首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
以川西高山林线交错带两种优势地被物锦丝藓和高山冷蕨为对象,对针叶林和林线中锦丝藓植物残体及高山冷蕨凋落叶分解的质量损失和木质纤维素酶活性特征进行研究.结果表明: 锦丝藓和高山冷蕨的质量损失率在雪被期和生长季均表现为林线高于针叶林,而酶活性整体上表现为针叶林显著高于林线.两种地被物不同季节的质量损失有显著差异,雪被期林线和针叶林的锦丝藓质量损失率占全年的69.8%和83.0%;生长季林线和针叶林的高山冷蕨质量损失率分别占全年的82.6%和83.4%.高山冷蕨凋落叶在生长季节快速分解,与其生长季节末较高的纤维素酶活性相吻合,说明纤维素和半纤维素的酶解作用可能是凋落物前期质量损失的主要原因.多元线性回归分析表明,环境因子和凋落叶初始质量能共同解释酶活性变异的45.8%~85.1%,两种地被物分解过程中酶活性主要受到雪被期冻融循环的影响.  相似文献   

2.
王利峰  和润莲  杨林  陈亚梅  刘洋  张健 《生态学杂志》2016,27(11):3689-3697
土壤动物是调控凋落物分解的重要生物因素.为了探究川西高山林线交错带土壤动物对两个优势物种岷江冷杉和高山杜鹃凋落物分解的贡献,在3个海拔梯度(针叶林-林线-高山草甸)采用凋落物分解袋试验,通过不同孔径的网袋(0.04 mm,基本排除土壤动物;3 mm,允许土壤动物通过),研究了分解554 d(2013年5月—2014年11月)土壤动物对凋落物的影响.结果表明: 在整个林线交错带上,岷江冷杉的分解速率(k)为0.209~0.243,高山杜鹃的k为0.173~0.189,岷江冷杉的k大于高山杜鹃.土壤动物的参与显著加速了两种凋落叶分解,同时土壤动物对两种凋落物分解的作用和贡献随海拔升高而降低.自针叶林、高山林线至高山草甸,土壤动物对岷江冷杉分解的质量损失率为15.2%、13.2%、9.8%,对高山杜鹃分解的质量损失率为20.1%、17.5%、12.4%;土壤动物对岷江冷杉分解的平均日贡献率为0.17%、0.13%、0.12%,对高山杜鹃分解的平均日贡献率为0.26%、0.25%、0.23%,土壤动物对高山杜鹃的分解影响相对较大.海拔、凋落物自身性质及其交互作用对土壤动物作用下凋落物的质量损失率和贡献率均表现出显著影响.土壤动物的作用于岷江冷杉和高山杜鹃分解的平均日贡献率在当年生长季(0.25%和0.44%)和次年生长季(0.10%和0.19%)均高于雪被期(0.07%和0.12%).回归分析表明,环境因子(日平均气温、冻融循环次数以及雪被厚度)可以解释土壤动物作用于岷江冷杉和高山杜鹃质量损失率的42.7%和50.9%,贡献率的43.2%和55.6%,这对了解土壤动物在凋落物分解中的作用和深入认识高山生态系统物质循环具有重要意义.  相似文献   

3.
凋落物可溶性有机碳(dissolved organic carbon,DOC)是土壤DOC的主要来源之一,同时,凋落物DOC的淋失过程是生态系统碳循环的重要环节。本文采用凋落物分解袋法,于2012年10月—2013年5月,以川西高山林线交错带12种代表性植物的凋落物为材料,研究了冬季雪被期凋落物DOC在暗针叶林森林、高山林线和高山草甸3种分解生境中的淋失特征。结果表明:1)凋落物初始DOC含量为22.78~178.8 g·kg-1,物种间差异显著;2)经过一个雪被期(182 d),凋落物DOC淋失率为18.92%~62.33%,各物种DOC的淋失率对分解生境的响应差异较大;3)分解生境差异对凋落物DOC的淋失产生了显著影响,暗针叶林生境中凋落物DOC的淋失率显著高于林线和高山草甸生境;4)雪被是影响冬季高山林线交错带凋落物DOC淋失的主要环境因素。因此,高山林线交错上雪被期DOC淋失的空间变异性主要是景观尺度分布的雪被差异造成的,分解生境中较厚的雪被更利于凋落物DOC的淋失。  相似文献   

4.
高山林线交错带高山杜鹃的凋落物分解   总被引:2,自引:0,他引:2  
凋落物分解是维持生态系统生产力、养分循环、土壤有机质形成的关键生态过程。高山林线交错带是陆地生态系统中对气候变化响应的敏感区域。季节变化和海拔梯度上的植被类型差异可能会影响该区域凋落物的分解,进而对高山生态系统的碳氮循环产生重要影响。采用凋落物分解袋的方法,研究了川西高山林线交错带优势种高山杜鹃(Rhododendron lapponicum)凋落叶在雪被期和生长季的分解特征。结果显示:(1)季节变化和植被类型对高山杜鹃凋落物的分解均具有显著影响(P0.05),凋落叶的质量损失主要发生在生长季且在高山林线最大,暗针叶林中雪被期的质量损失略高于生长季,但差异不显著;(2)林线交错带上高山杜鹃凋落叶分解缓慢,一年干物质失重率为9.62%,拟合分解系数k为0.145;(3)高山杜鹃凋落叶的质量变化主要体现在纤维素降解显著且集中在雪被期,木质素无明显降解,在高山林线上C/N、C/P、木质素/N变化幅度较小且C、N、P的释放表现得稳定而持续。结果表明,季节性雪被对林线交错带内高山杜鹃分解的影响不仅局限在雪被期内,雪被融化期间频繁的冻融作用和雪融水淋洗作用可能会促进高山杜鹃凋落物在生长季初期的分解。总的来看,在气候变暖的情景下,雪被的缩减、生长季的延长和高山杜鹃群落的扩张可能加速高山林线交错带高山杜鹃凋落物的分解。  相似文献   

5.
以无脊椎动物为主体的土壤动物是影响凋落物分解的重要生物因素,对维持陆地生态系统物质循环和能量流动具有重要作用。高山林线交错带是高山植被垂直带谱中重要的过渡区域,拥有比相邻生态系统更高的生境复杂性和物种多样性。林线上温度波动和冻融循环频率显著高于针叶林,为了了解林线交错带上环境差异对凋落物分解过程中的土壤动物群落结构和多样性的影响,采用凋落物分解袋的方法,于高山生态系统的两个主要时期,即雪被末期和生长季末期,研究了林线主要代表性灌木——高山柳(Salix cupularis)、高山杜鹃(Rhododendron lapponicum)和红毛花楸(Sorbus rufopilosa)凋落叶分解的土壤动物多样性特征。结果表明:凋落物中的无脊椎动物群落多样性及个体、类群密度随物种、海拔梯度和季节而变化,且季节差异对无脊椎动物多样性的影响比物种和海拔梯度更显著。3个因子的交互作用不仅影响土壤动物群落多样性和均匀度,而且影响群落个体密度和类群密度。雪被末期,凋落物中的无脊椎动物多样性指数H、均匀度指数J及丰富度指数D以针叶林最高,优势度指数C以林线最高;生长季节末期的无脊椎动物类群密度和个体密度显著高于雪被末期。总体上,凋落物中的无脊椎动物群落丰富度以生长季末期最高,林线较针叶林丰富。这意味着,未来气候变暖情景下,灌丛密度增加,凋落物输入量增大,可能导致无脊椎动物多样性增加。  相似文献   

6.
川西高山林线交错带凋落叶分解初期转化酶特征   总被引:1,自引:1,他引:0  
胞外酶对于有机质的降解具有重要的作用。在凋落物分解过程中,酶活性不仅受到凋落物种类或基质质量的影响,还受到环境因素的影响。转化酶催化蔗糖水解为葡萄糖和果糖,因此在凋落物分解早期,转化酶比降解难分解物质的酶具有更重要的作用。以川西高山林线交错带12种代表性凋落叶为研究对象,对林线交错带不同植被类型下的凋落叶转化酶活性以及物种和环境因子对转化酶活性的影响进行了研究。结果表明:同一植被类型下,12个物种转化酶活性具有极显著差异(P0.01)。物种、环境因子及其交互作用对转化酶活性有极显著的影响(P0.01)。初始纤维素含量与转化酶活性极显著正相关(P0.01)。初始木质素和总酚含量与转化酶活性极显著负相关(P0.01),能够共同解释转化酶活性变异的50.8%。不同植物生活型中,禾草类转化酶活性均为最高,这可能与禾草类较高的初始纤维素含量、较低的木质素和总酚含量有关。多元线性回归分析表明,凋落叶含水量能单独解释转化酶活性变量的62.1%,是环境因子中最重要的变量。从植被类型来看,大多数物种的转化酶活性在针叶林中均极显著高于高山草甸和灌丛(P0.01),这可能与针叶林中凋落叶的含水量最高且雪被最厚有关。历经一个雪被期分解后,凋落叶初始质量与环境因子的综合作用能够解释转化酶活性变异的79.1%,表明川西高山林线交错带凋落叶分解前期转化酶活性主要受初始木质素含量、总酚含量和含水量的调控。在全球气候变化情景下,凋落物水分含量的变化将会强烈的影响凋落叶分解前期的转化酶活性。  相似文献   

7.
以川西高山林线交错带3种典型植被类型(针叶林、高山灌丛、高山草甸)下两个层次(LF层: 新鲜凋落物层和发酵层; H层: 腐殖质层)的凋落物为研究对象, 分别模拟凋落物分解的前期和后期阶段, 对凋落物分解过程中的纤维素酶活性及凋落物质量进行了研究。结果表明, 凋落物分解前期的纤维素酶活性和纤维素含量均显著高于分解后期, 但植被类型对LF和H层的纤维素含量的影响都不显著。双因素方差分析结果表明, 凋落物分解阶段对纤维素酶活性和纤维素含量的影响比植被类型对纤维素酶活性和纤维素含量的影响更大。不同种类的纤维素酶活性在分解前期和分解后期受到不同因子的限制。凋落物分解前期, 微晶纤维素酶和β-葡萄糖苷酶活性可能受N、P含量的限制, 而羧甲基纤维素酶主要受底物纤维素含量控制; 凋落物分解后期, 羧甲基纤维素酶和β-葡萄糖苷酶可能受C、N含量的限制。生态化学计量学的理论预测, 底物质量比C:N > 27或C:P > 186时会限制微生物生长, 因此判断高山林线交错带凋落物微生物生物量和纤维素酶活性同时受到底物N、P的限制, 尤其是高山草甸上微生物生物量在凋落物分解前期受到底物N、P的限制比分解后期更显著, 这充分说明了底物质量调控着凋落物分解过程中的纤维素酶活性和微生物生物量。  相似文献   

8.
2010年1-5月在川西高原采用人工雪厚度梯度试验(0、30和100 cm),应用网袋分解法对窄叶鲜卑花叶片凋落物进行分解试验,测定了凋落物的分解速率及其养分动态.结果表明:在无雪被覆盖的样地上分解5个月后的凋落物质量损失率为29.9%,而中雪和深雪样地的凋落物质量损失率分别为33.8%和35.2%.分解过程中,凋落物氮存在一定的富集现象,磷处于波动的富集状态,碳质量分数和碳氮比均呈现前期急剧下降后期逐渐上升的趋势.雪被覆盖显著增加了凋落物的质量损失率和氮含量,而对碳和磷含量无显著影响.在川西高原地区,30 cm以上的持续雪被覆盖能够改变凋落物的分解过程,从而可能对土壤营养物质转化和植物群落构建产生实质性的影响.  相似文献   

9.
桉-桤不同混合比例凋落物分解过程中 土壤动物群落动态   总被引:3,自引:1,他引:2  
采用凋落物分解袋法研究了10:0(TⅠ)、7:3(TⅡ)5:5(TⅢ)、3:7(TⅣ)和0:10(TV)巨桉(Eucalyptus grandis)和台湾桤木(Alnus formosana)混合凋落物分解过程中的土壤动物群落特征.从5种类型、3种规格的810只凋落袋中共收集土壤动物75651只,隶属2门10纲20目,其中弹尾目(Collembola)和蜱螨目(Acarina)为优势类群.土壤动物个体数最高是7-8月,大型土壤动物个体数最高是7月,中小型土壤动物个体数最高是7-8月.大型、中小型土壤动物类群数各月间均波动较小.与30目和6目相比,260目网袋中弹尾目和蜱螨目等中小型土壤动物数量更高.相对台湾桤木(TV)而言,巨桉(TⅠ)凋落物中弹尾目数量更多.啮虫目(Psocoptera)在台湾桤木(TV)凋落物中的数量远远高于其它凋落物,后孔寡毛目(Opisthopora)在混合凋落物中数量较高.不同比例的凋落物混合可改变凋落物中土壤动物的数量和组成.桤木、混合凋落物中大型土壤动物的个体数高于巨桉凋落物,而且上述凋落物的分解速率亦明显快于巨桉凋落物,这意味着大型土壤动物的活动可加速凋落物的分解.因此,在巨桉人工纯林中混栽台湾桤木,可显著提高大型土壤动物的数量,促进凋落物的分解.  相似文献   

10.
桉-桤混合凋落物分解及其土壤动物群落动态   总被引:1,自引:0,他引:1  
Li YH  Luo CD  Yang WQ  Hu J  Wu FZ 《应用生态学报》2011,22(4):851-856
采用放置不同孔径凋落袋(6目、30目和260目)的方法,研究了四川省乐山市苏稽镇不同比例巨桉(Eucalyptus grandis)与台湾桤木(Alnus formosana)混合凋落物的质量损失率及土壤动物群落结构的变化.结果表明:不同比例桉-桤混合凋落物均表现出前期分解迅速,后期分解较慢的规律.不同孔径凋落物袋中凋落物的分解率表现为6目最大,30目次之,260目最小.同孔径凋落物袋中不同比例桉-桤混合凋落物的分解速率也有不同,6目中各种凋落物分解时长相差较小,而30目和260目中纯巨桉、纯台湾桤木凋落物分解率达95%的时间之差分别为1175 d和908 d.凋落物分解过程中大型土壤动物类群结构发生了明显变化,分解初期主要为啮虫目,中期为后孔寡毛目,后期为鞘翅目,末期为双翅目.这些结果为进一步研究桉桤混交林物质循环提供了重要数据.  相似文献   

11.
季节性雪被变化对森林凋落物分解及土壤氮动态的影响   总被引:2,自引:0,他引:2  
全球气候变化引发的雪被格局变化将深刻影响植被的凋落物分解、陆地生态系统的土壤养分循环等过程.森林是陆地生态系统的主体,在全球生物地球化学循环中起着不可替代的作用.本研究综述了季节性雪被变化对森林凋落物分解及土壤氮动态的影响.全球气候变化情景下季节性雪被表现出因地域而异的增加或减少的变化格局,一方面通过改变环境温湿度、凋落物质量、分解者动态等直接影响分解过程,另一方面通过改变森林群落结构、植被物候、土壤养分等间接地作用于凋落物分解.同时,季节性雪被通过影响氮富集作用、雪被下土壤温湿度、冻融循环、森林群落、雪下动物和微生物等相关因子而改变森林土壤氮循环.本领域未来应开展的研究是: 1) 全面考虑全球气候变化情景下季节性雪被格局的变异性,开展不同季节性雪被格局变化的模拟研究;2) 开展季节性雪被融雪水淋溶作用对森林凋落物分解和土壤氮动态的影响研究;3) 阐明不同生态系统和气候带中季节性雪被格局变化对森林凋落物分解过程和土壤氮动态的驱动机制研究;4) 量化季节性雪被变化对森林凋落物分解和土壤氮动态在雪被覆盖期的瞬时影响和无雪期的延续影响,为阐明和模型预测陆地生态系统生物地球化学循环对全球气候变化的响应提供理论基础和数据支持.  相似文献   

12.
2010年10月26日-2011年4月18日在川西亚高山地区季节性冻融期间,选择典型的红桦-岷江冷杉林,采用凋落物分解袋法调查了不同网孔(0.02、0.125、1和3 mm)凋落物分解袋内的凋落物质量损失,分析微型、中型和大型土壤动物对红桦凋落叶分解的贡献.结果表明:在季节性冻融期间,0.02、0.125、1和3 mm分解袋内的红桦凋落叶质量损失率分别为11.8%、13.2%、15.4%和19.5%,不同体径土壤动物对红桦凋落叶质量损失的贡献率为39.5%;不同孔径凋落物袋内土壤动物的类群和个体相对密度与凋落叶的质量损失率的变化趋势相对一致.在季节性冻融的初期、深冻期和融化期,不同土壤动物对红桦凋落叶质量损失的贡献率为大型土壤动物(22.7%)>中型土壤动物(11.9%)>微型土壤动物(7.9%).季节性冻融期间土壤动物活动是影响川西亚高山森林凋落物分解的重要因素之一.  相似文献   

13.
川西高山林线交错带凋落叶分解速率与初始质量的关系   总被引:2,自引:2,他引:0  
杨林  邓长春  陈亚梅  和润莲  张健  刘洋 《生态学杂志》2015,26(12):3602-3610
对我国川西高山林线交错带14种代表性植物凋落叶分解速率与初始质量的关系进行研究.结果表明: 高山林线交错带植物凋落叶分解速率(k)为0.16~1.70,乔木和苔藓凋落叶分解较慢,灌木凋落叶次之,草本凋落叶分解最快.凋落叶分解速率与N、木质素、酚类物质、C/N、C/P、木质素/N均具有显著的线性回归关系.通径分析得出,木质素/N和半纤维素含量可以解释k变异的78.4%,其中木质素/N可以解释k变异的69.5%,木质素/N对k的直接通径系数为-0.913.主成分分析表明,第1排序轴k、分解时间(t)的贡献率达99.2%,木质素/N、木质素含量、C/N、C/P与第1排序轴呈显著正相关,其中木质素/N与第1排序轴的相关关系最强(r=0.923).木质素/N是影响川西高山林线交错带植物凋落叶分解速率的关键质量指标,且凋落叶初始木质素/N越高,分解速率越低.  相似文献   

14.
亚高山森林林窗可能通过改变冬季雪被格局和生长季水热环境影响林窗内凋落物中半纤维素的分解动态, 但目前对此还缺乏研究。采用凋落物分解袋法, 以亚高山森林5种典型物种岷江冷杉(Abies faxoniana)、红桦(Betula albosinensis)、四川红杉(Larix mastersiana)、方枝柏(Sabina saltuaria)和高山杜鹃(Rhododendron lapponicum)凋落物为研究对象, 研究雪被形成期、雪被覆盖期、雪被融化期和生长季节从林窗中心、林冠林窗、扩展林窗到郁闭林下物种凋落物的半纤维素变化特征。经历一年分解后, 5种凋落物的半纤维素均呈现净累积现象。针、阔叶凋落物半纤维素分别在雪被覆盖期和融化期表现出相对较高的损失率。在雪被覆盖期和融化期, 凋落物半纤维素在林窗中心和林冠林窗具有相对较高的损失率; 而在生长季节, 林窗中心呈现相对较低的凋落物半纤维素累积率。统计分析结果表明凋落物分解过程中半纤维素损失率与环境因子和凋落物质量因子均显著相关。这些结果表明亚高山森林林窗对凋落物分解过程中半纤维素损失率具有显著影响, 分别促进了半纤维素在冬季的损失以及抑制了半纤维素在生长季节的累积, 意味着亚高山森林林窗的形成有利于凋落物半纤维素的降解。  相似文献   

15.
凋落物分解主场效应及其土壤生物驱动   总被引:1,自引:0,他引:1  
凋落物分解主场效应是指凋落物具有在其生长的栖息地比在别的生境分解更快的特征,土壤生物的特化作用被认为是主场效应的产生机理.主场效应是除基质质量和物理化学环境外控制凋落物分解的重要因子,可影响模拟精度的8%.凋落物分解主场效应驱动机制的深入研究对促进分解模型中纳入生物因子,提高区域尺度模拟精度具有重要作用.虽然时间和基质质量可导致主场效应强度变化,但不能全面解释主场效应强度差异特别是负效应的产生.通过分析凋落物分解过程中土壤生物的作用机理,指出凋落物分解主场效应的土壤生物驱动可能包括土壤微生物的调节性适应,土壤动物的后期插入以及物理化学环境的间接影响.为深入了解主场效应土壤生物驱动机制,更好地模拟凋落物分解过程,提出延长凋落物分解交互移置实验时间,拓展实验空间,结合室内模拟分析和构建分解模型等方法与途径.  相似文献   

16.
土壤动物是凋落物分解、养分转化过程的重要调节者,全球变化驱动的氮沉降与降雨变化通过改变其分解环境和土壤动物群落结构,进而影响凋落物分解进程。为了探究中小型土壤动物对凋落物分解的贡献受氮沉降和降雨变化的影响,本研究利用不同网孔(2 mm和0.01 mm)的凋落物分解网袋法,以建群种短花针茅为研究对象进行野外分解试验。试验采用裂区设计,主区为自然降雨(CK)、增雨30%(W)和减雨30%(R)3个水分处理,副区为0(N0)、30(N30)、50(N50)和100(N100) kg·hm-2·a-1 4个氮素处理。结果表明: 1)降雨变化显著影响了凋落物的分解速率,增雨处理中凋落物的分解速率加快,且随着氮添加浓度的升高,凋落物重量残留率逐渐降低,100 kg·hm-2·a-1时分解速度最快;在减雨处理与对自然降雨处理中凋落物的分解速率则呈先降低后升高的趋势,在50 kg·hm-2·a-1时分解速度最快。氮沉降和降雨变化对凋落物分解无显著的交互作用。2)在整个分解过程中,共捕获中小型土壤动物1577只,隶属于1门3纲13目(含亚目)49科,优势类群为蜱螨目、鞘翅目幼虫和弹尾目;增雨施氮提升了中小型土壤动物群落的类群数和个体数。3)凋落物重量残留率与中小型土壤动物类群数、个体数均呈极显著负相关,增雨处理整体提高了中小型土壤动物对凋落物分解的贡献率。综上,荒漠草原上中小型土壤动物对凋落物的分解具有积极作用,且水分和氮素输入的增加提高了中小型土壤动物的类群数及个体数,增加了其对凋落物分解的贡献;在水分不足时,过量的氮素会抑制中小型土壤动物群落的发展,导致中小型土壤动物对凋落物分解的贡献降低。  相似文献   

17.
凋落物分解对土壤生物的影响   总被引:2,自引:0,他引:2  
凋落物分解是生态系统物质循环和能量流动的重要环节,而土壤生物是凋落物分解的主要完成者.大量研究分析了土壤生物在凋落物分解中的作用,然而有关凋落物分解对土壤生物影响的研究则相对较少,致使我们对凋落物分解和土壤生物的相互作用了解依然不够深入.本文综述了凋落物对土壤微生物和土壤动物的影响,并进一步探讨了其影响机制.凋落物对土壤微生物的影响与凋落物类型或组成、在土壤中的掩埋位置及其破碎化程度紧密相关;大多数研究表明凋落物对土壤动物群落结构有明显影响;凋落物对土壤生物的影响主要通过直接改变土壤生物的食源和生境.今后需要加强跨区域长期定位实验研究,注重整合研究凋落物分解和生态系统过程,深入研究凋落物分解与土壤生物的相互作用机制.  相似文献   

18.
凋落物在原生生境(“主场”)中比在非原生生境(“客场”)中分解得更快的现象被称为凋落物分解的“主场优势”。探究凋落物分解的主场优势的主要影响因素及驱动机制对预测植物养分的归还过程和生态系统碳收支有重要意义。该文主要从主场优势的计算方法、影响因素及驱动机制出发,综述了近年来凋落物分解的主场优势的研究进展,并对未来的研究方向进行了展望。度量凋落物分解的主场优势有4种常见的计算方法,其中采用线性模型计算主场优势在当前最为合适。凋落物质量(化学成分等)、土壤微生物群落结构是影响凋落物分解的主场优势的主要因素,土壤动物、气候条件、分解时间、植物生活型及生长型也能改变主场优势的强度。凋落物之间质量差异越大,产生的主场优势越大。土壤微生物群落驱动着凋落物分解的主场优势,但其作用时常受到动物的干扰及气候的制约。此外,带有叶际微生物的凋落物比去除了叶际微生物的凋落物有更强的主场优势。凋落物化学性质趋同假说、分解者控制假说及凋落物质量与环境相互作用假说是解释主场优势产生的主要假说,但它们均有不足之处。该文认为凋落物和土壤微生物的协同作用可能是产生和驱动主场优势的主要机制。当前的研究存在着各因素对主场优势的...  相似文献   

19.
季节性雪被可能通过冻结、淋溶以及冻融循环等对高山森林凋落物水溶性和有机溶性组分含量产生影响.本文采用凋落物分解袋法,以川西高山森林典型乔木(四川红杉、岷江冷杉、红桦、方枝柏)和灌木(高山杜鹃、康定柳)凋落物为研究对象,研究了雪被覆盖不同时期(雪被形成期、雪被覆盖期和雪被融化期)和雪被厚度(厚型雪被、中型雪被、薄型雪被和无雪被)下凋落物水溶性和有机溶性组分含量的动态变化特征.结果表明: 在一个冬季的分解过程中,6种凋落物水溶性组分含量在雪被形成期和融化期降低而雪被覆盖期增加,但除高山杜鹃凋落物有机溶性组分含量在雪被覆盖期增加外,其他5种凋落物有机溶性组分含量在整个冬季呈降低趋势.相对于凋落物有机溶性组分含量,不同厚度雪被斑块对凋落物水溶性组分含量变化的影响更大,且主要表现在雪被形成期和雪被覆盖期.相对于其他雪被斑块,薄型雪被斑块更加显著地促进了高山柳和高山杜鹃凋落物水溶性组分含量降低,但显著抑制了方枝柏凋落物水溶性组分含量降低,而其他凋落物水溶性组分含量变化在不同斑块间无显著差异.冬季高山森林雪被对凋落物水溶性和有机溶性组分含量的影响主要受控于凋落物质量.  相似文献   

20.
通过小盆+凋落袋控制试验,研究了我国南方退化红壤丘陵区8种森林凋落物和4种混合凋落物初始化学组成与分解速率的关系.结果表明:阔叶凋落物中的氮、磷、钾、镁含量显著高于针叶凋落物,木质素、碳含量显著低于针叶凋落物;凋落物分解速率与凋落物初始氮、磷、钾、镁含量呈显著正相关,与凋落物初始碳、木质素含量以及木质素/氮、木质素/磷和碳/磷值呈显著负相关;木质素含量解释了凋落物分解速率变异的54.3%,是影响分解速率的最关键因子,凋落物碳、氮、磷含量也与分解速率密切相关,它们与木质素含量一起可解释分解速率变异的81.4%.在退化红壤丘陵区植被恢复过程中,低木质素含量、高氮磷含量的阔叶物种的引入有利于加速凋落物的分解速率和土壤肥力的恢复进程.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号