首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Transgenic zebrafish provide amazing new tools for following and manipulating cells that form the skeleton. Transgenes that label distinct populations of embryonic cells, such as neural crest that forms most of the skull vault as well as the jaws and gills can be used to determine the embryonic origins of cartilages and bones. This provides a powerful model system for studies of the developmental basis for human birth defects and in a comparative context provides new insights into the developmental changes underlying morphological evolution. Targeting transgenes to nuclear or membrane compartments allows detailed tracking of cell shapes and movements. Here we review how such transgenic markers combined with mutants or tissue grafts to generate mosaic zebrafish embryos have already provided many new insights into skeletal development and disease. In the long run, transgenics designed to perturb gene expression hold great promise for studies of gene function.  相似文献   

2.
The rice field eel as a model system for vertebrate sexual development   总被引:3,自引:0,他引:3  
Complex developmental mechanisms of vertebrates are unraveled using comparative genomic approaches. Several teleosts, such as zebrafish, medaka and pufferfish, are used as genetic model systems because they are amenable to studies of gene function. The rice field eel, a freshwater fish, is emerging as a specific model system for studies of vertebrate sexual development because of its small genome size and naturally occurring sex reversal. Data presented here support the use of the rice field eel as another important fish model for comparative genome studies, especially in vertebrate sexual development. This model system is complementary rather than redundant.  相似文献   

3.
The teleost fish are widely used as model organisms in vertebrate biology. The compact genome of the pufferfish, Fugu rubripes, has proven a valuable tool in comparative genome analyses, aiding the annotation of mammalian genomes and the identification of conserved regulatory elements, whilst the zebrafish is particularly suited to genetic and developmental studies. We demonstrate that a pufferfish WT1 transgene can be expressed and spliced appropriately in transgenic zebrafish, contrasting with the situation in transgenic mice. By creating both transgenic mice and transgenic zebrafish with the same construct, we show that Fugu RNA is processed correctly in zebrafish but not in mice. Furthermore, we show for the first time that a Fugu genomic construct can produce protein in transgenic zebrafish: a full-length Fugu WT1 transgene with a C-terminal β-galactosidase fusion is spliced and translated correctly in zebrafish, mimicking the expression of the endogenous WT1 gene. These data demonstrate that the zebrafish:Fugu system is a powerful and convenient tool for dissecting both vertebrate gene regulation and gene function in vivo.  相似文献   

4.
从八十年代初开始的、通过突变体分离早期胚胎发育基因的研究,揭示了无脊椎动物果蝇形态发生的分子机制,成为1995年诺贝尔生理或医学奖的主要内容,同时也标志着发育生物学已经成为生物学的带头学科。该成果的取得得益于果蝇具备发育生物学研究模型的特点,即可同时进行胚胎学和发育遗传学研究。在脊椎动物发育生物学研究方面,由于缺少适当的研究模型,有关早期胚胎发育基因表达调控的研究始终未获突破性进展。包括小鼠、鸡、爪蟾等在内的一些脊椎动物都只适用于胚胎学或者遗传学某一学科的研究,均不是理想的发育生物学研究模型。一种小型的鲤科鱼———斑马鱼,逐渐成为发育生物学研究的最佳脊椎动物模型。它光周期产卵,卵大,胚胎在体外发育,胚胎发育速度快,早期胚胎完全透明,这些特点使它成为很好的脊椎动物胚胎学研究模型;同时,它个体小,产卵量大,产卵周期短,单倍体、雌核发育二倍体的制作和突变体的获得均较容易,精子可以冷冻保存,所有这些特点又使斑马鱼非常适合于发育遗传学研究。本文将详细论述斑马鱼作为脊椎动物发育生物学研究模型的特点,以及作为模型动物正在进行的有关工作。  相似文献   

5.

Background  

Over the last two decades, zebrafish have been established as a genetically versatile model system for investigating many different aspects of vertebrate developmental biology. With the credentials of zebrafish as a developmental model now well recognized, the emerging new opportunity is the wider application of zebrafish biology to aspects of human disease modelling. This rapidly increasing use of zebrafish as a model for human disease has necessarily generated interest in the anatomy of later developmental phases such as the larval, juvenile, and adult stages, during which many of the key aspects of organ morphogenesis and maturation take place. Anatomical resources and references that encompass these stages are non-existent in zebrafish and there is therefore an urgent need to understand how different organ systems and anatomical structures develop throughout the life of the fish.  相似文献   

6.
How might changes in developmental regulatory pathways underlie evolutionary changes in morphology? Here we focus on a particular pathway regulated by a secreted, signaling peptide, Endothelin1 (Edn1). Developmental genetic analyses show the Edn1-pathway to be crucial for hyomandibular patterning, and we discuss our work with zebrafish suggesting how the signal may function in regulating numbers of skeletal elements, their sizes and their shapes. We then review a broader collection of comparative studies that examine morphological evolution of a subset of the same skeletal elements-the opercular-branchiostegal series of bones of the hyoid arch. We find that phenotypic changes in zebrafish mutants copy evolutionary changes that recur along many actinopterygian lineages. Hence the developmental genetic studies are informative for providing candidate pathways for macroevolution of facial morphology, as well as for our understanding of how these pathways work.  相似文献   

7.
The zebrafish has become an important genetic model, but their small size makes them impractical for traditional physiological studies. In contrast, the closely related giant danio is larger and can be utilized for physiological studies that can also make use of the extensive zebrafish genomic resources. In addition, the giant danio and zebrafish appear to exhibit different growth types, indicating the potential for developing a comparative muscle growth model system. Therefore, the present study was conducted to compare and characterize the muscle growth pattern of zebrafish and giant danio. Morphometric analyses demonstrated that giant danio exhibit an increased growth rate compared with zebrafish, starting as early as 2 wk posthatch. Total myotome area, mean fiber area, and total fiber number all exhibited positive correlations with larvae length in giant danio but not in zebrafish. Morphometric analysis of giant danio and zebrafish larvae demonstrated faster, more efficient growth in giant danio larvae. Similar to larger teleosts, adult giant danio exhibited increased growth rates in response to growth hormone, suggesting that giant danio exhibit indeterminate growth. In contrast, adult zebrafish do not exhibit mosaic hyperplasia, nor do they respond to growth hormone, suggesting they exhibit determinate growth like mammals. These results demonstrate that giant danio and zebrafish can be utilized as a direct comparative model system for muscle growth studies, with zebrafish serving as a model organism for determinate growth and giant danio for indeterminate growth.  相似文献   

8.
9.
Although the development of the digestive system of humans and vertebrate model organisms has been well characterized, relatively little is known about how the zebrafish digestive system forms. We define developmental milestones during organogenesis of the zebrafish digestive tract, liver, and pancreas and identify important differences in the way the digestive endoderm of zebrafish and amniotes is organized. Such differences account for the finding that the zebrafish digestive system is assembled from individual organ anlagen, whereas the digestive anlagen of amniotes arise from a primitive gut tube. Despite differences of organ morphogenesis, conserved molecular programs regulate pharynx, esophagus, liver, and pancreas development in teleosts and mammals. Specifically, we show that zebrafish faust/gata-5 is a functional ortholog of gata-4, a gene that is essential for the formation of the mammalian and avian foregut. Further, extraembryonic gata activity is required for this function in zebrafish as has been shown in other vertebrates. We also show that a loss-of-function mutation that perturbs sonic hedgehog causes defects in the development of the esophagus that parallel those associated with targeted disruption of this gene in mammals. Perturbation of sonic hedgehog also affects zebrafish liver and pancreas development, and these effects occur in a reciprocal fashion, as has been described during mammalian liver and ventral pancreas development. Together, these data define aspects of digestive system development necessary for the characterization of zebrafish mutants. Given the similarities of teleost and mammalian digestive physiology and anatomy, these findings have implications for developmental and evolutionary studies as well as research of human diseases, such as diabetes, liver cirrhosis, and cancer.  相似文献   

10.
The zebrafish has drawn a great deal of attention as a developmental system because it offers the ability to combine excellent embryology and genetics. Here, we report that simple sequence repeats are abundant in the zebrafish genome and are highly polymorphic between two outbred lines, making them useful markers for the construction of a genetic map of this organism.  相似文献   

11.
12.
13.
Apoptosis plays important roles in embryogenesis, tissue homeostasis, and immune system regulation. The zebrafish (Danio rerio) is a powerful vertebrate model organism that has been extensively used to study apoptotic cell death during normal development and under conditions of cellular stress. In the past 5 years, a detailed picture has begun to emerge of the molecular underpinnings of the cell-intrinsic and the cell-extrinsic apoptosis signaling pathways in zebrafish. We begin this review with an introduction to the techniques and experimental approaches that are used to study apoptosis in zebrafish. We follow with a general overview of developmental apoptosis during zebrafish embryogenesis. Finally, we present a comprehensive review of the intrinsic and extrinsic apoptosis pathways in zebrafish, focusing on the high degree of conservation with humans and other mammals. Recent publications that draw upon the unique advantages of the zebrafish system to study novel aspects of apoptosis regulation and function are highlighted throughout.  相似文献   

14.
Kim DH  Sun Y  Yun S  Lee SH  Kim B 《Journal of biomechanics》2005,38(6):1359-1353
The zebrafish is a model organism for addressing questions of vertebrate embryo development. In this paper, the softening phenomenon of the chorion envelope of zebrafish embryos at different developmental stages was mechanically quantitated by using a microrobotic force sensing system. The microrobotic system integrates a piezoelectric cellular force sensor to measure the required forces for penetrating the chorion envelope. Magnitude of penetration forces was found to decrease as an embryo develops. The results mechanically quantitate "chorion softening" in zebrafish embryos due to protease activities subtly modifying the chorion structure, providing an understanding of zebrafish embryo development.  相似文献   

15.
16.
Rapid development, transparency and small size are the outstanding features of zebrafish that make it as an increasingly important vertebrate system for developmental biology, functional genomics, disease modeling and drug discovery. Zebrafish has been regarded as ideal animal specie for studying the relationship between genotype and phenotype, for pathway analysis and systems biology. However, the tremendous amount of data generated from large numbers of embryos has led to the bottleneck of data analysis and modeling. The zebrafish image quantitator (ZFIQ) software provides streamlined data processing and analysis capability for developmental biology and disease modeling using zebrafish model. AVAILABILITY: ZFIQ is available for download at http://www.cbi-platform.net.  相似文献   

17.
In fishes, the C-start behavior, initiated with a C-shaped body bend, is a taxonomically common and widely studied escape response. Its simple neural circuit has made this behavior a model for examining neural control of movement. The S-start, initiated with an S-shaped body bend, is a physiologically distinct escape that occurs in esocid fishes. Here we examine whether zebrafish larvae perform S-starts in order to better understand startle diversity and to attempt to identify the S-start in a system that is tractable for neurobiological studies. We found that larval zebrafish startles varied in the extent of their caudal bending, resulting in C, S and intermediate-shaped responses. We recorded two distinct motor patterns: nearly simultaneous initial activity along one side of the body, characteristic of C-starts, and nearly simultaneous activity rostrally on one side and caudally on the other, characteristic of S-starts. Head stimulation generally elicited C-starts while tail stimulation elicited C- and S-starts. These results demonstrate that the S-start is more common than previously documented and occurs in early developmental stages. We suggest that the S-start may be a fundamental escape behavior in fishes and may provide a comparative model to the C-start for understanding simple neural circuits.  相似文献   

18.
Zebrafish are typically used as a model system to study various aspects of developmental biology, largely as a consequence of their ex vivo development, high degree of transparency, and, of course, ability to perform forward genetic mutant screens. More recently, zebrafish have been developed as a model system with which to study circadian clocks. Cell lines generated from early-stage zebrafish embryos contain clocks that are directly light-responsive. We describe recent experiments using single-cell luminescent imaging approaches to study clock function in this novel cell line system. Furthermore, studies examining the process of entrainment to light pulses within this cell population are described in this review, as are experiments examining light-responsiveness of early-stage zebrafish embryos.  相似文献   

19.
The zebrafish is widely used as a model system for studying mammalian developmental genetics and more recently, as a model system for carcinogenesis. Since there is mounting evidence that selenium can prevent cancer in mammals, including humans, we characterized the selenocysteine tRNA[Ser]sec gene and its product in zebrafish. Two genes for this tRNA were isolated and sequenced and were found to map at different loci within the zebrafish genome. The encoding sequences of both are identical and their flanking sequences are highly homologous for several hundred bases in both directions. The two genes likely arose from gene duplication which is a common phenomenon among many genes in this species. In addition, zebrafish tRNA[Ser]sec was isolated from the total tRNA population and shown to decode UGA in a ribosomal binding assay.  相似文献   

20.
Zebrafish possess all of the classic sensory modalities: taste, tactile, smell, balance, vision, and hearing. For each sensory system, this article provides a brief overview of the system in the adult zebrafish followed by a more detailed overview of the development of the system. By far the majority of studies performed in each of the sensory systems of the zebrafish have involved some aspect of molecular biology or genetics. Although molecular biology and genetics are not major foci of the paper, brief discussions of some of the mutant strains of zebrafish that have developmental defects in each specific sensory system are included. The development of the sensory systems is only a small sampling of the work being done using zebrafish and provides a mere glimpse of the potential of this model for the study of vertebrate development, physiology, and human disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号