方程、Van’tHoff方程、Arrhenius方程和Lloyd-Talor方程,统计意义上具有同等的能力,从温度敏感性指标Q10看,Lloyd-Talor方程比其他方程更适合于描述Reco对温度的响应特征。(3)由土壤温度(Ts)和土壤含水量(Ms)驱动的连乘耦合模型,能综合反映Ts、Ms对Reco的协同作用。在Ms较高时段,连乘模型模拟的Reco高于Tloyd-Taylor方程,而在Ms较低时段连乘模型的结果低于Tloyd-Taylor方程,但二者没有统计意义上的显著差异。(4)鼎湖山混交林2003年Reco年总量,基于白天涡度相关通量观测资料的模型估算结果为1100~1135.6gCm-2a-1,比基于夜间通量资料估算结果(921~975gCm-2a-1)增加12%~25%。采用白天通量资料估算Reco,对克服夜间涡度相关法通量测定结果偏低问题具有积极意义,为进一步可靠评估净生态系统CO2交换(NEE)奠定方法基础。  相似文献   

3.
青藏高原高寒湿地生态系统CO2通量   总被引:3,自引:0,他引:3  
依据涡度相关系统连续观测的2005年CO2通量数据,对青藏高原东北隅的高寒湿地生态系统源/汇功能及其部分环境影响因素进行了分析。结果表明,高寒湿地生态系统为明显的碳源,在植物生长季(5~9月份)吸收230.16 gCO2•m-2,非生长季(1~4月份及10~12月份)释放546.18 gCO2•m-2,其中净排放最高在5月份,为181.49 gCO2•m-2,净吸收最高在8月份,为189.69 gCO2•m-2,年释放量为316.02 gCO2•m-2。在平均日变化中,最大吸收值出现在7月份12:00,为(0.45±0.0012) mgCO2•m-2•s-1,最大排放速率出现在8月份0:00,为(0.22±0.0090) mgCO2•m-2•s-1。生长季中6~9月份表现为明显的单峰型日变化,非生长季的变化幅度较小。净生态系统交换量(NEE)和生态系统总初级生产力(GPP)与气温、空气水气饱和亏和地表反射率等环境因素呈现相似的相关性,与地上生物量和群落叶面积指数则为线性负相关,生态系统呼吸(Res)则与上述因子的相关性呈现相反的趋势。  相似文献   

4.
韩梅  杨利民  张永刚  周广胜 《生态学报》2006,26(6):1825-1832
在全球动态植被模型的发展中, 受限于人力、物力和财力使得在物种水平上的研究变得既不可能也无必要。 植物功能群的划分是从生态学的, 而不是系统发育的角度来相互比较地对待不同地区的植物, 从而削减了植被变化研究中植物分类群的数量, 已成为研究植被变化及生物多样性对生态系统功能作用的重要单位。 植物的不同光合途径(C3、C4和CAM)从叶片组织结构到生理功能, 从生态适应到地理分布均表现出对不同水、热、光环境的响应, 是理想的植物功能群分类。 为此,分析了中国东北样带以羊草(Leymus chinensis)为建群种或共建种的草原群落植物光合类型功能群生物量及其与群落初级生产力和环境变化的关系。 结果表明:  (1)C4植物生物量具有明显的变化规律, 且对环境变化的响应显著, 其变异性较高, 更能反映样地间环境变化的差异; (2)C4与C3植物变化具有明显的互补性, 并且多数C4植物常在逆境中起到更大作用, 如干旱化、盐碱化和放牧干扰; (3)C4植物种类少,在所有调查样方中仅出现7种,占总出现种类的9.72%。这些特点说明C4植物可以考虑作为评估和预测我国温带草原植被及其生态系统变化的重要植物功能群。  相似文献   

5.
黄树辉  曾光辉  吕军 《生态学报》2007,27(3):1248-1253
模拟稻田土壤在加入不同量的 (NH4)2SO4和双氢按(DCD)抑制剂的溶液后先进行淹水培养,然后让土壤自然蒸发变干,直至土壤产生裂缝到裂缝稳定,最后在裂缝稳定后的复水的连续培养试验。通过模拟对土壤进行复杂的、动态的水分含量变化过程中试验,探讨双氢胺抑制剂对其N2O释放的影响。每天监测土体释放的N2O通量,以及渗漏液中溶解的N2O浓度和pH值。这些监测结果表明:在相同的水分管理条件下,土壤中没有氮肥加入,只有DCD加入的A处理释放N2O气体最少,其平均释放通量为340.91 μg m-2 h-1; 土壤中有高剂量的氮肥和DCD加入的E处理释放N2O最多,其平均释放通量为9280.23 μg m-2 h-1。裂缝产生稳定后的复水能减少N2O向空气中的释放。渗漏液中的N2O浓度都是过饱和的。当土壤中肥料(NH4)2SO4加入量(每千克土壤中外加N≤3g)相对较少的情况下,DCD抑制剂能抑制裂缝产生过程中的N2O释放;当土壤中肥料(NH4)2SO4加入量(每千克土壤中外加N≥6g)相对较多的情况下,DCD抑制裂缝产生过程中的N2O释放效果不明显。此外还得出(NH4)2SO4和DCD的加入量比是10:1 时,其抑制N2O排放的效果比(NH4)2SO4和DCD的加入量比分别是10∶1.5和10∶2要好。土体释放的N2O通量和渗漏液中溶解的N2O浓度之间不存在相关性,土体释放的N2O通量和渗漏液中的pH值之间也不存在相关性。但是渗漏液中的N2O浓度和pH值之间存在显著的正线性相关关系。  相似文献   

6.
中国森林生态系统土壤CO2释放分布规律及其影响因素   总被引:2,自引:0,他引:2  
联合国气候框架公约的签署提升了人们对全球变暖、碳循环变化的关注。陆地生态系统在全球变暖格局下的地位与作用,尤其是土壤碳库对全球变暖格局的响应是全球变化研究的焦点。土壤CO2释放作为土壤-大气CO2交换的主要途径之一,也就成为各国生态学家研究的重点内容。在对我国森林生态系统CO2释放通量以及相关气候、生物等因子的资料进行收集、整理和分析的基础上,探讨了我国森林生态系统土壤CO2释放的分布规律,以及这种规律性分布的气候、生物影响因素。对于我国这样一个南北跨度大的国家,不同区域的森林生态系统土壤CO2释放通量间存在较大的差异,在全国尺度上,森林生态系统土壤CO2释放通量平均值为(1.79 ± 0.86) g C m-2 d-1,而且土壤CO2释放通量随着纬度增加逐渐降低。作为一个复杂的生态过程,土壤CO2释放受到生物、非生物因子或独立、或综合的影响。通过分析指出,在全国尺度上,年均温、降雨量、群落净生产力及凋落物量显著地影响森林土壤CO2释放通量。同时,也正是这些影响因子的纬度分布,导致了我国森林生态系统土壤CO2释放通量的纬度分布规律。作为衡量土壤CO2释放对温度敏感性的重要指标,计算了我国森林生态系统土壤CO2释放温度敏感性系数-Q10值,约为1.5,该值显著低于全球平均水平,2.0。  相似文献   

7.
CH4在温室效应中起着重要作用,为估算中亚热带CH4的源汇现状,评价森林生态系统对温室效应的影响,采用静态箱-气相色谱法研究了千烟洲红壤丘陵区人工针叶林的土壤CH4 排放通量特征及水热因子对其的影响。对2004年9月~2005年12月期间的观测结果分析表明 :千烟洲人工针叶林土壤总体表现为大气CH4的吸收汇,原状林地土壤(Forest soil)情况下,CH4通量的变化为7.67~-67.17μg•m-2•h-1,平均为-15.53μg•m-2•h-1;无凋落物处理(Litter-free)情况下,CH4通量的变化是9.31~-90.36 μg•m-2•h-1,平均为-16.53μg•m-2•h-1。 二者对土壤CH4的吸收表现出明显的季节变化规律,秋>夏>冬>春,但无凋落物处理CH4变化幅度较原状林地土壤大,无凋落物处理吸收高峰出现在10月,最低值出现在翌年3月,原状林地土壤则分别在9月和翌年2月,均提前1个月。对土壤CH4吸收通量与温度和湿度的相关分析表明: 无论是原状林地土壤还是无凋落物处理情况下,土壤CH4通量都与地下5 cm的温度和湿度相关性最高。偏相关分析反映了不同季节水热配置对土壤吸收CH4通量的影响:冬季为12月~翌年2月,温度起主要作用;雨季3~6月,温度作用为主,随着温度的升高而升高,水分作用微弱;7~8月,CH4吸收通量随着湿度的降低而增加,但高温限制了CH4的吸收;秋季(9~11月)水热配置适宜,CH4通量达到高峰值。总之,CH4吸收通量随着温度的升高和 湿度的降低而增大,但温度过高会抑制其吸收。  相似文献   

8.
外源氮对沼泽湿地CH4和N2O通量的影响   总被引:1,自引:0,他引:1  
三江平原沼泽湿地受到大气沉降、地表径流、农业排水等外源氮素的输入,对湿地生态系统CH4和N2O通量有重要影响。采用野外原位施肥试验模拟外源氮输入,设0,60,120,240kgN•hm-2 4种试验处理,探讨外源氮对沼泽湿地CH4和N2O通量的影响。结果表明,外源氮促进了CH4和N2O排放。与对照处理比较,各施氮水平CH4平均排放通量分别增加了181%,254%和155%,N2O排放通量分别增加了21%,100%和533%。外源氮输入对CH4排放的季节变化形式影响不大,而N2O的季节变化形式随着氮输入表现出波动变化的趋势。不同施氮水平对CH4排放的促进作用与植物生长阶段和产CH4的微生物过程密切相关,N2O排放通量随氮输入量呈指数增加(R2=0.97,p<0.01)。外源氮通过影响湿地微生物过程来进一步影响CH4和N2O的排放。  相似文献   

9.
采用环境控制生长室控制CO浓度的方法,研究了CO浓度(350~400μmol mol-1和680~750μmol mol-1对植物根内丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)群落的影响。12种宿主植物于CO浓度不同的生长室栽培180d后收获取样,通过CTAB法提取共生菌根内丛枝菌根真菌的DNA,由特异引物U1/U2扩增编码核糖体28S大亚基的rDNA部分序列,并进行DGGE电泳分析。结果表明,12种植物根内的AMF存在特异的AMF类群(unique species group, US)和共有类群(common species group, CS),而且CO浓度倍增使US减少而CS增加。与350μmol mol-1对照相比,700μmol mol-1处理的玉米、刺苋、大豆、陆稻、无芒稗、黑麦草6种植物的AMF群落多样性下降,下降幅度分别达27.12%、16.84%、10.12%、8.62%、8.58%和2.67%;白车轴、牛筋草、早熟禾、鼠曲草、野燕麦、北美车前6种植物的AMF群落多样性上升,分别达76.26%、28.50%、17.60%、15.08%、1.46%和0.96%。CO倍增处理后12种植物的AMF多样性平均指数略呈上升趋势。研究指出未来环境变化(如CO2增加)将影响AMF群落结构从而影响菌根共生体的形成。  相似文献   

10.
李永华  王献  孔德政  叶庆生 《生态学报》2007,27(5):1852-1857
以开顶式塑料薄膜温室为设施,研究了红掌(Anthurium andraeanum L.)幼苗植株生长、叶片净光合速率和光合酶活性对长期高CO2浓度的响应。结果表明:处理90 d时,处理组T1((700±100) μmol•mol-1 CO2)的株高、单叶面积、株鲜重分别比对照组((360±30)μmol•mol-1)增加了15.76%、14.30%、29.62%,而处理组T2 ((1000±100)μmol•mol-1 CO2)的株高、单叶面积、株鲜重分别比对照增加了15.00%、9.63%、3622%;处理150 d时T1的株高、单叶面积、株鲜重与对照相比分别增加了1608%、17.30%、49.09%,而T2增加了16.61%、10.10%、48.87%。在各自生长环境下处理组T1、T2的净光合速率在整个处理期间均高于对照,处理150 d时,T1、T2的净光合速率分别比对照高8.25%、20.62%;但处理90 d时,在对照CO2浓度下测定的净光合速率处理组开始低于对照组,可能此时处理组的红掌叶片开始出现光合适应现象;CO2浓度升高促进了叶片中可溶性糖和淀粉积累,处理90 d时T1、T2处理组中淀粉含量分别比对照高52.60%、67.66%;处理150 d时,T1组红掌叶片中淀粉与可溶性糖含量比对照高53.43%、6.32%,T2比对照高58.44%、8.07%,叶绿素含量在处理90 d时也开始低于对照组;整个实验过程中,Rubisco活性前期增加,90 d以后开始下降;乙醇酸氧化酶活性则明显下降,T1、T2处理组试验结束时与对照组相比分别下降了41.28%、45.35%。一定处理时间(90 d)的高浓度CO2处理提高了红掌叶片的净光合速率和碳水化合物的积累,促进了营养生长,但随着处理时间的延长,这种促进作用逐渐降低。  相似文献   

11.
Accurate estimation of below-canopy CO2 flux (Fcb) in typical forest ecosystems is of great importance to validate terrestrial carbon balance models. Continuous eddy covariance measurements of Fcb were conducted in a coniferous and broad-leaved mixed forest located in Dinghushan Nature Reserve of South China. Using year-round data, Fcb dynamics and its environmental response were analyzed, and the results mainly showed that: (1) Fcb decreased during daytime which indicated that the understory of the forest continued photosynthesis throughout the year; however, understory and soil acted as CO2 source as a whole. (2) Using soil temperature (Ts) as a dependent variable, all of Van’t Hoff equation, Arrhenius equation and Lloyd-Taylor equation can explain a considerable variation of Fcb. Among those three equations Lloyd-Taylor equation is the best to reflect the relationship between soil respiration and temperature for its ability in revealing the variation of Q10 with temperature. (3) Fcb derived from Lloyd-Taylor equation is utterly determined by Ts, while Fcb derived from the multiplicative model is driven by Ts and soil moisture (Ms). The multiplicative model can reflect the synthetic effect of Ts and Ms; therefore it explains more Fcb variations than Lloyd-Taylor equation does. (4)Fcb derived from the multiplicative model was higher than that from Lloyd-Taylor equation when Ms was relatively high; on the contrary, Fcb derived from the multiplicative model was lower than that from Lloyd-Taylor equation when Ms was low, indicating that Ms might be a main factor affecting Fcb when the ecosystem is stressed by low-moisture. (5) Annual Fcb of the forest in 2003 was estimated as (787.4±296.8) gCm-2a-1, which was 17% lower than soil respiration measured by statistic chamber method. CO2 flux measured by eddy covariance is often underestimated, and further study therefore calls for emphasis on methods quantifying Fcb components of respiration of soil, as well as respiration and photosynthesis of understory vegetations.  相似文献   

12.
 该文利用涡度协方差法和生理生态学方法(不同分量的累积和)获得的通量观测数据,对老山落叶松(Larix gmelinii)林(45°20′N, 127°34 ′E)的碳收支进行了分析。通过对每0.5 h所测数据进行的分析表明,能量平衡达到75%,说明涡度协方差法适应于本站的研究。较阴天气情况 下,林分光照利用效率显著高于晴朗天气,可能归因于阴天较多的散射光。以单位土地面积计算发现,通过涡度协方差法计算的落叶松林生态 系统的总初级生产力在20~50 μmol•m-2•s-1之间,远高于冠层叶片的总光合速率9.8~23.4μmol•m-2•s-1 (平均值16.2μmol•m-2•s-1 ),而 当综合考虑冠层光合和林下植物光合作用时,两种方法测定结果吻合性较好,说明林下植物对落叶松林碳平衡有重要影响。在估计森林生态系 统呼吸方面,以有风夜晚净生态系统交换量(NEE)来代表生态系统呼吸总量(3~9μmol•m-2•s-1)低估了生态系统呼吸总量,粗略估计较生 理生态学方法(不同呼吸分量的累积和)低估了50%左右(14.2μmol•m-2•s-1)。结果发现两种方法在估计森林碳平衡方面存在一定的差异, 呼吸量的估计差异应是今后研究的重点。  相似文献   

13.
 为探讨西双版纳独特地方气候背景下,热带季节雨林CO2浓度的时空变化特征和不同时间尺度上环境因素对森林CO2浓度时间分布的作用,以及 为研究热带季节雨林的碳通量、净生态系统交换量(Net ecosystem exchange, NEE)等提供支持,我们利用热带季节雨林林冠上方和林内近地层 CO2浓度连续监测资料,结合同步气象资料进行了统计分析。研究结果表明:在植被生理活动、土壤呼吸以及林内湍流的共同作用下,西双版纳 热带季节雨林CO2浓度表现出明显的日变化、季节变化和林冠上下差异。在日尺度上,林冠上方的CO2浓度时间变化曲线为“单峰型”,林内近 地层CO2浓度时间变化曲线为“双峰型”,造成林内近地层傍晚第二个峰值的主要因子是地形因子作用下形成的局地环流。在季节尺度上,林冠 上方CO2浓度主要受林冠代谢作用的影响,呈现雨季低、干季高的特点,而林内近地层的CO2浓度则主要受地表呼吸过程所控制,季节变化趋势 与林冠上方相反。林冠上方CO2浓度低于林内近地层CO2浓度,且差异较大;在日尺度上,各月(除12月外)CO2浓度的最大差值皆大于80 mg·m -3,且出现在傍晚;在季节尺度上,最大值为-62.9 mg·m-3,出现在10月,最小值为-8.4 mg·m-3,出现在12月。  相似文献   

14.
 依托FACE(Free-air CO2 enrichment)研究平台, 利用特制分根集气生长箱, 采用静态箱-GC(Gas chromatography)法, 连续两年研究 了大气CO2浓度升高和不同氮肥水平对冬小麦拔节期、孕穗抽穗期和灌浆末期的根系呼吸及生物量的影响。两季结果表明, CO2浓度升高和高氮 肥量均不同程度地增加了3个阶段的地上部和地下部的生物量, 这有利于增加根茬的还田量; CO2浓度升高对冬小麦不同生长阶段的根系呼吸影 响不同, 在拔节期影响较小;孕穗抽穗期显著增加了根系呼吸, 2004~2005季分别增加33.8%(148.1 mg N&;#8226;kg-1 干土, HN)和43.9%(88.9 mg N&;#8226;kg-1 干土, LN), 2005~2006季分别为23.8%(HN)和28.9%(LN); 而灌浆末期显著降低了根系呼吸, 2004~2005季分别降低31.4%(HN)和23.3% (LN), 2005~2006季分别为25.1%(HN)和18.5%(LN); 高施氮量比低施氮量促进了根系呼吸; 随着作物生长根系呼吸与地下生物量呈显著线性负相 关, 高CO2环境中的R2变小,表明随着作物生长发育高CO2浓度降低了作物根系呼吸与地下部生物量积累间的相关性.  相似文献   

15.
华西雨屏区苦竹林土壤呼吸对模拟氮沉降的响应   总被引:15,自引:2,他引:13       下载免费PDF全文
2007年11月至2008年11月, 对华西雨屏区苦竹(Pleioblastus amarus)人工林进行了模拟氮沉降试验, 氮沉降水平分别为对照(CK, 0 g N·m-2·a-1)、低氮(5 g N·m-2·a-1)、中氮(15 g N·m-2·a-1)和高氮(30 g N·m-2·a-1)。每月下旬, 采用红外CO2分析法测定土壤呼吸速率, 并定量地对各处理施氮(NH4NO3)。结果表明: 2008年试验地氮沉降量为8.241 g·m-2, 超出该地区氮沉降临界负荷。在生长季节, 苦竹林根呼吸占总土壤呼吸的60%左右。模拟氮沉降促进了苦竹林土壤呼吸速率, 使苦竹林土壤每年向大气释放的CO2增加了9.4%~28.6%。在大时间尺度上(如1 a), 土壤呼吸主要受温度的影响。2008年6~10月, 土壤呼吸速率24 h平均值均表现为: 对照<低氮<中氮<高氮。氮沉降处理1 a后, 土壤微生物呼吸速率和土壤微生物生物量碳、氮增加, 并且均与氮沉降量具有相同趋势。各处理土壤呼吸速率与10 cm土壤温度、月平均气温呈极显著指数正相关关系, 利用温度单因素模型可以解释土壤呼吸速率的大部分。模拟氮沉降使得土壤呼吸Q10值增大, 表明氮沉降可能增强了土壤呼吸的温度敏感性。在氮沉降持续增加和全球气候变暖的背景下, 氮沉降和温度的共同作用可能使得苦竹林向大气中排放的CO2增加。  相似文献   

16.
冬季土壤呼吸:不可忽视的地气CO2交换过程   总被引:5,自引:0,他引:5       下载免费PDF全文
 冬季土壤呼吸是生态系统释放CO2的极为重要的组成部分,并显著地影响着碳收支。然而,过去绝大多数工作集中在生长季节土壤呼吸的测定,对年土壤呼吸量的估算大多基于冬季土壤呼吸为零的假设。目前为数不多的研究集中在极地苔原和亚高山,其它植被类型的研究只有零星报道。极地苔原和森林冬季土壤呼吸速率分别为0.002~1.359和0.22~0.67 μmol C.m-2·s-1;土壤呼吸的CO2释放量分别为0.55~26.37和22.4~152.0 g C·m-2,是地气CO2交换过程中不可忽视的环节。雪是土壤呼吸过程的重要调节者,积雪厚度和覆盖时间的长短均会影响土壤呼吸的强弱;水分的可获取性是重要的限制因素;对于维持活跃的土壤呼吸有一个关键的土壤温度临界值(-7~-5 ℃),低于这个值会因自由水的缺乏而抑制异养微生物的呼吸。如果存在绝缘的积雪层,可溶性碳底物在自由水存在的情况下可控制异养微生物的活力。该文对冬季土壤呼吸的重要性、研究方法、土壤呼吸强度及其影响机制等进行了综述,并讨论了冬季土壤呼吸研究中存在的问题及未来研究方向。  相似文献   

17.
青海省三江源区人工草地生态系统CO2通量   总被引:13,自引:2,他引:11       下载免费PDF全文
 了解三江源人工草地净生态系统CO2交换(Net ecosystem CO2 exchange, NEE)的季节变化规律和主要生物因子及环境因子对这些过程的影响将有助于认识青藏高原人工草地生态系统碳循环、生态价值、功能,以及对三江源区的生态安全的重要意义。该研究利用涡度相关技术,于2005年9月1日至2006年8月31日对位于青海腹地的垂穗披碱草(Elymus nutans)人工草地的NEE及生物和环境因子进行观测, 阐明NEE及其组分的动态变化特征和影响因子。三江源区人工草地生态系统的日最大吸收量为2.38 g C·m-2·d-1,出 现在7月30日。日间最大吸收率和最大排放率都出现在8月,分别为-6.82和2.95μmol CO2·m-2·s-1。在生长季, 白天的NEE主要受光合有效辐射(Photosynthe tically active rad iation, PAR)变化控制,同时又与叶面积指数和群落多样性交互作用,共同调节光合速率和光合效率的强度。最大光合同化速率为2.46~10.39μmol CO2·m-2·s-1,表观初始光能利用率为0.013~0.070μmol CO2·μmol-1 PAR。 在碳交换日过程中,NEE并不完全随着 PAR的增加而增大,当PAR超过某一值(>1 200μmol ·m-2·s-1)时,NEE随PAR的增加而降低。受温度的影响,生长季的生态系统的呼吸商Q10(1.8)小于非生长季节的 2.6)。 生态系统呼吸主要受温度的控制,同时也受到叶面积指数的显著影响。生长季昼夜温差大并不利于生态系统的碳获取。 三江源区人工草地生态系统是一个较强的碳汇,为-49.35 g C·m-2·a-1。  相似文献   

18.
A. Ekblad  P. H?gberg 《Oecologia》2001,127(3):305-308
Soil respiration from a boreal mixed coniferous forest showed large seasonal variation in natural abundance of 13C, ranging from -21.6‰ to -26.5‰. We tested if weather conditions could explain this variation in '13C of respired CO2, and found that the air relative humidity 1-4 days before the days of CO2 sampling best explained the variation. This suggested that high '13C values were caused by effects of air humidity on isotope fractionation during photosynthesis and that it took 1-4 days for the C from canopy photosynthesis of 20-25 m trees to become available for root/rhizosphere respiration. We calculated that these new photoassimilates could account for at least 65% of total soil respiration.  相似文献   

19.
改变凋落物输入对杉木人工林土壤呼吸的短期影响   总被引:9,自引:0,他引:9       下载免费PDF全文
从2007年1月至12月, 在长沙天际岭国家森林公园, 通过改变杉木林凋落物输入, 研究杉木(Cunninghamia lanceolata)人工林群落去除凋落物、加倍凋落物土壤呼吸速率及5 cm土壤温、湿度的季节变化。结果表明: 去除和加倍凋落物对土壤温度和湿度产生的差异不显著(p>0.05), 对土壤呼吸全年产生的差异接近显著(Marginal significant)(p=0.058)。按植物生长期分别分析, 去除和加倍凋落物对土壤呼吸产生的差异, 在生长旺盛期差异显著(p=0.003), 在生长非旺盛期差异性不显著(p=0.098)。去除凋落物年均土壤呼吸速率为159.2 mg CO2·m-2·h-1, 比对照处理土壤呼吸速率(180.9 mg CO2·m-2·h-1)低15.0%, 加倍凋落物的土壤呼吸为216.8 mg CO2·m-2·h-1, 比对照处理高17.0%。去除和加倍凋落物土壤呼吸季节动态趋势与5 cm深度土壤温度相似, 它们之间呈显著指数相关, 模拟方程分别为: y=27.33e0.087 2t(R2=0.853, p<0.001), y=37.25e0.088 8t(R2=0.896, p<0.001)。去除和加倍凋落物的Q10值分别为2.39和2.43, 均比对照2.26大。去除和加倍凋落物土壤呼吸与土壤湿度之间关系不显著(p>0.05)。这一结果使我们能够在较短时间内观察到改变凋落物输入对土壤呼吸的影响, 证明凋落物是影响土壤CO2通量的重要因子之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号