首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
以土壤为材料,用透明质酸和硫酸软骨素为唯一碳源富集分离菌株,通过BSA-乙酸平板显色法及比色定糖法进行筛选。从80份土壤中筛选出13株糖胺聚糖降解活性的菌株并对其进行了16S rDNA测序鉴定。结果表明,筛选到13株糖胺聚糖降解菌株均具有透明质酸酶和硫酸软骨素酶活性;获得8株尚未报导过的产糖胺聚糖降解酶活性菌株。本研究为开发新型的糖胺聚糖降解酶提供参考。  相似文献   

2.
透明质酸(HA)广泛应用于医学、化妆品、食品等领域。HA的生物活性取决于其分子量(M_w)。透明质酸寡糖由于具有重要的生理活性与特殊生理功能,在医药领域具有重要的应用前景。兽疫链球菌因其发酵周期短、生产强度较强的特点,在商业生产HA上具有广泛的应用。为了高效发酵合成透明质酸寡糖和解决发酵过程的溶氧问题,文中通过在兽疫链球菌WSH-24中过表达透明质酸合酶HasA以及优化表达水蛭来源的透明质酸酶LHAase。重组菌株摇瓶发酵24h,透明质酸寡糖积累至0.97g/L,比野生菌提高了182.0%。在3L发酵罐中发酵24 h,透明质酸寡糖生产强度为294.2 mg/(L·h),HA积累至7.06 g/L,比野生菌的罐上水平提高了112.4%。文中所构建的发酵合成透明质酸寡糖的兽疫链球菌重组菌株具有重要的应用前景。  相似文献   

3.
透明质酸酶是以降解透明质酸为主的糖苷酶。近年来国内外关于透明质酸酶各方面的研究日益增多,透明质酸酶的构效关系及生物学应用越来越引起人们的关注。对透明质酸酶的相关研究进行了综述,主要阐述了各类型透明质酸酶的研究概况包括人透明质酸酶、牛睾丸透明质酸酶、毒液透明质酸酶、微生物透明质酸酶。简要介绍了透明质酸酶的活性测定、酶活抑制剂及透明质酸酶制剂的应用情况,最后对透明质酸酶的研究前景进行展望。  相似文献   

4.
透明质酸酶能够将透明质酸聚糖降解成具有抗氧化等生物活性的低分子量寡糖.微生物来源透明质酸酶具有酶学性质多样和易于重组表达等特点,是开发透明质酸酶的研究热点.通过基因组测序获得一个潜在的金黄色葡萄球菌来源透明质酸裂解酶基因hylS,将其进行了大肠杆菌BL21(DE3)异源重组表达,并对重组酶进行了酶学特性和酶解产物抗氧化...  相似文献   

5.
糖胺聚糖是一类直链酸性多糖,具有优良的生物相容性和生理活性,被广泛应用于临床治疗,并用作药物运输载体,其中透明质酸、 肝素和硫酸软骨素的相关研究最为深入。由于传统方式(如动物组织提取法等)制备糖胺聚糖,存在外毒素、病毒等致病因子污染的风 险,因而,利用合成生物学技术,构建重组工程菌株生产糖胺聚糖,逐渐受到研究者们的重视。主要围绕透明质酸、肝素前体及软骨素, 综述糖胺聚糖的生物合成途径,并探讨产糖胺聚糖基因工程菌的构建以及糖胺聚糖生物合成过程中分子质量调控机制,以期为构建产高 品质糖胺聚糖工程菌株提供新思路。  相似文献   

6.
天然产物中透明质酸酶抑制剂的研究   总被引:4,自引:0,他引:4  
透明质酸酶抑制剂是对透明质酸酶的激活有抑制作用的物质。透明质酸酶是透明质酸的特异性裂解酶,而透明质酸在人体许多发育和调控过程中起重要作用,抑制透明质酸酶的活性可使透明质酸不被分解,维持正常的生理功能,笔者对天然产物中透明质酸酶抑制的研究开发进行了概述,并探讨了透明质酸酶抑制在医药及保健食品工业中的应用潜力。  相似文献   

7.
透明质酸酶研究进展   总被引:6,自引:0,他引:6  
根据底物的特异性和产物的不同,透明质酸酶可分为3类,该酶为糖蛋白,不同来源的酶分子量差异较大,已知的3种不同来源的酶的一级结构也不相同,有多种活性调节因子,透明质酸酶的功能复杂,具有多种生物学活性,并在许多疾病的和生物学研究中呈现应用前景。  相似文献   

8.
近年来,透明质酸寡糖片段(hyaluronan oligosaccharides, o-HA)的生物学活性引起国外学者的重视,因为o-HA具有一定的生物学活性,如参与免疫调节、刺激新生血管形成等.本研究建立一种经济、简便的ANTS(8-氨基奈-1,3,6-三磺酸)荧光标记电泳对透明质酸寡糖片段大小鉴定的新实验方法.实验原理为,ANTS能与糖分子发生还原反应,在反应时提供3个电子和1个荧光基团,通过高浓度PAGE分离,在特定波长下呈现颜色反应.采用酶消化法得到不同分子量大小的o-HA片段,测得不同片段大小的o-HA聚合度,分别与高效液相色谱(high-performance liquid chromatography, HPLC)和静电喷雾电离质谱(electrospray ionization mass spectrometry, ESI-MS)进行比较,结果吻合.研究提示,用荧光标记电泳法分析寡糖分子量,操作简单、设备低廉、灵敏度较高且检测速度快,是一种检测鉴定寡糖分子的较好方法.  相似文献   

9.
透明质酸钠临床应用的新概念   总被引:7,自引:1,他引:6  
透明质酸钠是透明质酸的钠盐形式。透明质酸(简称HA)是一种独特的线性均聚糖,由N-乙酰葡萄糖胺与葡萄糖醛酸二糖单位反应交替联接而成,尽管其结构十分简单,但生物学功能及临床应用范围都富有很深的内涵,正是由于HA临床用途的不断扩大,继而导致了许多新医学概念的出现。 早在70年代初,Balazs及其同事创立了HA眼科应用的新医学概念,即:粘弹性外科(viscosurgery),意在眼科手术中运用HA粘弹剂起  相似文献   

10.
透明质酸酶可用于药物渗透剂、动物皮革松散及低分子量的透明质酸制备.实验室前期筛选了一株具有较高透明质酸降解能力的菌株,本研究对其进行了 16S rRNA基因和生理生化反应鉴定,鉴定为弗氏柠檬酸杆菌,但弗氏柠檬酸杆菌来源的透明质酸酶的功能还未见报道.因而,以透明质酸为底物研究其酶学性质,结果表明:该酶最适pH值为5.5,在pH值4.0~8.0下处理1 h可以保持60%以上酶活力;最适温度为50℃,在50℃和60℃下处理1h后剩余60%以上的酶活力.该酶和人源透明质酸酶最适pH相似,但其耐热性更高.因此,本研究挖掘到了新颖的透明质酸酶的资源,并为其开发利用提供了参考价值.  相似文献   

11.
It is appropriate that this review should appear in a volume dedicated to Mert Bernfield. Much of my interest in the cell biology of the extracellular matrix, particularly during development, echoes Mert's pioneering studies. His kind but provocative questioning during meetings is especially missed. The glycosaminoglycan hyaluronan is ubiquitous, and is especially abundant during embryogenesis. Hydrated matrices rich in hyaluronan expand the extracellular space, facilitating cell migration. The viscoelastic properties of hyaluronan are also essential for proper function of cartilage and joints. Recent understanding of hyaluronan biology has benefited from the identification of genes encoding hyaluronan synthases and hyaluronidases, genetic analysis of the roles of hyaluronan during development, elucidation of the biochemical mechanisms of hyaluronan synthesis, and by studies of human genetics and tumors. This review focuses on recent studies utilizing hyaluronan-deficient, gene targeted mice with null alleles for the principal source of hyaluronan during mid-gestation, hyaluronan synthase-2 (has-2). Published in 2003.  相似文献   

12.
Jedrzejas MJ  Stern R 《Proteins》2005,61(2):227-238
Human hyaluronidases (Hyals) are a group of five endo-beta-acetyl-hexosaminidase enzymes, Hyal-1, -2, -3, -4, and PH-20, which degrade hyaluronan using a hydrolytic mechanism of action. Catalysis by these Hyals has been shown to follow a double-displacement scheme. This involves a single Glu residue within the enzyme, the only catalytic residue, as the proton donor (acid). Also involved is a carbonyl group of the hyaluronan (HA) N-acetyl-D-glucosamine as a unique type of nucleophile. Thus the substrate participates in the mechanism of action of its own catalysis. An oxocarbonium ion transition state is postulated, but there is no formation of a covalent enzyme-glycan intermediate, as found in most such reactions. The major domain is catalytic and has a distorted (beta/alpha)8 triose phosphate isomerase (TIM) barrel fold. The C-terminal domain is separated by a peptide linker. Each Hyal has a different C-terminal sequence and structure, the function of which is unknown. These unique C-termini may participate in the additional function(s) associated with these multifunctional enzymes.  相似文献   

13.
The critical hyaluronan binding motif (HABM) in sialoprotein associated with cones and rods (SPACR) has already been determined. As sialoproteoglycan associated with cones and rods, another interphotoreceptor matrix molecule, binds to chondroitin sulfate and heparin with or without the employment of HABMs, respectively, we evaluated and compared the binding of these glycosaminoglycans to SPACR. A western blotting study in combination with inhibition assays showed that heparin bound specifically to SPACR. A series of GST fusion proteins covering the whole SPACR molecule narrowed down the region responsible for the binding. Finally, a site-directed mutagenesis assay demonstrated that the critical HABM also acts as a specific binding site for heparin. These results were supported with mutual inhibitions by hyaluronan and heparin in analyses using GST fusion proteins and native SPACR derived from retina. Thus, these glycosaminoglycans bind to SPACR in a different manner than to sialoproteoglycan associated with cones and rods. The competitive binding between hyaluronan and heparin to SPACR, mediated through the identical HABM, may dominate the functions of SPACR, in turn involving physiological and pathological processes involved in retinal development, aging and other related disorders.  相似文献   

14.
The ovine endometrium is subjected to cyclic oscillations of estrogen and progesterone in preparation for implantation. One response to fluctuating hormonal levels is the degree of hydration of the tissue, suggesting cyclical alterations in glycosaminoglycan/proteoglycan content. The aim of the present study was to quantitate and characterize glycosaminoglycans in the ovine endometrium during estrogen and progesterone dominant stages. Endogenous endometrial glycosaminoglycan content was determined by chemical analysis and characterized by enzyme specific or chemical degradation. [(35)S]-sulphate and [(3)H]-glucosamine labeled proteoglycans/glycosaminoglycans were extracted by cell lysis or with 4M guanidine-HCl. Extracts were purified by anion exchange and gel chromatography and characterized as above. Estrogen and progesterone dominant endometrium contained 3.2 +/- 0.1 and 2.1 +/- 0.1 mg endogenous glycosaminoglycan/g dehydrated tissue, respectively. Characterization of endogenous glycosaminoglycan showed chondroitin sulphate and hyaluronan contributing over 80%. The major difference between hormonal dominant tissue was a higher estrogenic hyaluronan percentage and a higher progestational keratan sulphate percentage (p < 0.001). Estrogen dominant tissue incorporated 1.6-1.9 fold more radiolabeled proteoglycans/glycosaminoglycans (p < 0.001). Analysis of newly synthesized proteoglycans/glycosaminoglycans revealed a heparan/chondroitin sulphate ratio of 1:2.2-2.5. Keratan sulphate was not detected. Estrogenic hyaluronan was 1.6 fold greater in [(3)H]-labeled tissue. Analysis of labeled proteoglycans/glycosaminoglycans revealed two size classes with apparent molecular weights >2.0 x 10(6) and 0.8-1.1 x 10(5) and a charge class eluting between 0.1-0.5 M NaCl. The greater glycosaminoglycan content (particularly hyaluronan) and synthesis in estrogen dominant tissue supports a role for steroid hormones in endometrial glycosaminoglycan/proteoglycan regulation and consequent tissue hydration. It also suggests a role for these macromolecules in endometrial function and possibly the implantation process.  相似文献   

15.
Hyaluronan, a major macropolysaccharide in the extracellular matrix of connective tissues, is intimately involved in the biology of cancer. Hyaluronan accumulates into the stroma of various human tumors and modulates intracellular signaling pathways, cell proliferation, motility and invasive properties of malignant cells. Experimental and clinicopathological evidence highlights the importance of hyaluronan in tumor growth and metastasis. A high stromal hyaluronan content is associated with poorly differentiated tumors and aggressive clinical behavior in human adenocarcinomas. Instead, the squamous cell carcinomas and malignant melanomas tend to have a reduced hyaluronan content. In addition to the stroma–cancer cell interaction, hyaluronan can influence stromal cell recruitment, tumor angiogenesis and epithelial–mesenchymal transition. Hyaluronan receptors, hyaluronan synthases and hyaluronan degrading enzymes, hyaluronidases, are involved in the modulation of cancer progression, depending on the tumor type. Furthermore, intracellular signaling and angiogenesis are affected by the degradation products of hyaluronan. Hyaluronan has also therapeutic implications since it is involved in multidrug resistance.  相似文献   

16.
Hyaluronidases--a group of neglected enzymes.   总被引:7,自引:0,他引:7       下载免费PDF全文
Hyaluronan is an important constituent of the extracellular matrix. This polysaccharide can be hydrolyzed by various hyaluronidases that are widely distributed in nature. The structure of some bacterial and animal enzymes of this type has recently been elucidated. It could be shown that the hyaluronidases from bee and hornet venom and the PH-20 hyaluronidase present on mammalian spermatozoa are homologous proteins.  相似文献   

17.
The membrane potential is mainly maintained by the K+ concentration gradient across the cell membrane between the cytosol and the extracellular matrix. Here, we show that extracellular addition of high‐molecular weight hyaluronan depolarized the membrane potential of human fibroblasts, human embryonic kidney cells (HEK), and central nervous system neurons in a concentration‐dependent manner, whereas digestion of cell surface hyaluronan by hyaluronidase caused hyperpolarization. This effect could not be achieved by other glycosaminoglycans or hyaluronan oligosaccharides, chondroitin sulfate, and heparin which did not affect the membrane potential. Mixtures of high‐molecular weight hyaluronan and bovine serum albumin had a larger depolarization effect than expected as the sum of both individual components. The different behavior of high‐molecular weight hyaluronan versus hyaluronan oligosaccharides and other glycosaminoglycans can be explained by a Donnan effect combined with a steric exclusion of other molecules from the water solvated chains of high‐molecular weight hyaluronan. Depolarization of the plasma membrane by hyaluronan represents an additional pathway of signal transduction to the classical CD44 signal transduction pathway, which links the extracellular matrix to intracellular metabolism. J. Cell. Biochem. 111: 858–864, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Hyaluronan is a major macromolecular polysaccharide component of the extra-cellular matrix that confers structural frameworks for cells. Despite its relatively simple chemical composition, hyaluronan mediates many other important functional aspects including signalling activity during embryonic morphogenesis, cellular regeneration and wound healing. Abnormalities in hyaluronan metabolism have been implicated in many diseases, such as inflammatory disorders, cardiovascular diseases and cancer. To date, it has become increasingly clear that hyaluronan production in vertebrates is tightly regulated by three hyaluronan synthases and that hyaluronan catabolism is regulated by an enzymatic degradation reaction involving several hyaluronidases. Together, these discoveries have provided key insights into the physiological roles of hyaluronan and a deeper understanding of the mechanisms underlying altered hyaluronan turnover in diseases. The central aim of this review article is therefore to highlight the multiple roles of hyaluronan in physiological and pathological states via its complex turnover regulation.  相似文献   

19.
Although it has been reported that levels of hyaluronan are decreased in the dermis of aged skin, little is known about the cellular mechanism(s) underlying that hyaluronan deficiency. Since hyaluronan is produced by dermal fibroblasts and is secreted into the surrounding dermal tissues, we examined the secretion of hyaluronan by dermal fibroblasts and characterized its cellular mechanism using real-time RT-PCR and western blotting for its synthesizing and degrading enzymes, hyaluronan synthase and hyaluronidase, respectively. The secretion of hyaluronan by dermal fibroblasts derived from differently aged human donors, was higher in the younger human fibroblasts tested (0 and 19 years old) compared to the older human fibroblasts tested (39, 56 and 77 years old). The relative secretion levels of hyaluronan by the different human fibroblasts tested were attributable to the relative expression of hyaluronan synthases 1, 2, 3 but not hyaluronidases 1, 2 enzymes at the gene and protein levels among those fibroblasts. These findings indicate that the deficiency of hyaluronan in the aged dermis might result from the down-regulation in the potential of older human fibroblasts to secrete hyaluronan and that decrease in secretory potential is mainly associated with the down-regulated expression of hyaluronan synthases, especially hyaluronan synthase 2, but not with the expression levels of hyaluronidases.  相似文献   

20.
Inhibitors of the hyaluronidases.   总被引:5,自引:0,他引:5  
The inhibitors of hyaluronidase present in mammalian sera, first described half a century ago, have remained uncharacterized. Because of increased interest in hyaluronidases and their hyaluronan substrate, a study of these inhibitors was undertaken recently. The predominant serum inhibitor is magnesium-dependent and is eliminated by protease or chondroitinase digestion, and by heat. Kinetics of inhibition are similar against hyaluronidases from testis, snake and bee venom. The inhibitor has no effect on Streptomyces hyaluronidase; indicating inhibition is not through protection of the hyaluronan substrate. Circulating inhibition levels are increased in mice following carbon tetrachloride or interleukin-1 injection, inducers of the acute-phase response. Reverse hyaluronan gel zymography reveals a predominant band of 120 kDa relative molecular size. Additional studies indicate that the inhibitor resembles a member of the Kunitz type inter-alpha-inhibitor family. Inhibition of hyaluronidase activity is observed using purified inter-alpha-inhibitor and is reversed by antibodies specific for inter-alpha-inhibitor. This molecule, found in the hyaluronan-rich cumulus mass surrounding mammalian ova and the pericellular coat of fibroblasts and mesothelial cells, may function to stabilize such matrices by protecting against hyaluronidase degradation. Turnover of circulating hyaluronan is extraordinarily rapid, with a half-life of two to five min. Prompt increases in levels of serum hyaluronan occur in patients with shock, septicemia or massive burns, increases that may be partly attributed to suppression by these acute phase reactants of the constant and rapid rates of hyaluronan degradation by hyaluronidase. A literature survey of other hyaluronidase inhibitors is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号