首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
减少寡聚体形成的重组人碱性成纤维细胞生长因子的改造   总被引:1,自引:1,他引:0  
采用PCR突变技术改造人碱性成纤维细胞生长因子(hbFGF)cDNA,将扩增的cDNA片断插入表达载体pET3c的表达框架中,构建了表达菌株BL21(DE3)/pE33c-[Ser69,87]hbFGF,用IPTG诱导表达,其[Se^69,87]hbFGF的表达量占菌体总蛋白30%。通过离子交换、肝素亲和两步层析的方法获得了纯度达98%的[Se,^69,87]hbFGF样品。用MTT法测得纯化的[Ser^69,87]hbFGF样品与野生型hbFGF促Balb/c 3T3细胞增殖的比活性相当。以野生型hbFGF作对照,分析反复冻融对突变体[Ser^69,87]hbFGF形成寡聚体的影响,并在25℃和37℃的条件下分析其寡聚体的形成情况。结果表明,不管是反复冻融还是在25℃和37℃的条件下,突变体[Se^69,87]hbFGF形成的寡聚体都较野生型hbFGF明显减少。  相似文献   

2.
人碱性成纤维细胞生长因子突变体的高效表达   总被引:1,自引:0,他引:1  
用PCR法将人碱性成纤维细胞生长因子(hbFGF)基因中编码第25、69和92位的半胱氨酸(Cys)密码子突变为丝氨酸(Ser)密码子,将突变的hbFGFcDNA片断与表达质粒pET3c连接,构建重组质粒pET3chbFGFSer25,69,92。hbFGFSer25,69,92在大肠杆菌BL21(DE3)中的表达量大于30%。通过阳离子交换和肝素亲和层析两步纯化,得到纯度大于95%的hbFGFSer25,69,92。MTT法测定纯化的产物活性表明,hbFGFSer25,69,92突变体促Balb/c细胞增殖的活性与野生型hbFGF相当,为下一步对hbFGFSer25,69,92突变体进行定点化学修饰打下了基础。  相似文献   

3.
对基因工程构建的含人胰高血糖素样肽1(hGLP1)突变体的工程菌株进行诱导表达,分离纯化N末端第二位突变的2GlyhGLP1突变体.IPTG诱导4h,收获的菌体经超声破碎后,裂解液用GlutathioneSepharose4B亲和层析纯化GST2GlyhGLP1融合蛋白,经CNBr裂解、SephadexG25柱脱盐、QAESepharoseFF阴离子交换柱层析和RPC18柱脱盐,得到纯度大于98%的重组2GlyhGLP1.Western印迹分析证实,该突变体可被特异性hGLP1抗体所识别.生物学活性分析表明,2GlyhGLP1具有明显的降血糖活性和促胰岛素分泌活性(P<0.001).  相似文献   

4.
RGD-葡激酶突变体(K130T,K135R)的制备与活性分析   总被引:1,自引:1,他引:0  
以葡激酶突变体质粒mSAK(K130T ,K135R)-pBV220为模板,PCR重叠引物延伸法引入突变位点,并将该片段克隆至载体pBV220 ,构建了RGD-mSAK-pBV220质粒,转化大肠杆菌后热激诱导获得了高效表达,表达产物占菌体总蛋白的50%以上,且主要以可溶性形式存在,所获蛋白依次用Q SepharoseHP柱、SephaycrylS200HR柱和SP柱进行纯化,纯化的蛋白的纯度可达98%以上,纤维蛋白溶圈法体外溶栓活性测定结果表明,所获RGD-mSAK蛋白溶栓活性与野生型葡激酶相当,豚鼠体内免疫试验证明突变体的免疫原性也有所降低,血小板聚集试验分析突变体蛋白的抗血小板聚集能力,RGD 葡激酶突变体具有一定的抗血小板聚集能力。  相似文献   

5.
构建TF 1细胞凋亡相关基因 19(TF 1cellapoptosisrelatedgene 19,TFAR19)缺失突变体的原核表达载体 ,获取缺失突变体蛋白 ,用于TFAR19促凋亡分子机理的研究 .从真核表达载体pcDI TFAR19扩增出野生型TFAR19和 4个缺失突变体 ,重组到原核表达载体pGEX 4T 2 .经亲和层析方法对缺失体蛋白进行纯化后 ,再利用凝胶过滤的方法进一步纯化 .利用抗GST和抗TFAR19的单克隆抗体对蛋白进行免疫学鉴定 .用白血病细胞株HL 6 0检测蛋白活性 .成功地克隆并重组了野生型TFAR19及缺失突变体 pGEX 4T 2表达载体 ,对融合蛋白的表达条件进行了优化 .SDS PAGE结果显示 ,各个缺失突变体融合蛋白均有较高水平的表达 .免疫学检测证实获得了正确的表达产物 .活性检测证实 ,野生型TFAR19和缺失突变体 4可以明显促进去血清诱导的HL 6 0细胞凋亡 ,第 6外显子可能是一个与TFAR19促凋亡活性密切相关的功能结构域  相似文献   

6.
目的:重组表达抗PAI抑制作用的t-PA突变体,经诱导表达、复性、纯化后进行生物学活性和酶动力学分析。方法:构建pBV220-tpa重组表达质粒,经DNA测序确认后,转化至大肠杆菌DH5a,温控诱导表达,凝胶过滤法对包涵体蛋白进行初步纯化,复性后,过刺桐胰蛋白酶亲和层析柱纯化,酶动力学分析其活性。结果:测序证实,t-PA突变体的DNA序列正确,表达蛋白占总菌体蛋白的30%,经纯化后纯度达90%以上,比活性为7.0×108IU/mg,t-PA突变体与PAI-1反应后,其活性未受到抑制。t-PA突变体酶的米氏常数Km为0.5298,最大水解速度Vmax为0.0595。结论:经生物学活性测定,表达蛋白能够明显抵抗PAI的抑制作用,并具有良好的生物活性,该突变体有可能成为用量更少、疗效更佳的新型溶栓药物。  相似文献   

7.
为了有效降低葡激酶应用的副作用,构建低出血倾向、低免疫原性葡激酶突变体,高效表达纯化后进行活性鉴定,以野生型重组葡激酶基因为模板,PCR法引入突变位点(K130T,K135R),并将该片段克隆测序鉴定后,克隆至表达载体pBV220,构建低免疫原性葡激酶突变体.表达后的蛋白用Q-SepharoseFF柱与SephacrylS-200进行纯化,纤维蛋白溶圈法进行活性测定,体外抗体中和试验与豚鼠免疫试验测定突变体蛋白的免疫原性,同时进行动物体内出血倾向观察.测序结果表明,相应位点获得突变,无非特异性突变,将突变后的片段连接pBV220导入大肠杆菌热激诱导获得了高效表达,表达产物占菌体总蛋白的40%~50%.产物主要以可溶性形式存在,经两步纯化后的蛋白的纯度可达98%以上.活性测定试验表明,该突变体的活性较野生型葡激酶稍低,体外中和抗体试验和豚鼠免疫试验证明免疫原性大为下降,豚鼠的皮肤出血以及肺部病理切片均显示该突变体蛋白引起的出血倾向明显降低.  相似文献   

8.
[目的]为解决溶栓后再栓塞问题,构建N-端含RGD(Arg-Gly-Asp)序列的葡激酶双功能突变体.研究突变体的表达和纯化,并进行性质分析.[方法]将突变后的葡激酶突变体序列连入pBV220质粒,转化大肠杆菌BL21进行表达.阳离子交换、凝胶过滤和阴离子交换三步层析法纯化表达产物,采用溶圈法对纯化产物进行生物学活性测定,并测定纯化产物对血小板聚集的抑制效应.[结果]PAGE扫描结果显示,葡激酶突变体蛋白在大肠杆菌BL21中的表达量约占菌体蛋白总量的40%~50%;三步层析纯化后,HPLC测定其纯度可达95%.酪蛋白凝胶板溶圈法测得其比活性分别为10.8×104和11.0×104HU/mg,与野生型葡激酶活性相当;且具有明显的抗血小板聚集活性,血小板聚集仪测定其血小板聚集抑制率分别为10.72%和19.71%,明显高于野生型葡激酶血小板聚集抑制率.本实验利用pBV220载体高效表达了葡激酶突变体基因,得到了高纯度、高活性的突变体蛋白,为葡激酶生产产业化和临床应用奠定了良好的基础.  相似文献   

9.
重组刺桐胰蛋白酶抑制剂a在大肠杆菌中的表达和纯化   总被引:2,自引:0,他引:2  
为了大量制备重组刺桐胰蛋白酶抑制剂a(rETIa) ,对构建的基因工程菌株E .coliBL2 1(DE3)pET2 2b mETIa进行了表达条件的优化 .用摇瓶培养 ,rETIa蛋白占菌体总蛋白 4 0 %以上 .经破碎菌体 洗涤包涵体 溶解包涵体 复性初步纯化后 ,再经二步柱层析纯化获得电泳纯的rETIa蛋白 .测定了rETIa对胰蛋白酶、胰凝乳蛋白酶、组织型纤溶酶原激活因子缺失突变体 (NTA)的抑制活性 .  相似文献   

10.
采用cDNA PCR技术 ,从人胎盘cDNA文库DNA中克隆了人碱性成纤维细胞生长因子 (hbFGF)基因。用PCR突变法对其 5 端序列进行修饰 ,将天然和修饰后的hbFGF基因分别克隆至表达载体 pBV2 2 1,免疫印迹和SDS PAGE结果证明 ,经修饰后的基因在大肠杆菌DH5α中获得了表达 ,表达量占菌体总蛋白的 9%。  相似文献   

11.
Site-directed PEGylation of human basic fibroblast growth factor   总被引:2,自引:0,他引:2  
Through site-directed mutagenesis, three cysteines of human basic fibroblast growth factor (hbFGF) were replaced with serine residues, resulting in a hbFGF mutant named hbFGFSer25,69,92. The mutant with only one cysteine residue at the 87th position, whose mitogenic activity was comparable to that of wild-type hbFGF, was further coupled to polyethylene glycol with a molecular size of 5 kDa (PEG5K) via the cysteine residue to obtain another hbFGF derivative, PEG5K-hbFGFSer25,69,92. The optimal modification reaction was conducted at 4 degrees C for 4 h at a molar ratio of PEG5K to hbFGFSer25,69,92 of 20:1. The result of SDS-PAGE showed that the modification extent was up to 80%. The modified product was purified by ion exchange chromatography. Compared to the hbFGF mutant, the purified PEG5K-hbFGFSer25,69,92 still retained about 60% of the mitogenic activity of the former, which provided a good basis for further studying the bioactivity of the PEGylated protein in vivo.  相似文献   

12.
Synthetic cDNA coding for human acidic fibroblast growth factor (haFGF) was expressed in E. coli under the control of the T7 promoter. The haFGF produced was purified extensively using heparin-Sepharose and phenyl-Sepharose columns. The mitogenic activity of haFGF on 3T3 and endothelial cells was significantly potentiated in the presence of heparin (10-50 micrograms/ml), while angiogenic activity was observed on chick embryo chorioallantoic membrane without exogenously added heparin. This significant potentiation of mitogenic activity was observed specifically with haFGF, not human basic fibroblast growth factor (hbFGF). Circular dichroism spectra of haFGF was not affected by the presence of heparin. The affinity of haFGF for heparin was examined using heparin affinity HPLC and was precisely confirmed to be relatively lower than that of hbFGF. These results implied that haFGF was potentiated by heparin and that this potentiation did not involve a significant change in the conformation of the haFGF molecule. The affinity of haFGF for copper was also confirmed to be higher than that of hbFGF using a copper affinity HPLC column. In addition, under acidic conditions, haFGF appeared more stable than hbFGF and was further stabilized in the presence of heparin.  相似文献   

13.
Abstract

Human basic fibroblast growth factor (hbFGF) is involved in a wide range of biological activities that affect the growth, differentiation, and migration. Due to its wound healing effects and therapy, hbFGF has the potential as therapeutic agent. Therefore, large-scale production of biologically active recombinant hbFGF with low cost is highly desirable. However, the complex structure of hbFGF hinders its high-level expression as the soluble and functional form. In the present study, an efficient, cost-effective, and scalable method for producing recombinant hbFGF was developed. The modified collagen-like protein (Scl2-M) from Streptococcus pyogenes was used as the fusion tag for producing recombinant hbFGF for the first time. After optimization, the expression level of Scl2-M-hbFGF reached approximately 0.85?g/L in the shake flask and 7.7?g/L in a high cell-density fermenter using glycerol as a carbon source. Then, the recombinant Scl2-M-hbFGF was readily purified using one-step acid precipitation and the purified Scl2-M-hbFGF was digested with enterokinase. The digested mixture was further subject to ion-exchange chromatography, and the final high-purity (96%) hbFGF product was prepared by freeze-drying. The recovery rate of the whole purification process attained 55.0%. In addition, the biological activity of recombinant hbFGF was confirmed by using L929 and BALB/c3T3 fibroblasts. Overall, this method has the potential for large scale production of recombinant hbFGF.  相似文献   

14.
Expression of the v-fms oncogene of feline sarcoma virus in fibroblasts causes surface exposure of an activated receptor tyrosine kinase, v-Fms, that is autophosphorylated at multiple sites within its cytoplasmic domain. Cellular proteins interacting with this part of v-Fms modulate the mitogenic activity and morphology of the cells. We show here that the tyrosine residue in position 807 (Y-807) of the v-Fms molecule constitutes a major autophosphorylation site. The replacement of this residue by phenylalanine (Y807F mutation) allowed us to functionally dissect v-Fms-specific mitogenic and morphogenic cascades. Cells expressing the mutant v-Fms molecule resembled wild-type (wt) v-Fms-transformed (wt-v-Fms) cells in terms of [3H]thymidine uptake rates and activation of the Ras/Raf-1 mitogenic cascade. Such cells showed, however, a flat morphology and contained intact actin cables and fibronectin network. Our studies indicate that the v-Fms molecule controls cell morphology by a cascade that involves a direct interaction with p120RasGAP and p190RhoGAP: (i) in contrast to wt v-Fms molecules, the Y807F v-Fms protein failed to associate with and phosphorylate p120RasGAP; (ii) tight complexes between p120RasGAP and p190RhoGAP as well as detectable RhoGAP activity were present exclusively in wt-v-Fms cells; and (iii) p190RhoGAP was dispersed throughout the cytoplasm of wt-v-Fms cells, whereas its distribution was restricted to perinuclear regions of cells expressing the mutant v-Fms gene.  相似文献   

15.
FGF-2 exerts its pleiotropic effects on cell growth and differentiation by interacting with specific cell surface receptors. In addition, exogenously added FGF-2 is translocated from outside the cell to the nucleus during G1-S transition. In this study, we show that a single point mutation in FGF-2 (substitution of residue serine 117 by alanine) is sufficient to drastically reduce its mitogenic activity without affecting its differentiation properties. The FGF-2(S117A) mutant binds to and activates tyrosine kinase receptors and induces MAPK and p70S6K activation as strongly as the wild-type FGF-2. We demonstrate that this mutant enters NIH3T3 cells, is translocated to the nucleus, and is phosphorylated similar to the wild-type growth factor. This suggests that FGF-2 mitogenic activity may require, in addition to signaling through cell surface receptors and nuclear translocation, activation of nuclear targets. We have previously shown that, in vitro, FGF-2 directly stimulates the activity of the casein kinase 2 (CK2), a ubiquitous serine/threonine kinase involved in the control of cell proliferation. We report that, in vivo, FGF-2(WT) transiently interacts with CK2 and stimulates its activity in the nucleus during G1-S transition in NIH3T3 cells. In contrast, the FGF-2(S117A) mutant fails to interact with CK2. Thus, our results show that FGF-2 mitogenic and differentiation activities can be dissociated by a single point mutation and that CK2 may be a new nuclear effector involved in FGF-2 mitogenic activity.-Bailly, K., Soulet, F., Leroy, D., Amalric, F., Bouche, G. Uncoupling of cell proliferation and differentiation activities of basic fibroblast growth factor (FGF-2).  相似文献   

16.
Expression of cDNA encoding human basic fibroblast growth factor in E. coli   总被引:5,自引:0,他引:5  
The cDNA encoding human basic fibroblast growth factor was expressed in E. coli under the control of trp promoter. Bacterially synthesized hbFGF was highly purified using a heparin affinity HPLC column. By this chromatography, hbFGF was eluted as four distinct forms, which were indistinguishable by SDS polyacrylamide gel electrophoresis, amino acid composition, and partial terminal sequence analysis. These molecules stimulated the growth of fibroblasts and endothelial cells although their specific activities varied. The angiogenesis activity of these molecules was also confirmed.  相似文献   

17.
The heparin-binding or fibroblast growth factors (HBGFs) modulate cell growth and migration, angiogenesis, wound repair, neurite extension, and mesoderm induction. Relatively little is known regarding the precise mechanism of action of these growth factors or the structural basis for their action. A better understanding of the structural basis for the different activities of these proteins should lead to the development of agonists and antagonists of specific HBGF activities. In this report, we summarize evidence that indicates that the heparin-binding and mitogenic activities of HBGF-1 can be dissociated from the receptor-binding activities of the growth factor by site-directed mutagenesis of a single lysine residue. Thus, the mutant HBGF-1 has normal receptor-binding activity and is capable of stimulating tyrosine kinase activity and proto-oncogene expression but is not able to elicit a mitogenic response. A similar dissociation of early events such as proto-oncogene expression from the mitogenic response is observed when the human wild-tupe HBGF-1 is used in the absence of added heparin. These results indicate that intracellular sites of action by the growth factor may be required to complete the mitogenic response. Further evidence for this idea is provided by transfection experiments where NIH 3T3 cells are engineered to produce large quantities of wild-type or mutant HBGF-1. Production of wild-type induces a transformed phenotype, whereas over-production of the mutant does not. The majority of both forms of the protein is found in the nuclear fraction of the transfected cells. Additional site-directed mutagenesis of putative nuclear translocation sequences in the wild-type protein do not affect mitogenic activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The tumor promoter phorbol ester (TPA) modulates the binding affinity and the mitogenic capacity of the epidermal growth factor (EGF) receptor. Moreover, TPA-induced kinase C phosphorylation occurs mainly on Thr-654 of the EGF receptor, suggesting that the phosphorylation state of this residue regulates ligand-binding affinity and kinase activity of the EGF receptor. To examine the role of this residue, we prepared a Tyr-654 EGF receptor cDNA construct by in vitro site-directed mutagenesis. Like the wild-type receptor, the mutant receptor exhibited typical high- and low-affinity binding sites when expressed on the surface of NIH 3T3 cells. Moreover, TPA regulated the affinity of both wild-type and mutant receptors and stimulated receptor phosphorylation of serine and threonine residues other than Thr-654. The addition of TPA to NIH 3T3 cells expressing a wild-type human EGF receptor blocked the mitogenic capacity of EGF. However, this inhibition did not occur in cells expressing the Tyr-654 EGF receptor mutant. In the latter cells, EGF was able to stimulate DNA synthesis even in the presence of inhibitory concentrations of TPA. While phosphorylation of sites other than Thr-654 may regulate ligand-binding affinity, the phosphorylation of Thr-654 by kinase C appears to provide a negative control mechanism for EGF-induced mitogenesis in mouse NIH 3T3 fibroblasts.  相似文献   

19.
Congote LF  Temmel N 《FEBS letters》2004,576(3):343-347
C26, the C-terminal 26 residue peptide of serpin A1, significantly increased cell proliferation in cultures of hepatoma cells, but not in porcine kidney epithelial cells, human skin fibroblasts or keratinocytes. The mitogenic activity of C26 was preferentially inhibited with a protein kinase C (PKC) inhibitor, an antibody against CD47 and CD47 short interfering RNA. The mutant C26-K19R,N22M, imitating a thrombospondin-like cell adhesion motif, increased the mitogenic activity in both Hep G2 cells and MCF-7 breast cancer cells. Phosphorylation of C26 at T24 (a putative PKC phosphorylation site) resulted in a 1.9-2.5 increase in mitogenic activity over C26 in MCF-7 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号