首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
秸秆类植物细胞壁多糖高效降解转化对我国农业经济的绿色可持续发展具有重要意义,然而植物细胞壁在长期进化过程中形成了复杂结构限制了工业化酶解转化的过程。一方面从植物细胞壁多糖合成酶系的多样性、细胞壁多糖成分的复杂性、超分子结构的异质性等方面综述了形成植物细胞壁抗降解屏障的原因;另一方面从真菌降解植物细胞壁酶系的多样性、不同菌株降解酶组成差异性等分析降解转化植物细胞壁时发挥的不同作用,从而为工业转化合理复配真菌降解酶系,提高秸秆生物质的利用效率提供理论支持。  相似文献   

2.
植物细胞壁是地球上储量最丰富的可再生资源,是人类生产和生活中能源、纤维、建筑材料和造纸等原料的主要来源。植物细胞壁的形成机制一直是近年来的研究热点,研究植物细胞壁的形成机制不仅有助于更高效地将细胞壁转化为生物乙醇等可再生能源,也将促进纤维生物质在食品、药品和纺织等领域的更高效利用,对于新能源开发和人类生产生活均具有十分重要的意义。一些十字花科(如拟南芥,Arabidopsis thaliana)和车前科植物的种皮外层细胞在发育过程中会合成和分泌大量的粘液质多糖,其在种子遇水后膨胀并释放,形成透明胶状物质包裹种子周围。拟南芥种皮粘液质的主要成分为果胶质(主要为鼠李半乳糖醛酸聚糖I),同时还含有少量的纤维素和半纤维素成分。种皮粘液质作为一种特化的细胞壁,具有表型容易观察、分离提取简便、组成相对单一、缺失不影响植株生长发育等优点,已成为研究植物细胞壁(果胶)多糖合成、调控及细胞壁组分间互作的理想模式体系,近年来取得了较大的研究进展,本文主要介绍拟南芥种皮粘液质的形成、组成及其调控机制方面的研究进展。  相似文献   

3.
植物中棉子糖系列寡糖代谢及其调控关键酶研究进展   总被引:2,自引:0,他引:2  
棉子糖系列寡糖代谢与植物生长发育、逆境胁迫、种子耐贮性及脱水耐性等关系密切.棉子糖系列寡糖的合成从棉子糖的合成开始,由半乳糖苷肌醇上的半乳糖基的转移依次生成棉子糖、水苏糖、毛蕊花糖等.寡糖代谢是一个复杂的调控体系,其中肌醇-1-磷酸合成酶、肌醇半乳糖苷合成酶、蔗糖合成酶、棉子糖合成酶、水苏糖合成酶和毛蕊花糖合成酶等参与了棉子糖系列寡糖的生物合成过程.本文对植物中棉子糖系列寡糖的代谢及其重要调控酶的特性、功能及分子生物学研究进展进行综述.  相似文献   

4.
秸秆类植物细胞壁多糖高效降解转化对我国农业经济的绿色可持续发展具有重要意义,然而植物细胞壁在长期进化过程中形成了复杂结构限制了工业化酶解转化的过程。一方面从植物细胞壁多糖合成酶系的多样性、细胞壁多糖成分的复杂性、超分子结构的异质性等方面综述了形成植物细胞壁抗降解屏障的原因;另一方面从真菌降解植物细胞壁酶系的多样性、不同菌株降解酶组成差异性等分析降解转化植物细胞壁时发挥的不同作用,从而为工业转化合理复配真菌降解酶系,提高秸秆生物质的利用效率提供理论支持。  相似文献   

5.
细胞壁作为植物细胞重要的组成部分,在决定细胞形状、维持机械支撑、吸收养分等方面发挥重要功能。因此,揭示植物细胞壁合成的调控机制具有重大的生物学意义。基于植物组织水平研究细胞壁的生物合成具有难以控制时间尺度、观察空间狭小等局限性。原生质体作为去除细胞壁的单个细胞是研究细胞壁再生的理想系统。在过去的几十年里报道了大量关于植物原生质体再生细胞壁的研究,但是关于细胞壁再生的机制尚不清楚。该综述介绍了目前应用于植物原生质体再生细胞壁研究的主要技术和取得的研究进展,并且对该领域的后续发展进行了展望,为进一步阐明植物细胞壁生物合成的机制提供理论参考。  相似文献   

6.
蚜虫是世界性害虫,它通过独特的口针结构和丰富的唾液组分破坏植物细胞壁,穿过表皮细胞和叶肉细胞间隙,克服多重植物抗性,到达韧皮部取食为害。已有报道蚜虫唾液中含有多种细胞壁修饰酶能够降解修饰细胞壁,帮助蚜虫在细胞间刺探,更为有效的定位韧皮部。而细胞壁作为保护植物细胞的重要屏障,能感知和传递细胞壁损伤信号,通过调控细胞壁修饰酶的表达水平启动胞内诱导抗性,从而影响蚜虫的刺探、取食和定殖。此外,蚜虫唾液中的一些效应因子还能抑制细胞壁免疫和胞内抗性。可见,细胞壁免疫在蚜虫持续取食和成功定殖中发挥重要功能。为深入理解细胞壁免疫在蚜虫刺探与取食过程中的作用机制,本文概述了蚜虫唾液关键组分对细胞壁修饰与免疫的调控作用,从植物细胞壁多糖结构修饰、损伤信号传导和胞内抗性等方面重点论述对蚜虫取食行为的影响,结合病原菌与细胞壁免疫互作机制,进一步揭示蚜虫与细胞壁免疫互作新机制,为基于阻断蚜虫韧皮部取食的分子抗虫育种提供新思路。  相似文献   

7.
植物细胞壁是地球上最丰富的可再生资源,也是植物细胞区别于动物细胞的特殊结构之一,它与细胞质膜及细胞骨架共同构成了植物细胞表面的细胞壁-质膜-细胞骨架连续体.细胞壁为植物细胞提供外部支撑结构,细胞骨架则在细胞内构成内部网络支架结构.近年来,有关植物细胞骨架调控细胞壁形成的研究有了很大进展,本文从细胞骨架参与细胞壁物质膜泡运输、细胞骨架调控纤维素微纤丝沉积、细胞骨架调控次生细胞壁加厚以及细胞骨架参与细胞壁形成信号的调控等方面进行了阐述和总结,并对今后的研究方向进行了展望.  相似文献   

8.
大多数植物的库器官都是以蔗糖的形式接受碳源和能源,蔗糖进入库代谢需要转化酶和蔗糖合成酶降解成为葡萄糖和果糖,而糖又调节植物代谢过程中许多酶的基因表达,因此蔗糖降解酶是植物生长发育中起关键作用的酶.综述了近年来蔗糖合成酶和转化酶的作用及它们基因表达和调节的研究进展.  相似文献   

9.
植物中,UDP-L-鼠李糖是细胞壁骨架的主要成分,由鼠李糖合成酶催化底物UDP-α<,-D->葡萄糖合成.本实验从拟南芥基因组中分离了鼠李糖合成酶基因AtRHM1 1058bp的启动子序列并对启动子5'端进行了不同长度的缺失.将全长启动子及不同缺失启动子与GUS报告基因进行融合后转化野生型拟南芥,获得了一系列转基因植株.启动子缺失分析结果表明,AtRHM1基因在转录水平上受葡萄糖的诱导,参与葡萄糖应答反应的顺式调控元件位于启动子的-931 bp~-752bp区域.  相似文献   

10.
细胞壁是一种复杂的动态网络结构,在植物生长发育、胁迫应答和免疫抗性过程中起着重要的调控和防御作用。果胶(pectin)是细胞初生壁结构中多糖的主要成分之一;其中,同型半乳糖醛酸聚糖(HG)是果胶多糖组分中含量最丰富的线性聚合物。HG的甲基酯化程度变化会导致其酶解形成凝胶,从而影响果胶结构的稳定性。果胶甲酯酶抑制蛋白(PMEIs)通过翻译后机制调控果胶甲酯酶(PMEs)活性,微调果胶多糖甲酯化修饰平衡后,维持细胞壁的完整性和生物力学特性。研究发现,PMEI-PME互作调控果胶甲酯化修饰的稳态是决定细胞黏附、细胞壁硬度和弹性以及器官形态发生的关键因素,同时也是细胞壁应对逆境、释放抗性信号和免疫防御的分子模式。主要对PMEIs在调节植物器官发育过程和应对不同胁迫因子发挥的抗逆功能及调控机制等最新研究进展作出综述。鉴于PMEIs在木本植物中的体内生理活性和调控机制仍有待探索,可为后续填补该领域的研究空白提供理论依据和策略参考。  相似文献   

11.
植物细胞壁不仅起着支撑和保护细胞的作用,还被认为是植物抵抗逆境胁迫环境的第一道屏障。作为限制农业生产的一个主要非生物胁迫因子,盐胁迫能造成植物细胞壁的组分和结构发生改变,而植物可以通过细胞壁完整性感受器如CrRLK1Ls、LRXs和WAKs等蛋白来感知这些变化并启动下游盐胁迫响应。在细胞内,植物通过盐胁迫诱导的Ca2+内流、植物激素等信号促进细胞壁多聚糖合成和修饰相关基因的表达,从而有助于维持细胞壁的完整性,增强植物盐胁迫适应性。本文概述了植物初生细胞壁多聚糖的主要组分和各组分之间的相互结合关系,并且阐述了盐胁迫对细胞壁各组分的影响,以及盐胁迫下植物感知和维持细胞壁完整性的分子机制,最后讨论了盐胁迫下细胞壁完整性感知和调控研究领域还需要解决的科学问题。  相似文献   

12.
木葡聚糖(XyG)是一种存在于所有陆生植物细胞壁中的基质多糖, 是双子叶植物初生细胞壁中含量(20%-25%, w/w)最丰富的半纤维素成分。作为细胞壁的组分, XyG不仅与植物的生长发育密切相关, 还在植物抵抗各种生物和非生物逆境过程中发挥重要作用。XyG代谢相关基因主要通过改变植物细胞壁的组成以及对细胞壁进行重排进而改变细胞壁的弹性/硬度等特性, 影响植物的抗逆性。XyG及其寡糖也可能作为信号分子, 或与其它信号分子协同作用应对逆境胁迫。该文概述了XyG的结构与类型及参与XyG生物合成与降解的相关基因, 重点阐述XyG相关基因应答生物和非生物胁迫的作用机制。  相似文献   

13.
膨胀素——一个引人注目的细胞壁松弛酶候选者   总被引:3,自引:0,他引:3  
植物的生长是植物生理学中一个最基本且重要的问题。细胞膨胀生长(扩大和伸长)的前提是使细胞壁松弛和不可逆伸展。生物物理和生物化学分析表明,细胞壁衬质是控制细胞壁生长的最重要的因素[4]。目前,人们普遍认为,衬质多糖作为“链”(tether),把纤维素微纤丝结合在一起[9];或作为“填补物”(filler),防止微纤丝聚集[15,22,30]。并进一步认为,细胞壁松弛的机理是衬质多糖被水解断裂[1,9,13,14]。据报道,多种修饰酶(如葡聚糖酶[1,9,19]、葡萄糖苷酶[19,27]、半乳糖苷酶[17,31]、果胶甲酯酶[11]、IAA氧化酶[2]、过氧…  相似文献   

14.
彭欢  陈达香  陈瑜  郝文波 《病毒学报》2018,34(1):137-144
寡腺苷酸合成酶(Oligoadenylate synthetase,OAS)家族蛋白是典型的抗病毒蛋白,其家族成员寡腺苷酸合成酶1~3(OAS1~3)和寡腺苷酸合成酶样蛋白(Oligonucleotide synthase-like protein synthetase,OASL)在抗病毒天然免疫应答中发挥着重要作用。病毒感染机体后,细胞分泌的干扰素(Interferon,IFN)会诱导寡腺苷酸合成酶家族蛋白合成,其可通过核糖核酸酶L(RNase L)依赖途径和非依赖途径发挥抗病毒作用。本综述主要讨论寡腺苷酸合成酶家族蛋白的抗病毒机制与抗病毒临床应用的相关研究进展。  相似文献   

15.
谷胱甘肽合成酶系的克隆、测序及表达   总被引:3,自引:0,他引:3  
谷胱甘肽(Glutathione,GSH)是由γ-谷氨酰半胱氨酸合成酶(GSHI)及谷胱甘肽合成酶(GSHII)连续催化合成的一种巯基化合物,有维持细胞正常的还原状态、保护细胞免受重金属的侵害等重要的生理功能,在临床、食品、保健品等方面有广泛的用途,如:重金属解毒、癌症的辐射和化疗的保护、HIV的抑制、抗氧化等.  相似文献   

16.
阿魏酸酯酶作为微生物降解植物多糖的酶系的一部分,其从细胞壁中降解多糖获得芳香酸和单多糖的能力越来越受到重视.主要介绍了阿魏酸酯酶研究进展,包括阿魏酸酯酶的研究现状,酶-底物分子对接模型、阿魏酸酯酶基因克隆表达、重组与调控以及应用.  相似文献   

17.
细胞外基质在植物发育中的作用   总被引:2,自引:0,他引:2  
孙颖  孙大业 《植物学报》1998,15(4):30-35
植物细胞壁是由纤维素和果胶交联的多糖和蛋白质构成的既彼此独立,又相互作用的三维动力学网络。和动物的细胞外基质一样,植物细胞壁中的许多成分积极地参与植物细胞发育过程的调节,它们以某种方式将信息传递给细胞,调节细胞的行为,以便对各种外界环境作出相应的反应。因此细胞壁不再是一种环绕植物细胞的惰性结构,比起细胞壁,植物细胞外基质这一名词更能反映出这一动力学的特性。  相似文献   

18.
乙酰化修饰是植物细胞壁多糖最为普遍的修饰形式,调控细胞壁理化性质及多聚物间相互交联,并影响细胞壁结构与功能。植物生长发育过程中,多糖的乙酰化修饰呈现一定的规律性和动态变化,表明细胞壁多糖乙酰化修饰受到了严格的调控。近年来随着多种类型的乙酰转移酶和乙酰酯酶的发现,揭示了多糖乙酰化修饰调控机制的复杂性。这些关键酶的功能鉴定也为探究多糖乙酰化修饰的生物学功能提供了重要线索。乙酰化修饰变异影响植物生长发育,并调控植物的抗逆反应。此外,乙酰化修饰的改变还可影响植物纤维生物质的利用价值,一些关键酶因而有望成为改良农艺性状和提高纤维生物质利用价值的靶标。围绕上述方面,本文总结了该领域所取得的进展,并对面临的挑战进行了展望。  相似文献   

19.
细胞外基质在植物发育中的作用   总被引:6,自引:1,他引:5  
植物细胞壁是由纤维素和果胶交联的多糖和蛋白质构成的既彼此独立,又相互作用的三维动力学网络。和动物的细胞外基质一样,植物细胞壁中的许多成分积极地参与植物细胞发育过程的调节,它们以某种方式将信息传递给细胞,调节细胞的行为,以便对各种外界环境作出相应的反应。因此细胞壁不再是一种环绕植物细胞的惰性结构,比起细胞壁,植物细胞外基质这一名词更能反映出这一动力学的特性。  相似文献   

20.
《植物生理学通讯》2009,(11):1146-1153
题目:植物细胞壁基质(matrix)多糖的生物合成(综述) 摘要:伸长中的植物细胞的细胞壁主要由纤维素微纤丝和基质多糖(半纤维素和果胶)以及少量结构蛋白和酶蛋白组成。基质多糖在高尔基体中合成,通过胞吐作用输送到细胞壁,并与纤维素微纤丝相嵌。纤维素微纤丝在细胞膜上合成并直接沉积到细胞壁。已知在生长素诱导的伸长细胞中,高尔基体中存在多糖链合成,然而直到最近才鉴定出合成多糖链酶的相关基因。在基因鉴定研究中,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号