首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Zebrafish are typically used as a model system to study various aspects of developmental biology, largely as a consequence of their ex vivo development, high degree of transparency, and, of course, ability to perform forward genetic mutant screens. More recently, zebrafish have been developed as a model system with which to study circadian clocks. Cell lines generated from early-stage zebrafish embryos contain clocks that are directly light-responsive. We describe recent experiments using single-cell luminescent imaging approaches to study clock function in this novel cell line system. Furthermore, studies examining the process of entrainment to light pulses within this cell population are described in this review, as are experiments examining light-responsiveness of early-stage zebrafish embryos.  相似文献   

2.
Zebrafish are typically used as a model system to study various aspects of developmental biology, largely as a consequence of their ex vivo development, high degree of transparency, and, of course, ability to perform forward genetic mutant screens. More recently, zebrafish have been developed as a model system with which to study circadian clocks. Cell lines generated from early‐stage zebrafish embryos contain clocks that are directly light‐responsive. We describe recent experiments using single‐cell luminescent imaging approaches to study clock function in this novel cell line system. Furthermore, studies examining the process of entrainment to light pulses within this cell population are described in this review, as are experiments examining light‐responsiveness of early‐stage zebrafish embryos.  相似文献   

3.
Direct genomic manipulation at a specific locus is still not feasible in most vertebrate model organisms. In vertebrate cell lines, genomic lesions at a specific site have been introduced using zinc-finger nucleases (ZFNs). Here we adapt this technology to create targeted mutations in the zebrafish germ line. ZFNs were engineered that recognize sequences in the zebrafish ortholog of the vascular endothelial growth factor-2 receptor, kdr (also known as kdra). Co-injection of mRNAs encoding these ZFNs into one-cell-stage zebrafish embryos led to mutagenic lesions at the target site that were transmitted through the germ line with high frequency. The use of engineered ZFNs to introduce heritable mutations into a genome obviates the need for embryonic stem cell lines and should be applicable to most animal species for which early-stage embryos are easily accessible.  相似文献   

4.
5.
It's time to swim! Zebrafish and the circadian clock   总被引:1,自引:0,他引:1  
Vatine G  Vallone D  Gothilf Y  Foulkes NS 《FEBS letters》2011,585(10):1485-1494
The zebrafish represents a fascinating model for studying key aspects of the vertebrate circadian timing system. Easy access to early embryonic development has made this species ideal for investigating how the clock is first established during embryogenesis. In particular, the molecular basis for the functional development of the zebrafish pineal gland has received much attention. In addition to this dedicated clock and photoreceptor organ, and unlike the situation in mammals, the clocks in zebrafish peripheral tissues and even cell lines are entrainable by direct exposure to light thus providing unique insight into the function and evolution of the light input pathway. Finally, the small size, low maintenance costs and high fecundity of this fish together with the availability of genetic tools make this an attractive model for forward genetic analysis of the circadian clock. Here, we review the work that has established the zebrafish as a valuable clock model organism and highlight the key questions that will shape the future direction of research.  相似文献   

6.
7.
The zebrafish has long been used as a model system in fisheries biology and toxicology. More recently, it has also become the focus of a major research effort into understanding the molecular and cellular events which dictate the development of vertebrate embryos. As well, the zebrafish has proven attractive in studies examining the factors which affect the creation of transgenic fish and the expression of transgenes. The advances which have been made in these areas have firmly established this small aquarium fish as a major model system in biological and biotechnological research.  相似文献   

8.
Invasion and metastasis of solid tumors are the major causes of death in cancer patients. Cancer stem cells (CSCs) constitute a small fraction of tumor cell population, but play a critical role in tumor invasion and metastasis. The xenograft of tumor cells in immunodeficient mice is one of commonly used in vivo models to study the invasion and metastasis of cancer cells. However, this model is time-consuming and labor intensive. Zebrafish (Danio rerio) and their transparent embryos are emerging as a promising xenograft tumor model system for studies of tumor invasion. In this study, we established a tumor invasion model by using zebrafish embryo xenografted with human glioblastoma cell line U87 and its derived cancer stem cells (CSCs). We found that CSCs-enriched from U87 cells spreaded via the vessels within zebrafish embryos and such cells displayed an extremely high level of invasiveness which was associated with the up-regulated MMP-9 by CSCs. The invasion of glioma CSCs (GSCs) in zebrafish embryos was markedly inhibited by an MMP-9 inhibitor. Thus, our zebrafish embryo model is considered a cost-effective approach tostudies of the mechanisms underlying the invasion of CSCs and suitable for high-throughput screening of novel anti-tumor invasion/metastasis agents.  相似文献   

9.
The discovery over the last 15 years of molecular clocks and gradients in the pre-somitic mesoderm of numerous vertebrate species has added significant weight to Cooke and Zeeman's ‘clock and wavefront’ model of somitogenesis, in which a travelling wavefront determines the spatial position of somite formation and the somitogenesis clock controls periodicity (Cooke and Zeeman, 1976). However, recent high-throughput measurements of spatiotemporal patterns of gene expression in different zebrafish mutant backgrounds allow further quantitative evaluation of the clock and wavefront hypothesis. In this study we describe how our recently proposed model, in which oscillator coupling drives the propagation of an emergent wavefront, can be used to provide mechanistic and testable explanations for the following observed phenomena in zebrafish embryos: (a) the variation in somite measurements across a number of zebrafish mutants; (b) the delayed formation of somites and the formation of ‘salt and pepper’ patterns of gene expression upon disruption of oscillator coupling; and (c) spatial correlations in the ‘salt and pepper’ patterns in Delta-Notch mutants. In light of our results, we propose a number of plausible experiments that could be used to further test the model.  相似文献   

10.
11.
12.
13.
14.
15.
Zebrafish (Danio rerio) embryos have proven to be a powerful model for studying a variety of developmental and disease processes. External development and optical transparency make these embryos especially amenable to microscopy, and numerous transgenic lines that label specific cell types with fluorescent proteins are available, making the zebrafish embryo an ideal system for visualizing the interaction of vascular, hematopoietic, and other cell types during injury and repair in vivo. Forward and reverse genetics in zebrafish are well developed, and pharmacological manipulation is possible. We describe a mechanical vascular injury model using micromanipulation techniques that exploits several of these features to study responses to vascular injury including hemostasis and blood vessel repair. Using a combination of video and timelapse microscopy, we demonstrate that this method of vascular injury results in measurable and reproducible responses during hemostasis and wound repair. This method provides a system for studying vascular injury and repair in detail in a whole animal model.  相似文献   

16.
17.
目的建立人BAFF转基因斑马鱼模型,探讨其在自身免疫性疾病发病中的作用。方法RT-PCR法由人淋巴瘤细胞克隆了人BAFF基因全长855bp蛋白编码区域,构建表达人BAFF重组质粒Tol2-hBAFF,体外细胞转染并通过免疫印迹法验证蛋白表达。重组载体经显微注射斑马鱼受精卵后,GFP荧光跟踪并筛选阳性鱼。qPCR法检测早期免疫相关基因表达情况。结果人BAFF-GFP融合蛋白可成功表达,利用Tol2-hBAFF重组质粒显微注射斑马鱼受精卵可获得表达人BAFF的转基因斑马鱼,且表达人BAFF斑马鱼1dpf胚胎中TCRAC明显高表达,而Ikaros则表达量显著降低,表明在斑马鱼胚胎中表达人BAFF蛋白会造成早期淋巴系统中基因的过早表达。结论建立的表达人BAFF的转基因斑马鱼,可为系统性红斑狼疮等与BAFF功能亢进密切相关的自身免疫性疾病的治疗,及相关机制研究提供一种具有诸多优点的新型工具。  相似文献   

18.
Cadherin cell adhesion molecules play crucial roles in vertebrate development. Most studies have focused on examining the functions of classical type I cadherins (e.g., cadherin-2) in the development of vertebrates. Little information is available concerning the function of classical type II cadherins (e.g., cadherin-7) in vertebrate development. We have previously shown that cadherin-7 mRNA exhibits a dynamic expression pattern in the central nervous system and notochord in embryonic zebrafish. To gain insight into the role of cadherin-7 in the formation of these structures, we analyzed their formation in zebrafish embryos injected with cadherin-7-specific antisense morpholino oligonucleotides (MO). Notochord development was severely disrupted in MO-injected embryos, whereas gross defects in the development of the central nervous system were not detected in MO-injected embryos. Our results thus demonstrate that cadherin-7 plays an important role in the normal development of the zebrafish notochord.  相似文献   

19.
Zebrafish: a new model on the pharmaceutical catwalk   总被引:8,自引:0,他引:8  
Zebrafish is recognized as one of the most important vertebrate model organisms; however, its value in pharmacological studies has not been extensively explored and exploited. In this review, I summarize significant findings about the effects of drugs and medicines on important physiological processes in zebrafish. Our experiments have shown that cardiovascular, anti-angiogenic and anti-cancer drugs elicit comparable responses in zebrafish embryos to those in mammalian systems. Similar observations have been reported by other laboratories, exposing zebrafish to a variety of pharmaceutical active compounds affecting a range of different processes. All the data summarized indicate that zebrafish represents a very valuable organism for different kinds of pharmacological studies, such as screenings of chemical libraries, lead validation and optimization, mode-of-action studies, analysis of gene function, predictive toxicology and teratogenicity, pharmacogenomics and toxicogenomics. Zebrafish pharmacological assays have specific advantages compared to in vitro cell culture studies and in vivo experiments using mice, complementing these assays to give valuable guides for future tests of new drugs for human therapy.  相似文献   

20.
Time-lapse imaging is often the only way to appreciate fully the many dynamic cell movements critical to neural development. Zebrafish possess many advantages that make them the best vertebrate model organism for live imaging of dynamic development events. This review will discuss technical considerations of time-lapse imaging experiments in zebrafish, describe selected examples of imaging studies in zebrafish that revealed new features or principles of neural development, and consider the promise and challenges of future time-lapse studies of neural development in zebrafish embryos and adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号